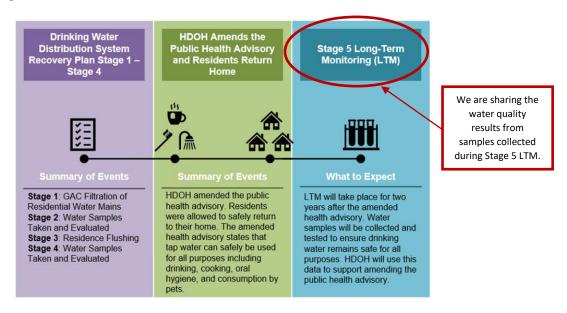


Joint Base Pearl Harbor-Hickam (JBPHH) Public Water System No. HI0000360 & Aliamanu Military Reservation (AMR) Public Water System No. HI0000337

Drinking Water Distribution System Recovery Plan: Stage 5 Long-Term Monitoring (LTM) Month 3 Sampling Results Report for Zone I1 2 August 2022

Neighborhoods included in Zone I1: Red Hill Housing



EXECUTIVE SUMMARY FOR ZONE 11

This report documents the results of long-term monitoring (LTM) testing for Zone I1. We are sharing this information with you to keep you updated on your water quality.

This LTM testing was performed after the November 29, 2021 Public Health Advisory for the JBPHH Public Water System for Zone I1 was amended by the Hawaii Department of Health (DOH) on February 14, 2022. The amended health advisory for Zone I1 can be found online at: https://jbphh-safewaters.org. The amended health advisory states that tap water can be used for all purposes including drinking, cooking, oral hygiene, and consumption by pets. The health advisory was amended based on a final review of all sample data and how the Navy water system maintains operations to ensure safe drinking water. Test results that led to the advisory amendment are summarized in the Stage 4 Residential Sampling Report. After the health advisory was amended, residents were informed that they can safely use their water for all purposes.

Zone I1 has been thoroughly flushed, sampled, and tested. This zone has completed each stage (i.e., Stage 1 – Distribution System Flushing through Stage 4 – Building Sampling) outlined in the Drinking Water Distribution System Recovery Plan¹. Based on the samples collected and tested from water mains (Stage 2) and residences, buildings, and schools (Stage 4), this zone meets the U.S. Environmental Protection Agency (EPA) and DOH drinking water standards used during this investigation. Zone I1 is now in the LTM phase (a.k.a., Stage 5), which is described below. For additional information on the Stage 2, Stage 4, and Stage 5 sample results by zone, please visit: https://jbphh-safewaters.org.

¹ The Drinking Water Distribution System Recovery Plan was developed and approved by the Interagency Drinking Water System Team (IDWST). The DOH, EPA, Navy, and Army formed the IDWST to restore safe drinking water to all Navy Water System users. The JPBHH PWS #HI0000360 and AMR PWS # HI0000337 will continue the work of the IDWST by working to restore consumer confidence by ensuring tap water continues to be safe for human consumption (e.g., drinking, cooking, oral hygiene).

i

Long-Term Monitoring

LTM will be performed as outlined in the Drinking Water Sampling Plan, dated December 2021. LTM will take place for two years after the date of the amended health advisory. The purpose of LTM is to ensure tap water continues to be safe for human consumption (e.g., drinking, cooking, and oral hygiene). Residents/occupants will be notified if and when their house/building is scheduled to be sampled. Below is the schedule for LTM in Zone I1.

LTM Schedule for Zone I1

Sampling Event ¹	Summary of Sampling Activities	Completion Date ²
Month 1	5% of houses/buildings (minimum of 5 houses/buildings)	March 13, 2022
Month 2	5% of houses/buildings (minimum of 5 houses/buildings)	April 7 – April 8, 2022
Month 3	5% of houses/buildings (minimum of 5 houses/buildings)	May 2 – May 6, 2022
Month 9	10% of houses/buildings (minimum of 15 houses/buildings)	November 2022
Month 15	10% of houses/buildings (minimum of 15 houses/buildings)	May 2023
Month 21	10% of houses/buildings (minimum of 15 houses/buildings)	November 2023
Month 24	10% of houses/buildings (minimum of 15 houses/buildings)	February 2024

Notes:

¹ Sampling events are scheduled based on the amount of time (months) since the DOH health advisory was amended for this zone.

² Completion dates are estimated based on the date the DOH health advisory was amended for this zone.

Tables Included in this Stage 5 Sampling Results Report for Zone I1

Table	Description Page
Table 1-1.	Contaminants Detected in Drinking Water Samples Collected from Residences in Zone I1
Table 1-2.	Contaminants Detected in Drinking Water Samples Collected from Schools in Zone I1
Table 1-3.	Contaminants Detected in Drinking Water Samples Collected from Child Development Centers in Zone I1
Table 1-4.	Contaminants Detected in Drinking Water Samples Collected from Other Buildings in Zone I16
Table 1-5.	Contaminants Detected in Drinking Water Samples Collected from Fire Hydrants in Zone I1
Table 1-6.	Contaminants Detected in Drinking Water Samples Collected from JBPHH's Source Water (Waiawa Shaft – Post Chlorination)

Table 1-1. Contaminants Detected in Drinking Water Samples Collected from Residences in Zone I1

Table 1-1. Conta	minants Detected in Di	rinking	Water Sa	amples C	ollected	d from Re	sidences	in Zone I	1				1	_	•				
					_	Sampling mmary		M Sampling / Month 1		M Sampling y Month 2		TM Sampling ry Month 3	Stage 5 LTM Sampling Summary Month 9	Stage 5 LTM Sa Summary Mor		Stage 5 LTM Summary			M Sampling y Month 24
			DOH	Basis of	01/15/22	2 - 01/17/22	03/1	1/22	04/07/22	- 04/08/22	05/02/22	- 05/03/22	November 2022	May 2023	3	Novemb	er 2023	Februa	ary 2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects – Maximum Samples (Average)	Detects out of Ma	inimum – aximum verage) ³		Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³
Contaminants of Conc	ern ¹		1			,			•			,							
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/22	-	0/9	-	0/7	-	0/7	-							
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/22	-	0/9	-	0/7	-	0/7	-							
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/22	-	0/9	-	0/7	-	0/7	-							
m,p,o-Xylenes	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/22	-	0/9	-	0/7	-	0/7	-							
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/22	-	0/9	-	0/7	-	0/7	-							
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/22	-	0/9	-	0/7	-	0/7	-	These samples will be collected 9 months after the health advisory was amended. Results will be reported in a LTM Month 9 Sampling Results	will be reported in Month 15 Sam	nonths advisory Results in a LTM npling	These sample collected 2 after the heat was amended will be rep	21 months alth advisory ed. Results orted in a 21 Sampling	collected 24 the health a amended. R reported in a 24 Sampli	nples will be months after advisory was Results will be a LTM Month ing Results
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	5/26	ND - 0.054 (0.034)	0/9	-	0/7	-	0/7	-	Report.	Results Rep	oort.	Results	Report.	Re	port.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	211	ISP	1/26	ND – 140 (140)	0/9	-	0/7	-	2/7	ND - 59 (55)							
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	9/22	ND – 2,890 (2,064) ⁵	9/9	250 – 630 (493)	0/7	-	1/7	ND - 280 (280)							
Free Chlorine (Field Test) ⁹	Water additive used to control microbes	ppb	4,000	MCL	-	-	9/9	520 – 650 (600)	7/7	40 - 550 (380)	7/7	220 - 410 (306)							
Metals																			
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	0/22	-	0/9	-	1/7	ND - 0.13 (0.13)	0/7	-	These samples will be collected 9 months after	These samples collected 15 m		These sam			nples will be months after
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	1/22	ND - 0.51 (0.51)	0/9	-	0/7	-	0/7	-	the health advisory was amended. Results will be reported in a LTM Month	after the health a was amended. I will be reported in	advisory Results in a LTM	after the hea was amend will be rep	alth advisory ed. Results orted in a	the health a amended. R reported in a	advisory was Results will be a LTM Month
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	22/22	2.6 – 3.3 (2.9)	9/9	3.3 – 3.7 (3.5)	6/7	ND - 19 (9.7)	7/7	3.7 - 3.9 (3.8)	9 Sampling Results Report.	Month 15 Sam Results Rep		LTM Month 2 Results			ing Results port.

Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	22/22	1.4 – 2.2 (1.8)	9/9	1.1 – 1.4 (1.2)	7/7	0.99 - 2.2 (1.7)	7/7	0.74 - 1.1 (1.0)				
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	22/22	3.6 – 8.1 (5.9)	8/9	ND - 8.1 (4.3)	7/7	0.57 – 5.0 (3.1)	7/7	1.5 - 4.2 (2.4)				
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	20/22	ND - 2.5 (0.44)	8/9	ND - 0.72 (0.31)	3/7	ND - 2.2 (0.88)	2/7	ND - 0.21 (0.17)	These samples will be collected 9 months after	These samples will be collected 15 months	These samples will be collected 21 months	These samples will be collected 24 months after
Mercury	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2.0	MCL	1/22	ND - 0.064 (0.064)	0/9	-	0/7	-	0/7	-	the health advisory was amended. Results will be reported in a LTM Month 9 Sampling Results	after the health advisory was amended. Results will be reported in a LTM Month 15 Sampling Results Report.	after the health advisory was amended. Results will be reported in a LTM Month 21 Sampling	the health advisory was amended. Results will be reported in a LTM Month 24 Sampling Results Report.
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	4/22	ND – 1.7 (1.3)	0/9		0/7		3/7	ND - 25.3 (9.1)	Report.	Results Report.	Results Report.	кероп.
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	1/22	ND – 0.071 (0.071)	1/9	ND – 0.061 (0.061)	1/7	ND - 0.051 (0.051)	1/7	ND - 0.061 (0.061)				
Volatile Organic Comp	ounds (VOCs)															
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromoacetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	2/9	ND – 1.1 (1.1)	5/7	ND - 1.9 (1.6)	7/7	1.2 - 3.5 (1.8)	These samples will be collected 9 months after the health advisory was	These samples will be collected 15 months after the health advisory	These samples will be collected 21 months after the health advisory	These samples will be collected 24 months after the health advisory was
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	9/9	4.9 – 8.3 (6.0)	6/7	ND - 13 (12)	7/7	11 - 14 (13)	amended. Results will be reported in a LTM Month 9 Sampling Results Report.	was amended. Results will be reported in a LTM Month 15 Sampling Results Report.	was amended. Results will be reported in a LTM Month 21 Sampling Results Report.	amended. Results will be reported in a LTM Month 24 Sampling Results Report.
Synthetic Organic Com	pounds (SOCs) or Semi-Volatile	Organic Co	mpounds (S	VOCs)	•											
Bis(2- ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	0/26	-	0/9	-	2/7	ND - 1.2 (0.93)	0/7	-				
Diethyl phthalate	Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and toiletries, as well as in medical treatment tubing	ppb	_7	_7	4/4	0.043 – 0.10 (0.066)	-	-	-	-	-	-	These samples will be collected 9 months after the health advisory was	These samples will be collected 15 months after the health advisory	These samples will be collected 21 months after the health advisory	These samples will be collected 24 months after the health advisory was
Di-n-butyl phthalate	Makes plastics more flexible and is also in carpet backings, paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; Enters the environment as the result of manufacture and use	ppb	_7	_7	3/4	ND - 0.13 (0.11)	-	-	-	-	-	-	amended. Results will be reported in a LTM Month 9 Sampling Results Report.	was amended. Results will be reported in a LTM Month 15 Sampling Results Report.	was amended. Results will be reported in a LTM Month 21 Sampling Results Report.	amended. Results will be reported in a LTM Month 24 Sampling Results Report.
Phenanthrene	Vehicle exhaust, asphalt, coal, wildfires, and agricultural burning	ppb	_7	_7	1/4	ND - 0.0080 (0.0080)	-	-	-	-	-	-				

Notes:

- 1. These contaminants are listed whether detected or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16_What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Month 3 report for Zone I1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. This contaminant does not have a DOH Screening Level and was only detected at low concentrations. It is not associated with fuels and is not considered a risk to human health associated with the fuel release that occurred at Red Hill in November 2021.
- 8. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 9. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.

Table 1-2. Contaminants Detected in Drinking Water Samples Collected from Schools in Zone I1

						Sampling nmary		TM Sampling ary Month 1		M Sampling ry Month 2		TM Sampling ry Month 3		ΓM Sampling ry Month 9		TM Sampling ry Month 15	Stage 5 LTM Summary M			M Sampling Month 24
					01/15/22	2 - 01/17/22	03	/11/22	04/	07/22	05/	/03/22	Novem	nber 2022	Ма	y 2023	Novembe	er 2023	Februa	ry 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	Detects	Minimum – Maximum (Average)³	No. of Detects out of Samples	Minimum – Maximum (Average) ³						
Contaminants of Concer	n ¹		L	L		L			l.								L L			
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/20	-	0/5	-	0/5	-	0/5	-								
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/20	-	0/5	-	0/5	-	0/5	-								
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/20	-	0/5	-	0/5	-	0/5	-								
m,p,o-Xylenes	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/20	-	0/5	-	0/5	-	0/5	-								
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/20	-	0/5	-	0/5	-	0/5	-								
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/20	-	0/5	-	0/5	-	0/5	-	collected 9 the health amended be report Month 9	mples will be months after advisory was . Results will ed in a LTM esampling	collected 1 the health amended. reported in 15 Samp	mples will be 5 months after advisory was Results will be a LTM Month bling Results	These samp collected 21 m the health ad amended. Re- reported in a l 21 Sampling	nonths after visory was sults will be LTM Month g Results	collected after the he was amend will be rep LTM Month	aples will be 24 months alth advisory ded. Results ported in a 24 Sampling
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/20	-	0/5	-	0/5	-	0/5	-	Result	s Report.	R	eport.	Repo	ort.	Results	Report.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	211	ISP	0/20	-	1/5	ND – 55 (55)	0/5	-	0/5	-								
Total Organic Carbon (TOC)⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	3/20	ND - 2,020 (1,810) ⁵	5/5	290 – 690 (592)	0/5	-	0/5	-								
Free Chlorine (Field Test)9	Water additive used to control microbes	ppb	4,000	MCL	-	-	5/5	400 – 570 (490)	5/5	180 - 730 (414)	5/5	150 - 580 (350)								
Metals			L			L														
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/20	ND – 0.18 (0.18)	0/5	-	0/5	-	1/5	ND - 0.11 (0.11)		mples will be months after		mples will be 5 months after	These samp			nples will be 24 months
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	10/20	ND – 4.6 (3.4)	5/5	3.6 – 4.0 (3.7)	5/5	4.6 - 6.1 (5.1)	5/5	3.7 – 4.0 (3.8)	the health amended be report Month 9	advisory was . Results will ed in a LTM 9 Sampling	the health amended. reported ir	advisory was Results will be a LTM Month bling Results	the health ad amended. Res reported in a I 21 Sampling	visory was sults will be LTM Month	after the he was amend will be rep LTM Month	alth advisory led. Results ported in a 24 Sampling
Cadmium	By-product of drinking water disinfection	ppb	5.0	MCL	1/20	ND - 0.064 (0.064)	0/5	-	0/5	-	0/5	-	Result	s Report.		eport.	Repo		Results	Report.

Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	10/20	1.2 – 1.8 (1.5)	5/5	1.6 – 1.7 (1.7)	5/5	1.8 – 2.0 (1.9)	5/5	0.73 - 1.2 (1.0)				
Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	10/20	9.8 – 40 (24)	5/5	8.3 – 13 (11)	5/5	6.0 - 9.6 (7.6)	5/5	5.8 - 8.3 (7.6)	These samples will be	These samples will be	These samples will be	These samples will be
Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	9/20	ND – 2.1 (0.76)	4/5	ND - 0.36 (0.24)	3/5	ND - 0.34 (0.30)	3/5	ND - 1.2 (0.53)	collected 9 months after the health advisory was amended. Results will	collected 15 months after the health advisory was amended. Results will be	collected 21 months after the health advisory was amended. Results will be	collected 24 months after the health advisory was amended. Results
Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	2/20	ND – 0.44 (0.43)	0/5	-	0/5	-	2/5	ND - 1.2 (0.90)	Month 9 Sampling Results Report.	15 Sampling Results Report.	21 Sampling Results Report.	will be reported in a LTM Month 24 Sampling Results Report.
Leaching from ore- processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	1/20	ND - 0.057 (0.057)	2/5	ND - 0.061 (0.058)	1/5	ND - 0.068 (0.068)	0/5	-				
unds (VOCs)			<u>-</u>												
By-product of drinking water disinfection	ppb	60	MCL	-	-	0/5	-	5/5	1.2 - 1.6 (1.4)	5/5	1.2 - 3.4 (1.7)	These samples will be collected 9 months after the health advisory was	These samples will be collected 15 months after the health advisory was	These samples will be collected 21 months after the health advisory was	These samples will be collected 24 months after the health advisory
By-product of drinking water disinfection	ppb	80	MCL	-	-	5/5	6.6 – 8.3 (7.2)	5/5	12 - 13 (12)	5/5	11 - 13 (12)	amended. Results will be reported in a LTM Month 9 Sampling Results Report.	amended. Results will be reported in a LTM Month 15 Sampling Results Report.	amended. Results will be reported in a LTM Month 21 Sampling Results Report.	was amended. Results will be reported in a LTM Month 24 Sampling Results Report.
ounds (SOCs) or Semi-Volatile	Organic	Compounds	(SVOCs)												
Used as a plasticizer mainly in adhesives and sealants, floor coverings, and paints and coatings	ppb	_7	_7	1/9	ND - 0.051 (0.051)	-	-	-	-		-				
Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and toiletries, as well as in medical treatment tubing	ppb	_7	_7	3/9	ND - 0.049 (0.046)	-	-	-	-	-	-	These samples will be collected 9 months after the health advisory was amended. Results will	These samples will be collected 15 months after the health advisory was amended. Results will be	These samples will be collected 21 months after the health advisory was amended. Results will be	These samples will be collected 24 months after the health advisory was amended. Results
Makes plastics more flexible and is also in paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; Enters the environment as the result of manufacture and use	ppb	_7	_7	3/9	ND - 0.15 (0.13)	-	-	-	-	÷	-	be reported in a LTM Month 9 Sampling Results Report.	reported in a LTM Month 15 Sampling Results Report.	reported in a LTM Month 21 Sampling Results Report.	will be reported in a LTM Month 24 Sampling Results Report.
Vehicle exhaust, asphalt, coal, wildfires and agricultural burning	ppb	_7	_7	2/9	ND – 0.0070 (0.0070)	-	-	-	-	-	-				
	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection By-product of drinking water disinfection bounds (SOCs) or Semi-Volatile Used as a plasticizer mainly in adhesives and sealants, floor coverings, and paints and coatings Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and toiletries, as well as in medical treatment tubing Makes plastics more flexible and is also in paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; Enters the environment as the result of manufacture and use Vehicle exhaust, asphalt, coal, wildfires and	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection By-product of drinking water disinfection ppb counds (SOCs) or Semi-Volatile Organic plants and coatings Used as a plasticizer mainly in adhesives and sealants, floor coverings, and paints and coatings Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and toiletries, as well as in medical treatment tubing Makes plastics more flexible and is also in paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; Enters the environment as the result of manufacture and use Vehicle exhaust, asphalt, coal, wildfires and ppb	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from oreprocessing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection Discharge from oreprocessing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection By-product of drinking water disinfection Discharge from etroleum ppb 60 By-product of drinking water disinfection Discharge from etroleum ppb 60 By-product of drinking water disinfection Discharge from etroleum ppb 60 By-product of drinking water ppb 7 By-product of drinking water disinfection Discharge from etroleum ppb 60 Ppb 7 -7 -7 -7 -7 -7 -7 -7 -7 -7	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection By-product of drinking water disinfection Ppb 80 MCL By-product of drinking water disinfection Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from electronics, glass, and drug factories Unds (VOCs) By-product of drinking water disinfection Discharge from petroleum and suffering ppb 80 MCL By-product of drinking water disinfection Discharge from mines Dy-product of drinking water disinfection Dy-product of drinking water di	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection By-product of drinking water and locatings Used as a plasticizer mainly in adhesives and sealants, floor coverings, and paints and coatings Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and toiletries, as well as in medical treatment tubing Makes plastics more flexible and is also in paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; enters the environment as the result of manufacture and use Vehicle exhaust, asphalt, coal, wildfires and	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from metal deposits; Discharge from mines Leaching from ore-processing sites; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories unds (VOCs) By-product of drinking water disinfection Duads (SOCs) or Semi-Volatile Organic Compounds (SVOCs) Used as a plasticizer mainly in adhesives and sealarts, floor coverings, and paints and coatings Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and tolletties, as well as in medical treatment tubing Makes plastics more flexible and is also in paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; Enters the environment as the result of manufacture and use Vehicle exhaust, asphalt, coal, wildfires and	pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Indis (VOCs) By-product of drinking water disinfection By-product of drinking water disinfection Ppb 80 MCL 1/20 ND - 0.44 (0.43) By-product of drinking water disinfection Ppb 80 MCL 0/5 By-product of drinking water disinfection Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from electronics, glass, and drug factories Indis (VOCs) By-product of drinking water disinfection Ppb 80 MCL 0/5 Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from electronics, glass, and drug factories Used as a plasticizer mainly in adhesives and sealants, floor coverings, and paints and coatings Used as a plasticizer in a wide variety of consumer products, including plastic packaging films, cosmetic formulations, and toiletries, as well as in medical treatment tubing Makes plastics more flexible and is also in paints, glue, insect repellents, hair spray, nail polish, and rocket fuel; Enters the environment as the result of manufacture and use Vehicle exhaust, asphalt, coal, wildfires and polity for a pub	Dulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from electronics, glass, and drug factories Discharge from electronics; glass, and drug factories Discharge from electronics, glass, and drug factories Discharge from electronics, glass, and drug factories Discharge from electronics; glass, and drug factories Discharge from electronics; glass, and drug factories Discharge from electronics, glass, and drug factories Discharge from electronics; glass, and drug factories Discharge from electronics; glass, and drug factories Discharge from electronics; glass, and glastories Discharge from electronics; glass, and glass Discharge from electronics; glass Discharge from electronics; glass Discharge from elec	Dulp mills: Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from ore-processing sites; Discharge promoters Ppb 50 MCL 2/20 ND = 0.44 (0.43) 0/5 - 0/5 (0.55) Corrosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge promoters Ppb 2.0 MCL 1/20 ND = 0.057 2/5 ND = 0.061 (0.058) 1/5 (0.057) 2/5 ND = 0.061 (0.058) 1/5 (0.057) 2/5 (0.057) 2/5 (0.058) 1/5	pulp milis; Erosion of natural deposits Corrosion of household pulp milis; Erosion of household pulp miling; Systems; Erosion of natural deposits Discharge from performance of natural deposits Discharge from organization Discharge fro	Dub mils; Erosino of natural deposits Dub mils; Erosino of Indusehold Dub mils; Erosino of Indusehold	Dulp milits Erosion of natural deposits Dulp milits Erosion of natural deposits Dulp milits Erosion of nousehold purble gives resist Dulp milits Dulp mili	pulp mils: Ensien of natural caposits	Dub milk Erodon of natural and appeals Dub milk Erodon of natural and appeals	Sub-minit Evision of returning peb 100 MCL 1020 103 1020 103

Notes

- 1. These contaminants are listed whether detected or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons, pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Month 3 report for Zone I1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. This contaminant does not have a DOH Screening Level and was only detected at low concentrations. It is not associated with fuels and is not considered a risk to human health associated with the fuel release that occurred at Red Hill in November 2021.
- 8. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 9. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.

Table 1-3. Contaminants Detected in Drinking Water Samples Collected from Child Development Centers in Zone I1

There are no Child Development Centers in this zone.

Table 1-4. Contaminants Detected in Drinking Water Samples Collected from Other Buildings in Zone I1

Table 1-4. Conta	minants Detected in Dr	inking	Water S	amples (1					1		ı	
						4 Sampling mmary		TM Sampling ary Month 1		TM Sampling ry Month 2		TM Sampling ry Month 3	Stage 5 LTM Sampling Summary Month 9	Stage 5 LTM Sa Summary Mo		Stage 5 LT	M Sampling Month 21		TM Sampling by Month 24
					01/12/2	2 - 01/15/22	ł	3/11/22		/08/22	ł	/03/22	November 2022	May 202	3	Novemb	er 2023	Februa	ary 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples No. of Minimum - Maximum (Average)	out of Ma	nimum – aximum verage) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³						
Contaminants of Conce	ern ¹																		
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/2	-	0/1	-	0/2	-	0/1	-							
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/2	-	0/1	-	0/2	-	0/1	•							
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/2	-	0/1	-	0/2	-	0/1	-							
m,p,o-Xylenes	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/2	-	0/1	-	0/2	-	0/1	-							
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/2	-	0/1	-	0/2	-	0/1	-				_			
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/2	-	0/1	-	0/2	-	0/1	-	These samples will be collected 9 months after the health advisory was amended. Results will be reported in a LTM Month 9 Sampling Results Report.	after the health was amended.	nonths advisory Results in a LTM mpling	collected: after the hea was amend will be repor Month 21	led. Results ted in a LTM	collected 24 the health a amended. F reported in 24 Sampl	mples will be 4 months after advisory was Results will be a LTM Month ling Results eport.
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/2	-	0/1	-	0/2	-	0/1	-	,						
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	211	ISP	0/2	-	0/1	-	0/2	-	0/1	-							
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	2/2	2,210 – 2,530 (2,370) ⁵	1/1	600 – 600 (600)	0/2	-	0/1	-							
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	MCL	-	-	1/1	330 – 330 (330)	1/1	60 - 60 (60)	1/1	120 - 120 (120)							
Metals		•		•			•												
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/2	ND - 0.25 (0.25)	0/1	-	0/2	-	0/1	-					_		
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	2/2	2.9 – 3.2 (3.1)	1/1	3.8 – 3.8 (3.8)	2/2	1.9 - 14 (7.8)	1/1	4.4 - 4.4 (4.4)	These samples will be collected 9 months after		nonths	collected		collected 24	mples will be 4 months after
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	2/2	1.2 – 1.3 (1.3)	1/1	1.3 – 1.3 (1.3)	2/2	1.9 - 1.9 (1.9)	1/1	1.0 – 1.0 (1.0)	 the health advisory was amended. Results will be reported in a LTM Month 	was amended.	Results in a LTM		led. Results ted in a LTM	amended. F	advisory was Results will be a LTM Month
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	2/2	8.0 – 69 (39)	1/1	75 – 75 (75)	2/2	15 - 28 (21)	1/1	11 - 11 (11)	9 Sampling Results Report.	Month 15 Sar Results Rep	mpling	Month 21		24 Sampl	oling Results eport.
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	1/2	ND - 2.4 (2.4)	0/1	-	1/2	ND - 0.41 (0.41)	0/1	-							

Volatile Organic Compo	unds (VOCs)															
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromoacetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	0/1	-	2/2	1.5 - 1.6 (1.6)	1/1	1.7 - 1.7 (1.7)	These samples will be collected 9 months after the health advisory was	These samples will be collected 15 months after the health	These samples will be collected 21 months after the health advisory	These samples will be collected 24 months after the health advisory was
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	0/2		1/1	5.8 – 5.8 (5.8)	2/2	12 - 15 (13)	1/1	18 - 18 (18)	amended. Results will be reported in a LTM Month 9 Sampling Results Report.	advisory was amended. Results will be reported in a LTM Month 15 Sampling Results Report.	was amended. Results will be reported in a LTM Month 21 Sampling Results Report.	amended. Results will be reported in a LTM Month 24 Sampling Results Report.
Synthetic Organic Comp	oounds (SOCs) or Semi-Volatile O	rganic Co	ompounds (S	SVOCs) - ND				_	_	_	_					

- 1. These contaminants are listed whether detected or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons, pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under review during the LTM Month 3 report for Zone I1), DOH revised the TOC exceedances were inconclusive in association with petroleum hydrocarbons. 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.

Table 1-5. Conta	minants Detected in Dr	inking	Water S	amples C	ollected	from Fire	<u> Hydrar</u>	nts in Zon	e I1		1		T			1			
						Sampling nmary		TM Sampling ry Month 1		M Sampling y Month 2		ΓM Sampling ry Month 3	Stage 5 LTM Sampling Summary Month 9		M Sampling y Month 15	Stage 5 LTN Summary I			TM Sampling ry Month 24
			DOH	Basis of	01/1	1/2022	03	/11/22	04/	08/22	05/	06/22	November 2022	May	2023	Novemb	er 2023	Februa	ary 2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects Out of Samples No. of Minimum Maximum (Average)	No. of Detects out of Samples	Minimum – Maximum (Average) ³	out of	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³						
Contaminants of Conc	ern ¹																		
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/2	-	0/1	-	0/1	-	0/1	-							
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/2	-	0/1	-	0/1	-	0/1	-							
Toluene	Discharge from petroleum	ppb	1,000	MCL	0/2	-	0/1	-	0/1	-	0/1	-							
m,p,o-Xylenes	factories Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/2	-	0/1	-	0/1	-	0/1	-							
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/2	-	0/1	-	0/1	-	0/1	-							
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	1/2	ND – 0.010 (0.010)	0/1	-	0/1	-	0/1	-	These samples will be collected 9 months afte the health advisory was amended. Results will be reported in a LTM Month 9 Sampling	collected after the he was amend will be repo	nples will be 15 months ealth advisory ded. Results rted in a LTM 5 Sampling	These samp collected 2 after the hea was amende will be report Month 21	21 months alth advisory ed. Results ed in a LTM	collected after the he was amen will be repo	mples will be d 24 months ealth advisory nded. Results orted in a LTM 4 Sampling
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	1/4	ND - 0.016 (0.016)	0/1	-	0/1	-	0/1	-	Results Report.		s Report.	Results			s Report.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	211	ISP	0/4	-	1/1	140 – 140 (140)	0/1	-	0/1	-							
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	0/1	-	1/1	730 – 730 (730)	0/1	-	0/1	-							
Free Chlorine (Field Test)9	Water additive used to control microbes	ppb	4,000	MCL	-	-	1/1	420 – 420 (420)	1/1	230 - 230 (230)	1/1	140 - 140 (140)							
Metals	mioroboo							(420)		(200)		(140)							
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/2	ND - 0.25 (0.25)	0/1	-	1/1	0.14 - 0.14 (0.14)	0/1	-							
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	2/2	0.22 – 0.35 (0.29)	0/1	-	0/1	-	0/1	-	These samples will be	These san	nples will be	These samp	ples will be	These san	mples will be
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	2/2	3.2 – 3.7 (3.5)	1/1	3.8 – 3.8 (3.8)	1/1	4.0 – 4.0 (4.0)	1/1	3.6 - 3.6 (3.6)	collected 9 months afte the health advisory was amended. Results will	collected after the he was amend	15 months ealth advisory ded. Results	collected 2 after the hea was amende	21 months llth advisory ed. Results	collected after the he was amen	d 24 months ealth advisory ided. Results
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	2/2	1.4 – 1.5 (1.5)	1/1	1.3 – 1.3 (1.3)	1/1	1.8 - 1.8 (1.8)	1/1	0.54 - 0.54 (0.54)	be reported in a LTM Month 9 Sampling	Month 15	rted in a LTM 5 Sampling	will be report Month 21	Sampling	Month 24	orted in a LTM 4 Sampling
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	2/2	1.2 – 2.3 (1.7)	1/1	2.0 – 2.0 (2.0)	1/1	1.1 - 1.1 (1.1)	1/1	1.1 - 1.1 (1.1)	Results Report.	Results	s Report.	Results	Report.	Results	s Report.
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	2/2	0.17 – 0.28 (0.22)	1/1	0.36 - 0.36 (0.36)	0/1	-	1/1	0.24 - 0.24 (0.24)							

						Sampling nmary		TM Sampling ry Month 1		M Sampling y Month 2		M Sampling y Month 3	Stage 5 LTI Summary		-	ΓM Sampling y Month 15	Stage 5 LT Summary	M Sampling Month 21		ΓM Sampling y Month 24
			DOH	Basis of	01/1	1/2022	03/	11/22	04/	08/22	05/	06/22	Novemb	per 2022	May	2023	Novem	ber 2023	Februa	ary 2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³						
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	2/2	0.48 – 1.8 (1.1)	0/1	•	0/1	-	1/1	0.94 - 0.94 (0.94)	These sam collected 9 r the health a amended. I be reported Month 9 secults	months after dvisory was Results will d in a LTM Sampling	collected after the he was amen will be repo Month 19	mples will be 15 months ealth advisory ded. Results orted in a LTM 5 Sampling s Report.	collected after the he was amen will be repo Month 21	nples will be 21 months alth advisory ded. Results rted in a LTM Sampling Report.	collected after the he was amen will be repo Month 24	mples will be I 24 months ealth advisory ided. Results orted in a LTM 4 Sampling s Report.
Volatile Organic Comp	ounds (VOCs)																			
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromoacetic acids)	By-product of drinking water disinfection	ppb	60	MCL	0/1	-	1/1	1.7 – 1.7 (1.7)	1/1	1.8 - 1.8 (1.8)	1/1	2.6 - 2.6 (2.6)	These sam collected 9 r	nonths after	collected	mples will be 15 months ealth advisory	collected	nples will be 21 months alth advisory	collected	mples will be I 24 months ealth advisory
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane , and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	0/1	·	1/1	12 – 12 (12)	1/1	23 – 23 (23)	1/1	25 - 25 (25)	amended. I be reporte Month 9 S Results	d in a LTM Sampling	will be repo Month 1	ded. Results orted in a LTM 5 Sampling s Report.	will be repo Month 21	ded. Results rted in a LTM Sampling Report.	will be repo Month 24	nded. Results orted in a LTM 4 Sampling s Report.
Synthetic Organic Com	npounds (SOCs) or Semi-Volatile O	rganic Co	ompounds (S	VOCs)								•								
1,2,3-Trichloropropane	Discharge from chemical factories; Use as a chemical intermediate	ppb	_7	_7	1/1	0.014 - 0.014 (0.014)	-	-	-	-	-	-	These sam collected 9 r the health a amended. I be reported Month 9 separates.	months after dvisory was Results will d in a LTM Sampling	collected after the he was amen will be repo Month 18	mples will be 1 15 months ealth advisory ded. Results orted in a LTM 5 Sampling s Report.	collected after the he was amen will be repo Month 21	nples will be 21 months alth advisory ded. Results rted in a LTM Sampling Report.	collected after the he was amen will be repo Month 24	mples will be I 24 months ealth advisory ided. Results orted in a LTM 4 Sampling s Report.

- 1. These contaminants are listed whether detected or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under review during the LTM Month 3 report for Zone I1), DOH revised the TOC exceedances were inconclusive in association with petroleum hydrocarbons.
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. This contaminant does not have a DOH Screening Level and was only detected at low concentrations. It is not associated with fuels and is not considered a risk to human health associated with the fuel release that occurred at Red Hill in November 2021.
- 8. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 9. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.

Table 1-6. Contaminants Detected in Drinking Water Samples Collected from JBPHH's Source Water (Waiawa Shaft – Post Chlorination)

					Samp	ole Date: 01/	11/2022	Samı	ole Date: 05/0	06/2022
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No) ⁷	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No) ⁷
Contaminants of Conce	ern ¹									
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/1	-	Yes	0/1	-	Yes
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/1	-	Yes	0/1	-	Yes
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/1	-	Yes	0/1	-	Yes
m,p,o-Xylenes	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/1	-	Yes	0/1	-	Yes
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	ISP	0/1	-	Yes	0/1	-	Yes
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	ISP	0/1	-	Yes	0/1	-	Yes
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	ISP	0/1	-	Yes	0/1	-	Yes
Total Petroleum Hydrocarbons (TPHs) ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	211	ISP	0/1	-	Yes	0/1	-	Yes
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	0/1	-	Yes	0/1	-	Yes
Free Chlorine (Field Test) ⁸	Water Additive	ppb	4,000	MCL	-	-	-	1/1	670 – 670 (670)	Yes
Metals										
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/1	0.092 - 0.092 (0.92)	Yes	0/1	-	Yes
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production waste	ppb	10	MCL	1/1	0.027 - 0.027 (0.027)	Yes	0/1	-	Yes
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	1/1	1.7 - 1.7 (1.7)	Yes	1/1	1.7 - 1.7 (1.7)	Yes

					Samp	ole Date: 01/1	1/2022	Samp	ole Date: 05/0	06/2022
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No) ⁷	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No) ⁷
Chromium	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; Runoff from waste batteries and paints	ppb	100	MCL	1/1	1.5 - 1.5 (1.5)	Yes	1/1	0.55 - 0.55 (0.55)	Yes
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	EAL	1/1	21 - 21 (21)	Yes	1/1	18.7 - 18.7 (18.7)	Yes
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	EAL	1/1	0.27 - 0.27 (0.27)	Yes	1/1	0.23 - 0.23 (0.23)	Yes
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	1/1	0.70 - 0.70 (0.70)	Yes	1/1	1.3 - 1.3 (1.3)	Yes
Volatile Organic Compo	ounds (VOCs) – ND		•							
Synthetic Organic Com	pounds (SOCs) or Semi-Volatile Organic Compou	nds (SVOC	(s)							
Bis(2- ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	0/1	-	Yes	1/1	0.52 - 0.52 (0.52)	Yes

- 1. These contaminants are listed whether detected or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Month 3 report for Zone D4), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.

<u>Drinking Water Distribution System Recovery Plan:</u> <u>Stage 5 LTM Month 3 Sampling Results Report for Zone I1</u>

What is the purpose of this Stage 5 LTM Month 3 Sampling Results Report?

This progress report presents the testing results from drinking water samples that have been collected from residences, schools, other buildings, and fire hydrants. These samples were collected after the health advisory had been amended and DOH determined drinking water was safe for human consumption. The health advisory was amended after the first four stages of the Drinking Water Distribution System Recovery Plan were completed in your zone. The JBPHH PWS #HI0000360 and AMR PWS #HI0000337 are committed to ensuring tap water is safe for human consumption after residents have returned home.

We are sharing this information with you to keep you updated on your community's water quality.

What was found?

The tables on the previous pages present all contaminants that were detected in drinking water samples that have been collected from residences, schools, other buildings, and fire hydrants in your zone during Stage 5 LTM Month 1, LTM Month 2, and LTM Month 3. The DOH used multiple standards/criteria (called DOH Project Screening Levels) to assess the safety of the drinking water to include:

- EPA and Hawaii DOH Maximum Contaminant Levels (MCLs) standards for drinking water;
- Previously established Environmental Action Levels (EALs); and
- Incident Specific Parameters (ISPs).

This report together with the data demonstrates that the drinking water in your area (Zone I1) meets U.S. EPA and DOH standards that are applicable to the Navy Water System Incident.

All exceedances of DOH Project Screening Levels are thoroughly reviewed and investigated by the Navy, Army, and DOH, to (1) determine if the exceedance is associated with the JBPHH water distribution system or if it is associated with premise plumbing (i.e., it is localized to a specific faucet) and (2) determine the appropriate course of action to address the exceedance (e.g., re-flushing, replacing a faucet).

There were no exceedances of screening levels in drinking water samples collected from residences, schools, other buildings, and fire hydrants during LTM Month 3 for Zone I1.

Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 4,000 parts per billion (ppb). Each exceedance is investigated by reviewing the associated water quality data (e.g., BTEX results and TPH results) and it has been determined that all TOC exceedances may not be associated with petroleum hydrocarbons. No TOC exceedances occurred in LTM Month 1, LTM Month 2, or LTM Month 3 for Zone I1.

What contaminants were tested?

Drinking water, including bottled water, can contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants tested can be obtained by calling the Hawaii DOH Safe Drinking Water Branch at 808-586-4258.

In order to ensure that drinking water is safe to drink, EPA and Hawaii DOH regulate the amount of certain contaminants in water provided by public water systems. For this incident, the primary categories of monitored contaminants include volatile organic compounds (VOCs), synthetic organic chemicals (SOCs)/semi-volatile organic compounds (SVOCs), metals, Total Petroleum Hydrocarbons (TPH), and Total Organic Carbon (TOC). A description of these contaminant categories can be found under *Explanation of Terms* located at the end of this report. The full list of contaminants that were tested for this zone are presented in the laboratory reports that are located at: https://jbphh-safewaters.org. For complete information on the interagency response, please visit: https://www.cpf.navy.mil/JBPHH-Water-Updates/.

What happened leading up to the public health advisory being issued?

The Red Hill Bulk Fuel Storage Facility jet fuel spill event was reported to have taken place on November 20, 2021. Subsequent reporting of fuel-like smell or visual sheen in addition to complaints of health issues from ingestion or dermal contact with the Navy and Army system water were received by the Navy and DOH. On November 28, 2021, the Navy reported that a chemical release of petroleum, which is a hazardous substance, entered the JBPHH drinking water distribution system from the Red Hill Shaft source. This release triggered an emergency response and DOH issuance of a public health advisory on November 29, 2021, for the entire JBPHH Public Water System No. HI0000360 (JBPHH System) and the consecutive Aliamanu Military Reservation Public Water System No. HI0000337 (AMR System).

The Hawaii DOH, EPA, Navy, and Army formed the Interagency Drinking Water System Team (IDWST) to work on a coordinated effort to restore safe drinking water to all Navy Water System users.

Has the public health advisory been amended or lifted?

The health advisory for Zone I1 was amended on February 14, 2022 but has not been lifted for the entire JBPHH System. The amendment to the health advisory was based on the results of extensive flushing, sampling (10% of buildings), and testing activities performed in Zone I1. The IDWST evaluated multiple lines of evidence to determine whether or not drinking water was safe for consumption. DOH determine that the water in Zone I1 was safe and residents/occupants could use their tap water for all purposes include drinking, cooking, oral hygiene, and consumption by pets. LTM of drinking water will be performed to ensure drinking water remains safe for all residents and occupants of JBPHH. If new information becomes available that indicates contaminants are present in the drinking water that poses a threat to public health, additional investigation may be required.

Where does our water come from?

The source of water for the Navy Water System now comes from the Navy Waiawa Shaft, which was not impacted by the release of Jet Fuel (JP-5) that occurred at Red Hill in late November 2021. The Waiawa Shaft has been sampled, and EPA and the DOH confirmed that it meets all federal and state drinking water standards. The Waiawa Shaft will be sampled (in subsequent months during LTM) in accordance with EPA and the DOH requirements.

What has the IDWST done to clean the drinking water distribution system?

The IDWST evaluated multiple options for cleaning the Navy drinking water distribution system and determined that high-volume flushing of the Navy drinking water distribution system (all water mains/laterals/buildings) with 3 to 5 volumes of clean water from the Waiawa Shaft, followed by extensive testing to confirm that flushing worked, would restore safe drinking water to all Navy Water System users.

When was Long-Term Monitoring (LTM) water quality sampling conducted in Zone I1?

On March 13, 2022, drinking water samples were collected from residences, schools, other buildings, and fire hydrants in Zone I1 as part of LTM Month 1.

Between April 7, 2022 and April 8, 2022, drinking water samples were collected from residences, schools, other buildings, and fire hydrants in Zone I1 as part of LTM Month 2.

Between May 2, 2022 and May 6, 2022, drinking water samples were collected from residences, schools, other buildings, and fire hydrants in Zone I1 as part of LTM Month 3.

Where were samples taken?

Per the IDWST approved sampling plan, five percent (5%) of all homes and buildings within Zone I1 were sampled with a minimum of 5 homes/buildings sampled. There are no Child Development Centers in this zone. These houses/buildings were geographically distributed throughout the area to provide spatial coverage along the water supply line. In addition, the list of houses/buildings may be augmented based on additional information (e.g., houses/buildings where occupants reported specific health impacts, houses/buildings that are referred to the team by medical providers) may also be sampled.

Where can I get more information about the potential health effects associated with these contaminants?

Hawaii Department of Health (DOH)
https://health.hawaii.gov/about/navy-water-system-quality-updates/.
Call the DOH Safe Drinking Water Branch at 808-586-4258

US Environmental Protection Agency (EPA)

https://www.epa.gov/ground-water-and-drinking-water/forms/online-form-epas-office-ground-water-and-drinking-water.

Call EPA Region 9's Environmental Information Center at 1-866-372-9378

Explanation of Terms and Acronyms used in this Report

Action Level (AL). This AL is for Lead and Copper. The AL is a measure of the effectiveness of the corrosion control treatment in water systems. The AL is not a standard for establishing a safe level of lead or copper. The AL is the point at which certain provisions of the proposed standards must be initiated.

Contaminant. Contaminant is any physical, chemical, biological, or radiological substance or matter in water, and can be either healthy or unhealthy, depending on the particular substance and concentration. It could also be a physical parameter monitored such as pH or temperature.

DOH. Hawaii Department of Health

EPA. U.S. Environmental Protection Agency

Incident Specific Parameter (ISP). To more comprehensively monitor and respond to this specific petroleum contamination of drinking water, the DOH identified contaminants that require additional action prior to amending the Health Advisory. The ISPs are used as a line of evidence to evaluate the data generated in each zone during the investigation conducted by the IDWST.

Maximum Contaminant Level (MCL). An MCL is the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. The MCL is set to protect the public from acute and chronic health risks associated with consuming water containing these contaminants.

Metals. Metals are not derived from living sources and in general do not contain carbon. Metals include antimony, arsenic, asbestos, barium, beryllium, cadmium, chromium, copper, cyanide, fluoride, lead, mercury, nitrate, nitrite, selenium, and thallium. These contaminants get into drinking water supplies through industrial discharge or spills, erosion of natural deposits, corrosion, sewage discharge, fertilizer runoff, and other sources.

ND. Non-Detect

Project Specific Screening Level. DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs) previously established environmental action levels (EALs) and incident specific parameters (ISPs).

Synthetic Organic Compounds (SOCs)/Semi-Volatile Organic Compounds (SVOCs). SOCs and SVOCs may be used interchangeably and are man-made, organic

(carbon-based) chemicals that are less volatile than Volatile Organic Contaminants (VOCs). They are used as pesticides, defoliants, fuel additives, and as ingredients for other organic chemicals.

DOH Environmental Action Level (EAL). The DOH Environmental Action Levels (EALs) are concentrations of contaminants in drinking water and other media (e.g., soil, soil gas, and groundwater) below which the contaminants are assumed to not pose a significant threat to human health or the environment. Exceeding these EAL does not necessarily indicate that contamination at the site poses environmental hazards but generally warrants additional investigation.

Total Petroleum Hydrocarbons (TPH). TPH is a term used to describe a large family of several hundred chemical compounds that come from crude oil. Crude oil is used to make petroleum products, which can contaminate the environment. TPH is comprised of detected results from TPH-Gasoline, TPH-Diesel, and TPH-Oil.

Total Organic Carbon (TOC). TOC is naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources.

Free Chlorine. Chlorine is added to drinking water as part of the treatment process. Adding chlorine is the most common way to disinfect drinking water. Disinfection kills bacteria, viruses, and other microorganisms that could cause disease or illness. Chlorine is effective and continues to keep the water safe as it travels from the treatment plant to the consumer's tap. Chlorine measurements provide another line-of-evidence for evaluating drinking water quality.

Total Trihalomethanes (TTHM). TTHM is the sum of the concentration in milligrams per liter of the trihalomethane compounds (trichloromethane [chloroform], dibromochloromethane, bromodichloromethane and tribromomethane [bromoform]).

Units. A unit is the concentration of contaminant found in the water. For this report, the units are expressed in U.S. Standard Units.

U.S. Standard Unit (Name)	Acronym	Equivalent International System of Units (Name)	Acronym
parts per billion	ppb	micrograms per Liter	μg/L

Volatile Organic Compounds (VOCs). VOCs are a class of chemicals that contain carbon and evaporate, or volatilize, easily into air at room temperature. VOCs are found in a variety of commercial, industrial, and residential products, including gasoline, solvents, cleaners and degreasers, paints, inks and dyes, and pesticides.