

Joint Base Pearl Harbor-Hickam (JBPHH) Public Water System No. HI0000360

Drinking Water Distribution System Recovery Plan: Stage 5 Long-Term Monitoring (LTM) Period 4
Sampling Results Report for Zone D2
15 November 2022

Neighborhoods included in Zone D2: Hickam, Hale Na Koa, Officer Field Area, Onizuka Village

EXECUTIVE SUMMARY FOR ZONE D2

This report documents the results of long-term monitoring (LTM) testing for Zone D2. We are sharing this information with you to keep you updated on your water quality.

This LTM testing was performed after the November 29, 2021 Public Health Advisory for the JBPHH Public Water System¹ for Zone D2 was amended by the Hawaii Department of Health (DOH) on March 13, 2022. The amended health advisory for Zone D2 can be found online at: https://jbphh-safewaters.org. The amended health advisory states that tap water can be used for all purposes including drinking, cooking, oral hygiene, and consumption by pets. The health advisory was amended based on a final review of all sample data and how the Navy water system maintains operations to ensure safe drinking water. Test results that led to the advisory amendment are summarized in the Stage 4 Residential Sampling Report. After the health advisory was amended, residents were informed that they can safely use their water for all purposes.

Zone D2 has been thoroughly flushed, sampled, and tested. This Zone has completed each stage (i.e., Stage 1 – Distribution System Flushing through Stage 4 – Building Sampling) outlined in the Drinking Water Distribution System Recovery Plan.² Based on the samples collected and tested from water mains (Stage 2) and residences, buildings, schools, and child development centers (Stage 4), this Zone meets the U.S. Environmental Protection Agency (EPA) and DOH drinking water standards used during this investigation. Zone D2 is now in the LTM phase (a.k.a., Stage 5), which is described below. For additional information on the Stage 2, Stage 4, and Stage 5 sample results by Zone, please visit: https://jbphh-safewaters.org.

¹ Public Health Advisory for the JBPHH Public Water System: https://health.hawaii.gov/news/files/2021/11/21-165-DOH-advises- Navy-water-system-consumers-not-to-drink-consume-tap-water.pdf

i

² The Drinking Water Distribution System Recovery Plan was developed and approved by the Interagency Drinking Water System Team (IDWST). The DOH, EPA, Navy, and Army formed the IDWST to restore safe drinking water to all Navy Water System users. The JBPHH PWS #HI0000360 & ARM PWS #HI0000337 will continue the work of the IDWST by working to restore consumer confidence by ensuring tap water continues to be safe for human consumption (e.g., drinking, cooking, and oral hygiene).

Long-Term Monitoring

LTM will be performed as outlined in the Drinking Water Long-Term Monitoring Plan, dated June 2022. LTM will take place for two years after the date of the amended health advisory. The purpose of LTM is to ensure tap water continues to be safe for human consumption (e.g., drinking, cooking, oral and hygiene). Residents/occupants will be notified if and when their house/building is scheduled to be sampled. Below is the schedule for LTM in Zone D2.

LTM Schedule for Zone D2

Sampling Event ¹	Summary of Sampling Activities	Completion Date ²
Period 1	5% of houses/buildings (minimum of 5 houses/buildings)	March 28 – April 8, 2022
Period 2	5% of houses/buildings (minimum of 5 houses/buildings)	April 25 – May 13, 2022
Period 3	5% of houses/buildings (minimum of 5 houses/buildings)	May 27 – June 22, 2022
Period 4	10% of houses/buildings	July 06 – October 13, 2022
Period 5	10% of houses/buildings	June 2023
Period 6	10% of houses/buildings	December 2023
Period 7	10% of houses/buildings	March 2024

Notes:

² Completion dates are estimated based on the date the DOH health advisory was amended for this Zone.

¹ Sampling events are scheduled based on the amount of time (months) since the DOH health advisory was amended for this Zone.

Tables Included in this Stage 5 Sampling Results Report for Zone D2

Table	Description Page
Table 1-1.	Contaminants Detected in Drinking Water Samples Collected from Residences in Zone D2
Table 1-2.	Contaminants Detected in Drinking Water Samples Collected from Schools in Zone D2
Table 1-3.	Contaminants Detected in Drinking Water Samples Collected from Child Development Centers in Zone D2
Table 1-4.	Contaminants Detected in Drinking Water Samples Collected from Other Buildings in Zone D2
Table 1-5.	Contaminants Detected in Drinking Water Samples Collected from Fire Hydrants in Zone D2
Table 1-6.	Contaminants Detected in Drinking Water Samples Collected from JBPHH's Source Water (Waiawa Shaft – Post Chlorination)

Table 1-1. Contaminants Detected in Drinking Water Samples Collected from Residences in Zone D2

						Sampling nmary		ΓM Sampling ry Period 1		M Sampling y Period 2	_	M Sampling y Period 3		M Sampling by Period 4		M Sampling y Period 5		M Sampling y Period 6		ΓM Sampling ry Period 7
					Febru	ary 2022	Apr	il 2022	May	2022	June	e 2022	Decem	ber 2022	June	2023	Decem	ber 2023	Marc	ch 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³
Contaminants of Conce	rn¹																			
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/171	-	0/91	-	0/88	-	0/88	-	0/175	-						
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/171	-	0/91	-	0/88	-	0/88	-	0/175	-						
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/171	-	0/91	-	0/88	-	0/88	-	0/175	-						
Xylenes (Total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/171	-	0/91	-	0/88	-	0/88	-	0/175	-						
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/170	-	0/90	-	0/88	-	0/88	-	0/175	-						
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	1/170	ND - 0.0091 (0.0091)	0/90	-	0/88	-	0/88	-	0/175	-	collected after the he was amend will be report Period 5	nples will be 15 months alth advisory ded. Results rted in a LTM Sampling	collected after the he was amend will be repo Period 6	nples will be 21 months alth advisory ded. Results rted in a LTM Sampling	collected 2- the health amended. I reported in 7 Sampl	mples will be 4 months after advisory was Results will be a LTM Period ing Results
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	1/171	ND - 1.1 (1.1)	0/90	-	0/88	-	0/88	-	0/175	-	Results	s Report.	Results	s Report.	Re	eport.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ¹¹	ISP	5/171	ND - 191 (69.4)	27/91	ND - 75.4 (58.6)	6/88	ND - 55 (53)	24/88	ND - 118 (67)	47/175	ND - 129 (60)						
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	72/173	ND - 7,720 (1,373)	11/91	ND - 710 (542.7)	0/88	-	0/88	-	1/175	ND - 350 (350)						
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	ISP	-	-	78/80	ND - 1000 (489)	79/79	10 - 640 (374)	79/79	70 - 810 (454)	159/159	30 - 730 (431)						
Metals																				
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/189	ND - 0.11 (0.11)	0/97	-	7/88	ND - 0.17 (0.14)	11/88	ND - 0.26 (0.15)	7/175	ND - 0.22 (0.14)		nples will be		nples will be		mples will be
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	46/189	ND - 1.5 (0.83)	0/97	-	1/88	ND - 0.51 (0.51)	6/88	ND - 0.79 (0.59)	4/175	ND - 0.66 (0.59)	after the he was amend will be repo	15 months alth advisory ded. Results rted in a LTM Sampling	after the he was amend will be repo	21 months alth advisory ded. Results rted in a LTM Sampling	the health amended. I reported in	4 months after advisory was Results will be a LTM Period ing Results
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	189/189	1.7 – 3.0 (2.0)	97/97	1.8 - 2.6 (1.9)	88/88	1.7 - 2.4 (1.9)	88/88	1.7 - 2.1 (1.9)	175/175	1.7 - 2.3 (1.9)		s Report.		s Report.		eport.

1

Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries	ppb	4.0	MCL	2/189	ND - 8.4 (4.5) ⁹	1/97	ND - 0.43 (0.43)	2/88	ND - 0.19 (0.19)	0/88	-	0/175	-			
By-product of drinking water disinfection	ppb	5.0	MCL	3/189	ND - 0.14 (0.084)	1/97	ND - 0.20 (0.20)	2/88	ND - 0.30 (0.24)	1/88	ND - 0.12 (0.12)	5/175	ND - 0.12 (0.072)			
Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	188/189	ND - 2.5 (1.7)	97/97	1.4 - 6.3 (1.8)	87/88	ND - 1.5 (1.1)	85/88	ND - 1.5 (1.0)	166/175	ND - 2.8 (1.6)			
Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	189/189	4.0 - 360 (49.3)	97/97	2.3 - 128 (42.3)	88/88	1.4 - 143 (34)	88/88	4.0 - 171 (36)	175/175	2.2 - 118 (30)	These samples will be	These samples will be	These samples will be collected 24 months after
Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	146/189	ND - 5.5 (0.34)	60/97	ND - 3.3 (0.39) ¹⁰	60/88	ND - 3.1 (0.42)	56/88	ND - 3.7 (0.30)	86/175	ND - 8.6 (0.42)	after the health advisory was amended. Results will be reported in a LTM	after the health advisory was amended. Results will be reported in a LTM	the health advisory was amended. Results will be reported in a LTM Period
Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2.0	MCL	6/189	ND - 0.093 (0.074)	0/97	-	3/88	ND - 0.029 (0.027)	14/88	ND - 0.14 (0.058)	43/175	ND - 0.066 (0.038)	Results Report.	Results Report.	7 Sampling Results Report.
Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	29/189	ND - 1.7 (0.83)	6/97	ND - 0.39 (0.34)	62/88	ND - 2.9 (0.87)	69/88	ND - 2.7 (1.1)	74/175	ND - 2.4 (0.97)			
Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	15/189	ND - 0.10 (0.081)	7/97	ND - 0.67 (0.15)	4/88	ND - 0.38 (0.20)	6/88	ND - 0.42 (0.22)	4/175	ND - 0.14 (0.097)			
inds (VOCs)																
Discharge from industrial chemical factories	ppb	75	MCL	1/171	ND - 0.66 (0.66)	0/91	-	0/88	-	0/88	-	1/175	ND - 0.59 (0.59)			
By-product of drinking water disinfection	ppb	60	MCL	-	-	1/91	ND – 1.0 (1.0)	0/88	-	0/88	-	6/175	ND - 1.2 (0.81)	These samples will be collected 15 months after the health advisory was amended. Results	These samples will be collected 21 months after the health advisory was amended. Results	These samples will be collected 24 months after the health advisory was amended. Results will be
By-product of drinking water disinfection	ppb	80	MCL	-	-	13/91	ND - 4.2 (1.9)	23/88	ND - 23 (2.6)	17/88	ND - 4.3 (1.6)	62/175	ND - 14 (1.4)	- will be reported in a LTM Period 5 Sampling Results Report.	will be reported in a LTM Period 6 Sampling Results Report.	reported in a LTM Period 7 Sampling Results Report.
ounds (SOCs) or Semi-Volatile Org	ganic Co	mpounds (SV	OCs)													
Leaching from linings of water						0/00		3/88	ND - 0.032	0/88		1/175	ND - 0.013	These samples will be collected 15 months	These samples will be collected 21 months	These samples will be collected 24 months after
storage tanks and distribution lines	ppb	0.20	MCL	0/171	-	0/90		3/88	(0.028)	0/66	_	1/1/3	(0.013)	after the health advisory was amended. Results will be reported in a LTM	after the health advisory was amended. Results will be reported in a LTM	the health advisory was amended. Results will be reported in a LTM Period
	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories unds (VOCs) Discharge from industrial chemical factories By-product of drinking water disinfection By-product of drinking water disinfection	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Inds (VOCs) Discharge from industrial chemical factories ppb By-product of drinking water disinfection ppb ounds (SOCs) or Semi-Volatile Organic Core ppc ppd ounds (SOCs) or Semi-Volatile Organic Core ppc ppd ppd	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Erosion of hatural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Indis (VOCs) Discharge from industrial chemical factories By-product of drinking water disinfection ppb 80 ounds (SOCs) or Semi-Volatile Organic Compounds (SV	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from minnes Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Discharge from industrial chemical factories Discharge from industrial chemical factories ppb 75 MCL MCL MCL MCL By-product of drinking water disinfection ppb 80 MCL MCL MCL MCL MCL MCL MCL MC	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from electronics, glass, and drug factories Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Discharge from industrial chemical factories Discharge from industrial chemical factories Discharge from industrial chemical factories Ppb 75 MCL 1/171 By-product of drinking water disinfection Ppb 80 MCL - By-product of drinking water disinfection Ppb 80 MCL - Ounds (SOCs) or Semi-Volatile Organic Compounds (SVOCs)	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of matural deposits; Discharge from petroleum and metal refineries; Erosion of matural deposits; Discharge from petroleum and metal refineries; Erosion of matural deposits; Discharge from petroleum and metal refineries; Erosion of matural deposits; Discharge from petroleum and metal refineries; Erosion of matural deposits; Discharge from petroleum and metal refineries; Erosion of ppb 50 MCL 29/189 ND - 0.093 (0.074) Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories Discharge from industrial chemical factories Ppb 75 MCL 1/171 ND - 0.66 (0.66) By-product of drinking water disinfection Ppb 80 MCL	and coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of natural deposits Corrosion of natural deposits Discharge from electronics, ppb 15 MCL 146/189 ND - 0.14 (0.084) 1/97 Corrosion of household plumbing systems; Erosion of natural deposits Corrosion of household plumbing systems; Erosion of natural deposits, Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits, Discharge from petroleum and metal refineries; Erosion of natural deposits, Discharge from petroleum and metal refineries; Erosion of matural deposits, Discharge from petroleum and metal refineries; Erosion of matural deposits, Discharge from petroleum and metal refineries; Erosion of matural deposits, Discharge from dectronics, glass, and drug factories Discharge from ore-processing sites; Discharge from industrial chemical factories Discharge from chemical factories Discharge from chemical factories Discharge from chemical factories Discharge from chemical factories D	and coal-burning factories; ppb 4.0 MCL 2/189 ND - 8.4 (4.5)* 1/97 ND - 0.43 (0.43)	And Coal-burning factories; Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from electrical, aerospace, and defense industries By-product of drinking water disinfection Discharge from steel and pulp mills; Erosion of natural deposits Discharge from steel and pulp mills; Erosion of natural deposits Discharge from steel and pulp pub Discharge from steel and pulp mills; Erosion of natural deposits Discharge from steel and pulp pub Discharge from steel and steel pub Discharge from steel and steel pub Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from petroleum and metal reflineries; Erosion of natural deposits; Discharge from ppb Discharge from ppb Discharge from ppb Discharge from ppb	and coal-burning factories; ppb 4.0 MCL 2/189 ND - 8.4 (4.5)* 1/97 ND - 0.43 (0.43) 2/88 ND - 0.19 (0.19) ND - 0.43 (0.43) 2/88 ND - 0.19 (0.19) ND - 0.43 (0.43) 2/88 ND - 0.19 (0.19) ND - 0.20 (0.49) (0.49) ND - 0.20 (0.24) (0.20) 2/88 ND - 0.10 (0.24)	and coal-burning factories; ppb 4.0 MCL 2/189 ND - 9.4 (4.5)* 1/97 ND - 0.43 (0.43) 2/88 ND - 0.19 (0.19) 0/88 inclusing come electrical; aerospace, and defense inclustries py-product of drinking water disinfection on electrical; aerospace, and defense inclustries py-product of drinking water disinfection ppb 5.0 MCL 3/189 ND - 0.14 (0.084) 1/97 ND - 0.20 2/88 ND - 0.30 (0.24) 1/88 ND - 0.25 (0.27) 1/4 - 6.3 6/27 1/4 - 6/27 1/4 -	and coal-burning factories; ppb 4.0 MCL 2/189 ND - 8.4 1/97 ND - 0.43 (0.43) 2/88 ND - 0.19 (0.19) O/68 - Industries	and coal-burning factories; ppb 4.0 MCL 2/189 ND - 9.14 1/97 ND - 9.43 2/188 ND - 0.15 (0.18) 0/175	and coal-burning factories; ppb 4.0 MCL 2:189 (4.5)* ND - 8.4 (4.5)* 197 (0.43)* 2:88 (0.19)* 0:38 0175	and code harming factories; pub 4.0 MCL 2/189 No. 9.44 (5.8) 1.97 NO. 943 (2.8) 0.19 0.88 - 0.175 Descharge from circular sensors, and defense sensors of circular sensors of circul	and coal-burning factories. Dechange from coefficients. Dechange from industrial planting sear discinction. Dechange from industrial planting sear discinction. Dechange from industrial planting spatral discinction. Dechange from percisional and industrial planting spatral discinction. Dechange from one-processing inches and spatral spa

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16_What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances was inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone D2), DOH revised the TOC exceedances was inconclusive in association with petroleum hydrocarbons.
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.

- 9. This does not include the January 15, 2022 (initial) beryllium results from 504 Signer Boulevard (Field Sample Number: 220115-D2-IT04). This does include the resampled results from 504 Signer Boulevard as described below:
- a. The sample result taken at 504 Signer Boulevard on January 15, 2022 was 8.4 parts per billion (ppb) for beryllium. This exceeded the MCL of 4.0 ppb. This type of exceedance had been encountered before in other Zones. 504 Signer Boulevard is an eight-unit complex. The IDWST reviewed the test results of all sample locations and determined that although it was likely to be a premise plumbing issue, further investigation was warranted through additional sampling and flushing. The entire complex was sampled, flushed and resampled. The re-samples were all non-detects.
- 10. This does not include the March 28, 2022 (initial) lead results from 276 Lewa Hia Way (Field Sample Number: D2-TW-0008225-22072-3-N). This does include the resampled results from 276 Lewa Hia Way. This exceedance was associated with Premise Plumbing and is not associated with the JBPHH water distribution system. Therefore, it was not included in this table. See section "What was found?" in the main text of this report for a complete discussion of this exceedance.
- a. The sample result taken at 276 Lewa Hia Way on March 28, 2022 was 15.5 parts per billion (ppb) for lead. This exceeded the action level of 15 ppb. All faucets in the residence were resampled on April 7, 2022. The validated results show lead was detected in the resample (D2-TW-0008225-22072-N-R1) at an estimated concentration of 0.430 J ppb and concentrations ranged from non-detect to 0.830 ppb in the additional samples (D2-TW-0008225-22072-N-1 to 5). All detected concentrations were below the action level of 15 ppb.
- 11. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-2. Contaminants Detected in Drinking Water Samples Collected from Schools in Zone D2

Table 1-2. Contai	minants Detected in Di	i iriking	y water S	ampies C	Juected	1 110111 501	IOOIS IN	Zone DZ												
						Sampling mmary		TM Sampling ry Period 1		M Sampling ry Period 2		M Sampling by Period 3		ΓM Sampling ry Period 4		M Sampling y Period 5		rM Sampling ry Period 6		ΓM Sampling ry Period 7
					Febru	ary 2022	Apr	il 2022	May	2022	June	e 2022	Decen	ber 2022	June	2023	Decem	ber 2023	Marc	ch 2024
			DOH	Basis of	No. of Detects	Minimum	No. of Detects	Minimum	No. of Detects	Minimum	No. of Detects	Minimum	No. of Detects	Minimum –	No. of Detects	Minimum	No. of Detects	Minimum	No. of Detects	Minimum
	Typical Source of		Project Screening	DOH Screening	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³
Contaminant Contaminants of Conce	Contaminant ern ¹	Units	Level	Level ²	- Campios	(**************************************		((////	- Campios	(Firefage)			Jampioo	(1.1.51.1.35)	- Campios	(/// 3/290)	- January 1	(711 31 22 32 7
	Discharge from factories;																			
Benzene	Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-						
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-						
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-						
Xylenes (Total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-						
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-						
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-	collected after the he was amend will be report Period 5	nples will be 15 months alth advisory ded. Results rted in a LTM Sampling	collected after the he was amer will be repo	mples will be 21 months ealth advisory ded. Results orted in a LTM & Sampling	collected after the he was amen will be repo Period 7	mples will be 24 months ealth advisory ded. Results orted in a LTM 7 Sampling
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/5	-	0/5	-	0/5	-	0/5	-	0/5	-	was amen will be repo	s кероп.	Result	s Report.	Kesult	s Report.
Total TPH⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	0/5	-	1/5	ND - 56 (56)	0/5	-	0/5	-	0/5	-						
Total Organic Carbon (TOC)⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	5/5	1,840 – 2,700 (2,380)	0/5	-	0/5	-	0/5	-	0/5	-						
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	ISP	-	-	5/5	60 – 710 (404)	5/5	20 - 400 (210)	5/5	50 - 600 (228)	5/5	130 - 590 (414)						
Metals																				
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	5/5	2.0 - 2.3 (2.1)	5/5	1.8 – 2.0 (1.9)	5/5	1.8 - 1.9 (1.9)	5/5	1.9 – 2.0 (1.9)	5/5	1.9 - 2.1 (2.0)	collected after the he	nples will be 15 months alth advisory	collected after the he	mples will be 21 months ealth advisory	collected after the he	mples will be I 24 months ealth advisory
Beryllium	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries	ppb	4.0	MCL	1/5	ND - 0.17 (0.17)	0/5	-	0/5	-	0/5	-	0/5	-	will be repo Period 5	ded. Results rted in a LTM Sampling s Report.	was amer will be repo Period 6	ded. Results orted in a LTM 5 Sampling s Report.	was amen will be repo Period 7	ded. Results orted in a LTM 7 Sampling s Report.

Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	5/5	0.91 - 1.9 (1.7)	5/5	1.7 – 2.0 (1.8)	5/5	0.71 - 0.82 (0.76)	4/5	ND - 0.97 (0.87)	5/5	0.91 - 1.1 (1.0)			
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	5/5	50 - 570 (217)	5/5	42 - 375 (171)	5/5	34 - 221 (89)	5/5	49 - 460 (200)	5/5	28 - 222 (133)			
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	5/5	0.13 - 0.35 (0.22)	4/5	ND - 1.7 (0.75)	4/5	ND - 0.30 (0.22)	3/5	ND - 0.36 (0.25)	3/5	ND - 0.58 (0.34)	These samples will be collected 15 months	These samples will be collected 21 months	These samples will be collected 24 months
Mercury	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2.0	MCL	0/5	-	0/5	-	0/5	-	0/5	-	1/5	ND - 0.051 (0.051)	after the health advisory was amended. Results will be reported in a LTM Period 5 Sampling Results Report.	after the health advisory was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	after the health advisory was amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	4/5	ND – 1.0 (0.57)	3/5	ND - 0.48 (0.40)	5/5	0.31 - 0.62 (0.45)	3/5	ND - 0.58 (0.43)	0/5	-			
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	2/5	ND - 0.099 (0.077)	0/5	-	0/5	-	0/5	-	0/5	-			
Volatile Organic Compo	unds (VOCs)	•	•														
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromo acetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	0/5	-	0/5	-	0/5	-	1/5	ND - 0.57 (0.57)	These samples will be collected 15 months after the health advisory	These samples will be collected 21 months after the health advisory	These samples will be collected 24 months after the health advisory
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	1/5	ND - 0.80 (0.80)	1/5	ND - 1.6 (1.6)	4/5	ND - 1.6 (1.0)	3/5	ND - 2.1 (1.4)	was amended. Results will be reported in a LTM Period 5 Sampling Results Report.	was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	was amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Synthetic Organic Comp	oounds (SOCs) or Semi-Volatile (Organic C	Compounds (S	SVOCs)													
Benzo(a)pyrene	Leaching from linings of water storage tanks and distribution lines	ppb	0.20	MCL	0/5	-	0/5	-	1/5	ND - 0.025 (0.025)	0/5	-	0/5	-	These samples will be collected 15 months after the health advisory was amended. Results will be reported in a LTM Period 5 Sampling Results Report.	These samples will be collected 21 months after the health advisory was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	These samples will be collected 24 months after the health advisory was amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Notes:																	

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16_What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone D2), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-3. Contaminants Detected in Drinking Water Samples Collected from Child Development Centers in Zone D2

					_	l Sampling mmary		TM Sampling ry Period 1		M Sampling ry Period 2		ΓM Sampling ry Period 3		ΓM Sampling ry Period 4		TM Sampling ry Period 5		M Sampling y Period 6		M Sampling y Period 7
					Febru	ıary 2022	Apr	il 2022	May	2022	Jun	e 2022	Decem	nber 2022	Jur	ne 2023	Decem	per 2023	Marc	h 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average)³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average)³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average)³	No. of Detects out of Samples	Minimum – Maximum (Average) ³
Contaminants of Conc			1		T								,							
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/2	-	0/3	-	0/2	-	0/2	-	0/2	-						
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/2	-	0/3	-	0/2	-	0/2	-	0/2	-						
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/2	-	0/3	-	0/2	-	0/2	-	0/2	-						
Xylenes (Total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/2	-	0/3	-	0/2	-	0/2	-	0/2	-						
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/2	-	0/3	-	0/2	-	0/2		0/2	-						
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/2	-	0/3	-	0/2	-	0/2	-	0/2	-	collected 1 the health amended. reported in 5 Samp	mples will be 5 months after advisory was Results will be a LTM Period ling Results eport.	collected 21 the health a amended. R reported in a 6 Samplii	nples will be months after advisory was esults will be a LTM Period ng Results port.	collected after the he was amen will be re LTM Perio	mples will be 24 months ealth advisory ded. Results ported in a d 7 Sampling s Report.
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/2	-	0/3	-	0/2	-	0/2	-	0/2	-		oport.	TC .	5011.	Rosult	з корон.
Total TPH⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	2/2	49 – 52 (51)	0/3	-	0/2	-	0/2	-	0/2	-						
Total Organic Carbon (TOC)⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	2/2	338 – 440 (389)	1/3	ND - 610 (610)	0/2	-	0/2	-	0/2	-						
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	ISP	-	-	2/2	280 – 420 (350)	2/2	310 - 390 (350)	2/2	300 - 400 (350)	2/2	300 - 380 (340)						
Metals	T																			
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	2/2	1.8 – 2.3 (2.1)	3/3	1.8 - 2.1 (1.9)	2/2	2.0 - 2.3 (2.2)	2/2	1.9 - 2.4 (2.2)	2/2	1.9 - 2.3 (2.1)		mples will be 5 months after		nples will be months after		mples will be 24 months
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	2/2	1.6 – 1.7 (1.7)	3/3	1.8 - 1.9 (1.8)	2/2	0.76 - 0.77 (0.77)	2/2	0.87 – 1.0 (0.94)	2/2	1.5 - 1.5 (1.5)	amended. reported in	advisory was Results will be a LTM Period ling Results	amended. R	advisory was esults will be a LTM Period ng Results	was amen will be re	ealth advisory ded. Results ported in a d 7 Sampling
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	2/2	22 – 26 (24)	3/3	14.9 - 30 (23)	2/2	13 - 23 (18)	2/2	16 - 29 (23)	2/2	7.4 - 11 (9.3)		eport.		port.		s Report.

Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	2/2	0.12 – 0.16 (0.14)	1/3	ND - 0.19 (0.19)	0/2	-	0/2	-	0/2	-	the health advisory was	These samples will be collected 21 months after the health advisory was	These samples will be collected 24 months after the health advisory
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	0/2	-	0/3	-	2/2	0.37 - 0.42 (0.40)	2/2	0.48 - 1.1 (0.79)	0/2	-		amended. Results will be reported in a LTM Period 6 Sampling Results Report.	was amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Volatile Organic Comp	ounds (VOCs)																
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromo acetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	0/3	1	0/2	-	0/2	-	1/2	ND - 1.4 (1.4)		These samples will be collected 21 months after	These samples will be collected 24 months
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	1/3	ND – 2.0 (2.0)	1/2	ND - 3.7 (3.7)	2/2	0.67 - 5.2 (2.9)	1/2	ND - 16.9 (17)		the health advisory was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	after the health advisory was amended. Results will be reported in a LTM Period 7 Sampling Results Report.

Synthetic Organic Compounds (SOCs) or Semi-Volatile Organic Compounds (SVOCs) - ND

Notes

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons, pefer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone D2), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-4. Contaminants Detected in Drinking Water Samples Collected from Other Buildings in Zone D2

						Sampling nmary ⁹		ΓM Sampling ry Period 1		M Sampling y Period 2		M Sampling y Period 3		M Sampling y Period 4	Stage 5 LTI Summary	M Sampling Period 5	Stage 5 LTN Summary		Stage 5 L1 Summar	「M Sampling ry Period 7
					Febru	ary 2022	Apr	il 2022	May	2022	June	e 2022	Decem	ber 2022	June	2023	Decemb	er 2023	Marc	h 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³	No. of Detects out of Samples	Minimum – Maximum (Average) ³								
Contaminants of Conc	ern¹				•														•	
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-						
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-						
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-						
Xylenes (total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-						
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-						
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-	collected of after the heat was amend will be rep LTM Period	alth advisory led. Results ported in a 5 Sampling	These sample collected 2 after the heat was amende will be rep	21 months lth advisory ed. Results orted in a 6 Sampling	collected after the he was amen will be re LTM Perio	mples will be 24 months ealth advisory ded. Results ported in a d 7 Sampling
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/31	-	0/15	-	0/15	-	0/16	-	0/27	-	Results	Report.	Results	Report.	Result	s Report.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	0/31	-	5/15	ND - 68 (61)	3/15	ND - 67 (57)	5/16	ND - 98 (71)	5/27	ND - 87 (72)						
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	9/31	ND - 3,220 (2,274)	0/15	-	1/15	ND - 210 (210)	0/16	-	1/27	ND - 690 (690)						
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	ISP	-	-	13/14	ND - 1,150 (435)	14/14	10 – 1,060 (448)	14/14	40 - 910 (295)	25/25	20 - 1,250 (332)						
Metals																				
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	2/31	ND - 0.30 (0.28)	0/15	-	4/15	ND - 0.15 (0.12)	1/16	ND - 0.13 (0.13)	2/27	ND - 0.69 (0.46)	These sam		These sam			mples will be
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	1/31	ND - 0.52 (0.52)	0/15	-	0/15	-	0/16	-	7/27	ND - 0.66 (0.56)	collected of after the heat was amend will be rep	alth advisory led. Results	collected 2 after the hea was amend will be rep LTM Period	llth advisory ed. Results	after the he was amen will be re	24 months ealth advisory ded. Results ported in a d 7 Sampling
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	30/31	ND – 2.7 (2.1)	14/15	ND - 2.6 (2.0)	14/15	ND - 11 (2.7)	15/16	ND - 2.1 (2.0)	26/27	ND - 2.8 (2.1)	Results		Results		Result	s Report.

Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	31/31	0.99 – 2.4 (1.6)	15/15	1.5 - 1.8 (1.7)	15/15	0.52 - 1.5 (0.95)	16/16	0.50 - 1.1 (0.90)	27/27	1.2 - 2.3 (1.9)	
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	31/31	2.4 - 210 (84)	15/15	15 - 181 (63)	15/15	16 - 100 (59)	16/16	12 - 258 (83)	26/27	ND - 238 (77)	
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	22/31	ND – 1.3 (0.39)	12/15	ND - 4.9 (0.88)	13/15	ND - 1.2 (0.37)	11/16	ND - 1.5 (0.50)	18/27	ND - 1.3 (0.42)	These samples will be collected 15 months after the health advisory These samples will be collected 21 months after the health advisory after the health advisory
Mercury	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2.0	MCL	0/31	-	0/15	-	0/15	-	2/16	ND - 0.14 (0.12)	0/27	-	was amended. Results will be reported in a LTM Period 5 Sampling Results Report. was amended. Results will be reported in a LTM Period 6 Sampling Results Report. was amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	4/31	ND – 1.2 (0.56)	2/15	ND - 0.30 (0.30)	7/15	ND - 1.1 (0.71)	9/16	ND - 1.8 (0.98)	0/27	-	
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	4/31	ND - 0.10 (0.072)	2/15	ND - 0.10 (0.077)	0/15	-	0/16	-	0/27	-	
Volatile Organic Compo	olatile Organic Compounds (VOCs) Diaghanus from all particular and AND 0.75														
Chlorobenzene	Discharge from chemical and agricultural chemical factories	ppb	100	MCL	1/31	ND - 0.75 (0.75)	0/15	-	0/15	-	0/16	-	0/27	-	
Methylene chloride ¹⁰	Discharge from pharmaceutical and chemical factories	ppb	5.0	MCL	2/31	ND - 186 (108)	0/15	-	0/15	-	0/16	-	0/27	-	These samples will be These samples will be These samples will be
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromo acetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	0/15	-	3/15	ND - 2.1 (1.6)	0/16		3/27	ND - 1.6 (1.1)	collected 15 months after the health advisory was amended. Results will be reported in a LTM Month 15 collected 21 months after the health advisory was amended. Results will be reported in a LTM Month 21 collected 24 months after the health advisory was amended. Results will be reported in a LTM Month 24
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and dibromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	4/15	ND - 24 (13)	9/15	ND - 21 (6.6)	10/16	ND - 20 (5.3)	21/27	ND - 14 (3.1)	Sampling Results Sampling Results Sampling Results Report. Report.
Synthetic Organic Comp	oounds (SOCs) or Semi-Volatile Org	ganic Cor	npounds (S\	/OCs)											
Bis(2- ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	1/31	ND - 0.97 (0.97)	0/14	-	0/15	-	0/16		0/27	-	These samples will be collected 15 months after the health advisory was amended. Results will be reported in a LTM Period 5 Sampling Results Report. These samples will be collected 24 months after the health advisory was amended. Results will be reported in a LTM Period 5 Sampling Results Report. These samples will be collected 24 months after the health advisory was amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Notes:	1	1		<u>I</u>	<u> </u>						l				

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone D2), DOH revised the TOC exceedances were inconclusive in association with petroleum hydrocarbons.
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.
- 10. Methylene chloride (also referred to as dichloromethane) was detected from Building B901H (Hickam Officer's Club). The sample results were 29.4 parts per billion (ppb) and 186 ppm (Field Sample Numbers: 220116-D2-HT05, 220118-D2-LT01). This is an exceedance of the MCL of 5.0 ppb. The building is closed for future renovations. The IDWST reviewed the information and determined that isolation of the facility from the distribution system through a backflow preventer or by securing a valve was needed to ensure that the source of contamination could not impact the rest of the public water system. The building's water will be sampled and the test results provided to DOH prior to removing any restrictions on the use of water at this facility.

Table 1-5. Contaminants Detected in Drinking Water Samples Collected from Fire Hydrants in Zone D2

Table 1-5. Contan	ninants Detected in Dri	nking	Water Sa	mples Co	ollected	from Fire	Hydran	its in Zon	e D2						ı					
						Sampling nmary		ΓM Sampling ry Period 1		M Sampling y Period 2		M Sampling y Period 3		M Sampling ry Period 4	Stage 5 LTM Sa Summary Per			M Sampling y Period 6		ΓM Sampling ry Period 7
					Febru	ary 2022	Apri	il 2022	Мау	2022	June	e 2022	Decem	ber 2022	June 2023		Decem	per 2023	Marc	ch 2024
			DOH	Basis of	No. of Detects	Minimum –	No. of Mir	imum –	No. of Detects	Minimum –	No. of Detects	Minimum –								
			Project Screening	DOH Screening	out of Samples	Maximum (Average) ³		imum rage)³	out of Samples	Maximum (Average) ³	out of Samples	Maximum (Average) ³								
Contaminant Contaminants of Concer	Typical Source of Contaminant n ¹	Units	Level	Level ²	•		•	, ,	•	, ,,	·	, ,		1 , 0 ,	· · · ·	<u> </u>	•	· • • •	•	
	Discharge from factories;																			
Benzene	Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/12	-	0/13	-	0/11	-	0/11	-	0/11	-						
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/12	-	0/13	-	0/11	-	0/11	-	0/11	-						
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/12	-	0/13	-	0/11	-	0/11	-	0/11	-						
Xylenes (Total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/12	-	0/13	-	0/11	-	0/11	-	0/11	-						
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/11	-	0/13	-	0/11	-	0/11	-	0/11	-						
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/11	-	0/13	-	0/11	-	0/11	-	0/11	-	These samples collected 15 m after the health a was amended. F will be reported ir Period 5 Sam	nths Ivisory esults a LTM ling	collected after the he was amend will be report Period 6	pples will be 21 months alth advisory ded. Results ted in a LTM Sampling	the health amended. I reported in 7 Sampl	mples will be 4 months after advisory was Results will be a LTM Period ing Results
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/11	-	0/13	-	0/11	-	0/11	-	0/11	-	Results Rep	rt.	Results	Report.	Re	eport.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ¹¹	ISP	0/14	_9	3/13	ND - 63 (58)	0/11	-	3/11	ND - 74 (64)	6/11	ND - 108 (80)						
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	7/11	ND - 3,690 (2,260)	0/13	-	1/11	ND - 400 (400)	0/11	-	0/11	-						
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	ISP	-	-	11/11	140 - 570 (404)	16/16	40 - 560 (243)	11/11	40 - 670 (354)	11/11	140 - 530 (392)						
Metals																				
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	0/12	-	0/13	-	1/14	ND - 0.15 (0.15)	3/11	ND - 0.18 (0.17)	0/11	-	These samples			ples will be		mples will be
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	7/12	ND - 0.45 (0.37)	0/13	-	0/14	-	1/11	ND - 0.56 (0.56)	0/11	-	collected 15 me after the health a was amended. F will be reported in Period 5 Sam	lvisory esults a LTM	after the he was amend will be repo	21 months alth advisory ded. Results ted in a LTM Sampling	the health amended. I reported in	4 months after advisory was Results will be a LTM Period ing Results
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	12/12	1.8 – 4.3 (2.2)	13/13	1.9 - 9.7 (2.8)	14/14	1.8 - 4.8 (2.5)	11/11	0.91 - 4.3 (2.2)	11/11	1.8 - 3.2 (2.1)	Results Rep			Report.		eport.
Beryllium	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries	ppb	4.0	MCL	0/12	-	1/13	ND - 3.4 (3.4)	0/14	-	0/11	-	0/11	-	These samples collected 15 mg after the health a was amended. F will be reported in	nths Ivisory esults	collected after the he was amend	nples will be 21 months alth advisory ded. Results ted in a LTM	collected 24 the health amended. I	mples will be 4 months after advisory was Results will be a LTM Period

Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	12/12	0.83 – 1.9 (1.3)	13/13	1.4 - 2.1 (1.7)	14/14	0.72 - 1.9 (1.1)	10/11	ND - 2.0 (1.1)	11/11	0.92 - 1.8 (1.3)	Period 5 Sampling Results Report.	Period 6 Sampling Results Report.	7 Sampling Results Report.
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	12/12	1.3 – 7.1 (3.3)	13/13	1.1 - 8.4 (2.8)	14/14	1.7 - 23 (6.1)	11/11	1.3 - 28 (5.3)	_12	_12			
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	12/12	0.15 – 6.1 (0.99)	12/13	ND - 7.4 (0.92)	16/16	0.15 - 5.5 (1.2) ¹⁰	11/11	0.15 - 3.4 (0.73)	_12	_12			
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	12/12	ND – 1.8 (1.2)	1/13	ND - 0.30 (0.30)	13/14	ND - 1.1 (0.54)	10/11	ND - 1.5 (1.1)	8/11	ND - 1.1 (0.90)			
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	1/12	ND - 0.047 (0.047)	1/13	ND - 0.18 (0.18)	2/14	ND - 0.19 (0.17)	0/11	-	0/11	-			
Volatile Organic Compou	ınds (VOCs)																
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromo acetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	1/13	ND - 1.3 (1.3)	2/11	ND - 2.3 (2.3)	1/11	ND - 2.2 (2.2)	0/11	-	These samples will be collected 15 months after the health advisory	These samples will be collected 21 months after the health advisory	These samples will be collected 24 months after the health advisory was
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	4/13	ND - 9.4 (6.1)	6/11	ND - 21 (8.7)	5/11	ND - 17 (7.7)	5/11	ND - 8.5 (4.3)	was amended. Results will be reported in a LTM Period 5 Sampling Results Report.	was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Synthetic Organic Comp	ounds (SOCs) or Semi-Volatile Org	anic Com	pounds (SV	OCs)	•												
Benzo(a)pyrene	01/01/22 – 02/16/22	ppb	0.20	MCL	1/10	ND - 0.02 (0.02)	0/13	-	0/11	-	0/11	-	0/11	-	These samples will be collected 15 months after the health advisory was amended. Results will be reported in a LTM Period 5 Sampling Results Report.	These samples will be collected 21 months after the health advisory was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	These samples will be collected 24 months after the health advisory was amended. Results will be reported in a Period 7 Sampling Results Report.

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under review during the LTM Period 3 report for Zone D2), DOH revised the TOC screening level to 4,000 ppb (previously 2.000 pph).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. This does not include the January 14, 2022 (initial) TPH results collected from Fire Hydrant 519 and Fire Hydrant 519 as described below:
 - a. The sample results take from Fire Hydrant 509 and Fire Hydrant 519 on January 14, 2022 were 120 parts per billion (ppb) and 260 ppb, respectively, for TPH. This exceeded the ISP of 211 ppb. Investigation into this matter determined this exceedance was a localized issue that was most likely attributable to premise plumbing. The IDWST members directed that the hydrants be sampled again to confirm the exceedance was localized and not a widespread issue. All TPH results from the re-sampling were non-detects. This investigation is documented in detail in the Removal Action Report for Zone D2.
- 10. This does not include the April 25, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (re-sample) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire Hydrant 74 (Field Sample ID: D2-DL-0000583-22102-N), the April 29, 2022 (initial) lead results collected from Fire H Hydrant 73 (Filed Sample ID: D2-DL-0017894-22102-N). This does include the final resampled results from Fire Hydrant 74 and Fire Hydrant 73 (Field Sample IDs: D2-DL-0007894-22102-N-R1). These exceedances were isolated events and not consistent with other lead results collected from fire hydrants throughout this Zone. Therefore, it was not included in this table. For more information on this exceedance please see the Data Summary for Zone D2 LTM Period 2 posted on the Safe Waters website https://jbphh-safewaters.org.
 - The sample result collected from Fire Hydrant 74 on April 25, 2022 was 63.4 ppb. This was an exceedance of the action level of 15 ppb. On April 29, 2022, five additional samples were collected: (1) one re-sample from Fire Hydrant 74, where the initial lead exceedance occurred, and (2) four additional samples from surrounding fire hydrants. The re-sample results from Fire Hydrant 74 (Field Sample ID: D2-DL-000583-22102-N) were 27.9 ppb and 22.9 ppb, respectively. These were exceedances of the action level of 15 ppb. The remaining additional samples collected (Field Sample ID: D2-DL-0017897-22102-N, D2-DL-0017896-22102-N, and D2-DL-0017896-22102-N, were flushed and re-sampled on May 10, 2022. Results of the re-samples for Fire Hydrant 74 and Fire Hydrant 73 (Field Sample ID: D2-DL-0017896-22102-N) were below the action level. 0000583-22102-N-R2 and D2-DL-0017894-22102-N-R1, respectively) were below the action level.
- 11. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.
- 12. Per the June 2022 Drinking Water Long-Term Monitoring Plan, Lead and Copper samples will only be collected from residences, other buildings and the entry points to the distribution system during LTM Months 4-24. The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-6. Contaminants Detected in Drinking Water Samples Collected from JBPHH's Source Water (Waiawa Shaft – Post Chlorination)

	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	Sample Period: January 2022			Sample Period: June 2022			Sample Period: December 2022		
Contaminant					No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)
Contaminants of Cor	ncern ¹												
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁴	5.0	MCL	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
m,p,o-Xylenes	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	ISP	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	ISP	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	ISP	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Total Petroleum Hydrocarbons (TPHs)	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	0/1	-	Yes ³	0/1	-	Yes	0/1	-	Yes

					Sample Period: January 2022			Sample Period: June 2022			Sample Period: December 2022		
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)
Total Organic Carbon (TOC) ⁴	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Free Chlorine (Field Test) ⁸	Water Additive	ppb	4,000	MCL	-	-	-	1/1	670 – 670 (670)	Yes	ı	ı	-
Metals													
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/1	0.092 - 0.092 (0.92)	Yes	0/1	-	Yes	0/1	-	Yes
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production waste	ppb	10	MCL	1/1	0.027 - 0.027 (0.027)	Yes	0/1	-	Yes	0/1	-	Yes
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	1/1	1.7 - 1.7 (1.7)	Yes	1/1	1.7 - 1.7 (1.7)	Yes	1/1	2.2 – 2.2 (2.2)	Yes
Chromium	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; Runoff from waste batteries and paints	ppb	100	MCL	1/1	1.5 - 1.5 (1.5)	Yes	1/1	0.55 - 0.55 (0.55)	Yes	1/1	1.2 – 1.2 (1.2)	Yes
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	EAL	1/1	21 - 21 (21)	Yes	1/1	18.7 - 18.7 (18.7)	Yes	1/1	15 – 15 (15)	Yes
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	EAL	1/1	0.27 - 0.27 (0.27)	Yes	1/1	0.23 - 0.23 (0.23)	Yes	1/1	0.29 - 0.29 (0.29)	Yes
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	1/1	0.70 - 0.70 (0.70)	Yes	1/1	1.3 - 1.3 (1.3)	Yes	1/1	1.3 - 1.3 (1.3)	Yes

					Sample Period: January 2022		Samp	le Period: Jι	ıne 2022	Sample Period: December 2022			
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)
Thallium	Leaching from ore- processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	0/20	-	Yes	0/1	-	Yes	1/1	0.076	Yes
Volatile Organic Com	npounds (VOCs) - ND												
Synthetic Organic Compounds (SOCs) or Semi-Volatile Organic Compounds (SVOCs)													
Bis(2- ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	0/1	-	Yes	1/1	0.52 - 0.52 (0.52)	Yes	1/1	0.55 - 0.55 (0.55)	Yes

Notes:

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs) and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone D2), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

<u>Drinking Water Distribution System Recovery Plan:</u> <u>Stage 5 LTM Period 4 Sampling Results Report for Zone D2</u>

What is the purpose of this Stage 5 LTM Period 4 Sampling Results Report?

This progress report presents the testing results from drinking water samples that have been collected from residences, schools, Child Development Centers, other buildings, and fire hydrants. These samples were collected after the health advisory had been amended and DOH determined drinking water was safe for human consumption. The health advisory was amended after the first four stages of the Drinking Water Distribution System Recovery Plan³ were completed in your Zone. The JBPHH PWS #HI0000360 is committed to ensuring tap water is safe for human consumption after residents have returned home.

We are sharing this information with you to keep you updated on your community's water quality.

What was found?

The tables on the previous pages present all contaminants that were detected in drinking water samples that have been collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in your Zone during Stage 5 LTM Period 1, LTM Period 2, LTM Period 3, and LTM Period 4. The DOH used multiple standards/criteria (called DOH Project Screening Levels) to assess the safety of the drinking water to include:

- EPA and Hawaii DOH Maximum Contaminant Levels (MCLs) standards for drinking water;
- Previously established Environmental Action Levels (EALs); and
- Incident Specific Parameters (ISPs).

This report together with the data demonstrates that the drinking water in your area (Zone D2) meets U.S. EPA and DOH standards that are applicable to the Navy Water System Incident.

All exceedances of DOH Project Screening Levels are thoroughly reviewed and investigated by the Navy, Army, and DOH, to (1) determine if the exceedance is associated with the JBPHH water distribution system or if it is associated with premise plumbing (i.e., it is localized to a specific faucet) and (2) determine the appropriate course of action to address the exceedance (e.g., re-flushing, replacing a faucet). There were no exceedances of screening levels in drinking water samples collected from

15

³ Drinking Water Distribution System Recovery Plan: https://www.cpf.navy.mil/Portals/52/Drinking-Water-Distribution-System-Recovery-Plan.pdf

residences, schools, child development centers, other buildings, and fire hydrants during LTM Period 1, LTM Period 2, LTM Period 3, and LTM Period 4 for Zone D2.

Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 4,000 parts per billion (ppb) for long term monitoring. Each potential exceedance is investigated by reviewing the associated water quality data (e.g., Disinfection Byproducts and TPH results) for association with petroleum hydrocarbons. No TOC exceedances occurred in LTM Period 1, LTM Period 2, LTM Period 3, or LTM Period 4 for Zone D2.

Closed Inactive Underwater Distribution Line- Secured RAR

During the Navy's water system response, the underwater distribution line at Joint Base Pearl Harbor Hickam (JBPHH) Bishop Pt-Iroquois Pt (Zone D2-Zone A3) was secured on December 5, 2021 out of an abundance of caution. The interconnection remained closed until October 2022.

On October 14th 2022, a series of water main breaks in the JBPHH water distribution system occurred reducing water pressure significantly leaving only one 24-inch water main active to provide water to consumers. In an effort to reduce the pressure on the system, JBPHH expedited the efforts to bring the Bishop Point-Iroquois Pt line back online.

A previous request to have the stagnant water in the line redirected to the Hickam Waste Water Treatment plant was approved by the Department of Health (DOH) on September 21st, 2002. Using this guidance and following American Water Works Association (AWWA) procedures, the JBPHH Public Works Department flushed the stagnant water to the plant and super-chlorinated the line prior to bacteriological (Bac-T) sample collection. A post chlorination water sample was collected on October 18th and tested for all drinking water analytes included in the LTM Plan. The sample data showed no exceedances. The DOH Safe Drinking Water Board (SDWB) expedited the review and concurred that no further action was required prior to bringing the water line back in service. The water line was brought back in service on October 20th, 2022.

What contaminants were tested?

Drinking water, including bottled water, can contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants tested can be obtained by calling the Hawaii DOH Safe Drinking Water Branch at 808-586-4258.

In order to ensure that drinking water is safe to drink, EPA and Hawaii DOH regulate the amount of certain contaminants in water provided by public water systems. For this incident, the primary categories of monitored contaminants include Volatile Organic

Compounds (VOCs), Synthetic Organic Chemicals (SOCs)/Semi-Volatile Organic Compounds (SVOCs), metals, Total Petroleum Hydrocarbons (TPH), and Total Organic Carbon (TOC). A description of these contaminant categories can be found under *Explanation of Terms* located at the end of this report. The full list of contaminants that were tested for this Zone are presented in the laboratory reports that are located at: https://jbphh-safewaters.org. For complete information on the interagency response, please visit: https://www.cpf.navy.mil/JBPHH-Water-Updates/.

What happened leading up to the public health advisory being issued?

The Red Hill Bulk Fuel Storage Facility jet fuel spill event was reported to have taken place on November 20, 2021. Subsequent reporting of fuel-like smell or visual sheen in addition to complaints of health issues from ingestion or dermal contact with the Navy and Army system water were received by the Navy and DOH. On November 28, 2021, the Navy reported that a chemical release of petroleum, which is a hazardous substance, entered the JBPHH drinking water distribution system from the Red Hill Shaft source. This release triggered an emergency response and DOH issuance of a public health advisory on November 29, 2021, for the entire JBPHH Public Water System No. HI0000360 (JBPHH System) and the consecutive Aliamanu Military Reservation Public Water System No. HI0000337 (AMR System).

The Hawaii DOH, EPA, Navy, and Army formed the Interagency Drinking Water System Team (IDWST) to work on a coordinated effort to restore safe drinking water to all Navy Water System users.

Has the public health advisory been amended or lifted?

The health advisory for Zone D2 was amended on March 13, 2022 but has not been lifted for the entire JBPHH System. The amendment to the health advisory was based on the results of extensive flushing, sampling (10% of buildings), and testing activities performed in Zone D2. The IDWST evaluated multiple lines of evidence to determine whether or not drinking water was safe for consumption. DOH determined that the water in Zone D2 was safe and residents/occupants could use their tap water for all purposes include drinking, cooking, oral hygiene, and consumption by pets. LTM of drinking water will be performed to ensure drinking water remains safe for all residents and occupants of JBPHH. If new information becomes available that indicates contaminants are present in the drinking water that poses a threat to public health, additional investigation may be required.

Where does our water come from?

The source of water for the Navy Water System now comes from the Navy Waiawa Shaft, which was not impacted by the release of Jet Fuel (JP-5) that occurred at Red Hill in late November 2021. The Waiawa Shaft has been sampled, and EPA and the DOH confirmed that it meets all federal and state drinking water standards. The Waiawa

Shaft will be sampled (in subsequent periods during LTM) in accordance with EPA and the DOH requirements.

What has the IDWST done to clean the drinking water distribution system?

The IDWST evaluated multiple options for cleaning the Navy drinking water distribution system and determined that high-volume flushing of the Navy drinking water distribution system (all water mains/laterals/buildings) with 3 to 5 volumes of clean water from the Waiawa Shaft, followed by extensive testing to confirm that flushing worked, would restore safe drinking water to all Navy Water System users.

When was Long-Term Monitoring (LTM) water quality sampling conducted in Zone D2?

Between March 28, 2022 and April 8, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone D2 for LTM Period 1.

Between April 25, 2022 and May 13, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone D2 for LTM Period 2.

Between May 27, 2022 and June 22, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone D2 for LTM Period 3.

Between July 6, 2022 and October 13, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone D2 for LTM Period 4.

Where were samples taken?

Per the approved LTM plan, 10 percent (10%) of all homes and buildings within Zone D2 were sampled. These houses/buildings will be geographically distributed throughout the area to provide spatial coverage along the water supply line. In addition, the list of houses/buildings may be augmented based on additional information (e.g., houses/buildings where occupants reported specific health impacts, houses/buildings that are referred to the team by medical providers) may also be sampled.

Where can I get more information about the potential health effects associated with these contaminants?

Hawaii Department of Health (DOH)
https://health.hawaii.gov/about/navy-water-system-quality-updates/.
Call the DOH Safe Drinking Water Branch at 808-586-4258

US Environmental Protection Agency (EPA)

https://www.epa.gov/ground-water-and-drinking-water/forms/online-form-epas-office-ground-water-and-drinking-water.

Call EPA Region 9's Environmental Information Center at 1-866-372-9378

Explanation of Terms and Acronyms used in this Report

Action Level (AL). This AL is for Lead and Copper. The AL is a measure of the effectiveness of the corrosion control treatment in water systems. The AL is not a standard for establishing a safe level of lead or copper. The AL is the point at which certain provisions of the proposed standards must be initiated.

Contaminant. Contaminant is any physical, chemical, biological, or radiological substance or matter in water, and can be either healthy or unhealthy, depending on the particular substance and concentration. It could also be a physical parameter monitored such as pH or temperature.

DOH. Hawaii Department of Health

EPA. U.S. Environmental Protection Agency

Incident Specific Parameter (ISP). To more comprehensively monitor and respond to this specific petroleum contamination of drinking water, the DOH identified contaminants that require additional action prior to amending the Health Advisory. The ISPs are used as a line of evidence to evaluate the data generated in each Zone during the investigation conducted by the IDWST.

Maximum Contaminant Level (MCL). An MCL is the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. The MCL is set to protect the public from acute and chronic health risks associated with consuming water containing these contaminants.

Metals. Metals are not derived from living sources and in general do not contain carbon. Metals include antimony, arsenic, asbestos, barium, beryllium, cadmium, chromium, copper, cyanide, fluoride, lead, mercury, nitrate, nitrite, selenium, and thallium. These contaminants get into drinking water supplies through industrial discharge or spills, erosion of natural deposits, corrosion, sewage discharge, fertilizer runoff, and other sources.

ND. Non-Detect

Project Specific Screening Level. DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs) previously established environmental action levels (EALs) and incident specific parameters (ISPs).

Synthetic Organic Compounds (SOCs)/Semi-Volatile Organic Compounds (SVOCs). SOCs and SVOCs may be used interchangeably and are man-made, organic (carbon-based) chemicals that are less volatile than Volatile Organic Contaminants (VOCs). They are used as pesticides, defoliants, fuel additives, and as ingredients for other organic chemicals.

DOH Environmental Action Level (EAL). The DOH Environmental Action Levels (EALs) are concentrations of contaminants in drinking water and other media (e.g., soil, soil gas, and groundwater) below which the contaminants are assumed to not pose a significant threat to human health or the environment. Exceeding these EAL does not necessarily indicate that contamination at the site poses environmental hazards but generally warrants additional investigation.

Total Petroleum Hydrocarbons (TPH). TPH is a term used to describe a large family of several hundred chemical compounds that come from crude oil. Crude oil is used to make petroleum products, which can contaminate the environment. TPH is comprised of detected results from TPH-Gasoline, TPH-Diesel, and TPH-Oil.

Total Organic Carbon (TOC). TOC is naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources.

Free Chlorine. Chlorine is added to drinking water as part of the treatment process. Adding chlorine is the most common way to disinfect drinking water. Disinfection kills bacteria, viruses, and other microorganisms that could cause disease or illness. Chlorine is effective and continues to keep the water safe as it travels from the treatment plant to the consumer's tap. Chlorine measurements provide another line-of-evidence for evaluating drinking water quality.

Total Trihalomethanes (TTHM). TTHM is the sum of the concentration in milligrams per liter of the trihalomethane compounds (trichloromethane [chloroform], dibromochloromethane, bromodichloromethane and tribromomethane [bromoform]).

Units. A unit is the concentration of contaminant found in the water. For this report, the units are expressed in U.S. Standard Units.

U.S. Standard Unit (Name)	Acronym	Equivalent International System of Units (Name)	Acronym
parts per billion	ppb	micrograms per Liter	μg/L

Volatile Organic Compounds (VOCs). VOCs are a class of chemicals that contain carbon and evaporate, or volatilize, easily into air at room temperature. VOCs are found in a variety of commercial, industrial, and residential products, including gasoline, solvents, cleaners and degreasers, paints, inks and dyes, and pesticides.