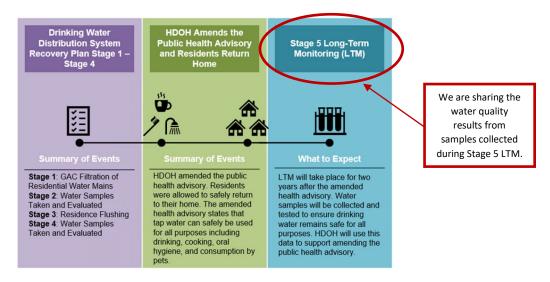


Joint Base Pearl Harbor-Hickam (JBPHH) Public Water System No. HI0000360

Drinking Water Distribution System Recovery Plan: Stage 5 Long-Term Monitoring (LTM) Period 5 Sampling Results Report for Zone E1 16 June 2023

Neighborhoods included in Zone E1: Makalapa



EXECUTIVE SUMMARY FOR ZONE E1

This report documents the results of Long-Term Monitoring (LTM) testing for Zone E1. We are sharing this information with you to keep you updated on your water quality.

This LTM testing was performed after the November 29, 2021 Public Health Advisory for the JBPHH Public Water System¹ for Zone E1 was amended by the Hawaii Department of Health (DOH) on March 8, 2022. The amended health advisory for Zone E1 can be found online at: https://jbphh-safewaters.org. The amended health advisory states that tap water can be used for all purposes including drinking, cooking, oral hygiene, and consumption by pets. The health advisory was amended based on a final review of all sample data and how the Navy water system maintains operations to ensure safe drinking water. Test results that led to the advisory amendment are summarized in the Stage 4 Residential Sampling Report. After the health advisory was amended, residents were informed that they can safely use their water for all purposes.

Zone E1 has been thoroughly flushed, sampled, and tested. This zone has completed each stage (i.e., Stage 1 - Distribution System Flushing through Stage 4 - Building Sampling), as outlined in the Drinking Water Distribution System Recovery Plan.² Based on the samples collected and tested from water mains (Stage 2) and residences. buildings, schools, and child development centers (Stage 4), this zone meets the U.S. Environmental Protection Agency (EPA) and DOH drinking water standards used during this investigation. Zone E1 is now in the LTM phase (a.k.a., Stage 5), which is described below. For additional information on the Stage 2, Stage 4, and Stage 5 sample results by zone, please visit: https://jbphh-safewaters.org.

¹ Public Health Advisory for the JBPHH Public Water System: https://health.hawaii.gov/news/files/2021/11/21-165-DOH-advises-Navy-water-system-consumers-not-to-drink-consume-tap-water.pdf

i

² The Drinking Water Distribution System Recovery Plan was developed and approved by the Interagency Drinking Water System Team (IDWST). The DOH, EPA, Navy, and Army formed the IDWST to restore safe drinking water to all Navy Water System users. The JBPHH PWS #HI0000360 will continue the work of the IDWST by working to restore consumer confidence by ensuring tap water continues to be safe for human consumption (e.g., drinking, cooking, and oral hygiene).

Long-Term Monitoring

LTM will be performed as outlined in the Final Drinking Water Long-Term Monitoring Plan, dated June 2022. LTM will take place for two years after the date of the amended health advisory. The purpose of LTM is to ensure tap water continues to be safe for human consumption (e.g., drinking, cooking, and oral hygiene). All required samples under the LTM have met the requirements for this Period (Period 5). The results of any additionally requested samples after the completion date (see table below) will be included under the Sampling Results for Zone E1 on the Safe Waters website. Residents/occupants will be notified if and when their house/building is scheduled to be sampled. Below is the schedule for LTM in Zone E1.

LTM Schedule for Zone E1

Sampling Event ¹	Summary of Sampling Activities	Completion Date ²
Period 1	5% of houses/buildings (minimum of 5 houses/buildings)	March 17 -
r enou i	570 of flouses/buildings (fillillifield of 5 flouses/buildings)	April 8, 2022
Period 2	5% of houses/buildings (minimum of 5 houses/buildings)	April 13 -
r enou z	570 of flouses/buildings (fillillifield of 5 flouses/buildings)	April 25, 2022
Period 3	5% of houses/buildings (minimum of 5 houses/buildings)	May 19 -
T effod 5	370 of flouses/buildings (fillillifidin of 3 flouses/buildings)	May 25, 2022
Period 4	10% of houses/buildings	July 28 –
r enou 4	10 % of flouses/buildings	November 4, 2022
Period 5	10% of houses/buildings	January 19 – April
r enou 5	10 % of flouses/buildings	27, 2023
Period 6	10% of houses/buildings	December 2023
Period 7	10% of houses/buildings	March 2024

² Completion dates are estimated based on the date the DOH health advisory was amended for this zone.

¹ Sampling events are scheduled based on the amount of time (months) since the DOH health advisory was amended for this zone.

Tables Included in this Stage 5 Sampling Results Report for Zone E1

Table	Description
Table 1-1.	Contaminants Detected in Drinking Water Samples Collected from Residences in Zone E1
Table 1-2.	Contaminants Detected in Drinking Water Samples Collected from Schools in Zone E1
Table 1-3.	Contaminants Detected in Drinking Water Samples Collected from Child Development Centers in Zone E1
Table 1-4.	Contaminants Detected in Drinking Water Samples Collected from Other Buildings in Zone E1
Table 1-5.	Contaminants Detected in Drinking Water Samples Collected from Fire Hydrants in Zone E1
Table 1-6.	Contaminants Detected in Drinking Water Samples Collected from JBPHH's Source Water (Waiawa Shaft - Post Chlorination)

Table 1-1. Contan	ninants Detected in Drinking	g Wat	er Sampl	es Collec	cted fror	n Reside	nces in	Zone E1			1									
						Sampling nmary	Sampling	e 5 LTM g Summary riod 1	Sampling	5 LTM g Summary riod 2	Samplin	e 5 LTM g Summary riod 3		M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5	Stage 5 LTM Sa Summary Per		Sampling	e 5 LTM g Summary riod 7
					Februa	ary 2022	Apr	il 2022	May	2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	December 2	023	Marc	ch 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	Detects out of Ma	nimum - ximum erage) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³						
Contaminants of Concer	n¹																			
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15	-				
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15	-				
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15	-				
Xylenes (total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15	-				
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15	-			There	na la cuill ha
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15	-	These samples collected 21 m after the health a was amended. F will be reported in Period 6 Sam	onths dvisory Results a a LTM	collected after th advise amended. be reporte	mples will be 24 months he health ory was . Results will
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	0/15		Results Rep			7 Sampling s Report.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266°	ISP	0/19	-	3/6	ND - 60 (57)	1/5	ND - 124 (124)	0/5	-	1/11	ND - 51 (51)	4/15	ND - 58 (55)				
Total Organic Carbon (TOC)⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	15/19	ND - 7,430 (2,455)	4/6	ND - 530 (485)	0/5	-	0/5	-	0/11	-	0/15	-				
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	MCL	-	-	5/5	480 - 640 (556)	5/5	360 - 630 (488)	5/5	200 - 520 (416)	9/9	250 - 560 (370)	14/14	150 - 450 (311)				
Metals																				
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	0/19	-	0/6	-	3/15	ND - 0.13 (0.12)	0/5	-	0/11	-	3/15	ND - 0.13 (0.12)				
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	1/19	ND - 0.53 (0.53)	0/6	-	0/15	-	0/5	-	0/11	-	0/15	-	These samples collected 21 m	onths	collected	mples will be 24 months ne health
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	19/19	1.9 - 2.5 (2.2)	6/6	1.9 - 2.1 (2.0)	15/15	1.8 - 2.1 (2.0)	5/5	1.8 - 2.0 (1.9)	11/11	1.8 - 2.4 (2.0)	15/15	1.8 - 2.1 (2.0)	after the health a was amended. F will be reported in Period 6 Sam	Results a LTM oling	advise amended. be reporte	ory was . Results will ed in a LTM 7 Sampling
Cadmium	By-product of drinking water disinfection	ppb	5.0	MCL	0/19	-	0/6	-	0/15	-	0/5	-	0/11	-	0/15	-	Results Rep	ort.		s Report.
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	19/19	1.1 - 1.9 (1.6)	5/6	ND - 1.4 (1.3)	15/15	1.4 - 2.2 (1.7)	5/5	0.84 - 1.1 (0.95)	11/11	1.2 - 1.8 (1.5)	15/15	1.4 - 2.2 (1.7)				

					•	Sampling nmary	Sampling	e 5 LTM g Summary riod 1	Sampling	e 5 LTM g Summary riod 2	Sampling	e 5 LTM g Summary riod 3	_	M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5		M Sampling / Period 6	Sampling	e 5 LTM g Summary riod 7
					Februa	ary 2022	Apri	il 2022	May	/ 2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	Decemi	per 2023	Marc	ch 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³												
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	19/19	6.1 - 190 (59)	6/6	12.1 - 122 (49)	15/15	4.7 - 158 (52)	5/5	7.6 - 64 (25)	11/11	3.1 - 136 (31)	15/15	4.7 - 158 (52)				
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	15/19	ND - 1.7 (0.35)	5/6	ND - 0.79 (0.40)	7/15	ND - 2.8 (0.99)	2/5	ND - 0.25 (0.19)	4/11	ND - 0.44 (0.26)	7/15	ND - 2.8 (0.99)	These sam	ples will be		mples will be
Mercury	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2.0	MCL	3/19	ND - 0.07 (0.065)	0/6	-	0/15	-	0/5	-	2/11	ND - 0.033 (0.033)	0/15	-	collected after the he was amend	21 months alth advisory led. Results	after th advis	d 24 months he health sory was l. Results will
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	0/19	-	0/6	-	0/15	-	5/5	0.41 - 2.0 (1.2)	5/11	ND - 0.58 (0.53)	0/15	-	Period 6	ted in a LTM Sampling Report.	be report Period 7	ted in a LTM 7 Sampling ts Report.
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	2/19	ND - 0.1 (0.098)	0/6	-	1/15	ND - 0.061 (0.061)	0/5	-	0/11	-	1/15	ND - 0.061 (0.061)				
Volatile Organic Compou	nds (VOCs)						•				•		•		•		•			
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromo acetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	0/6	-	0/5	-	0/5	-	0/11	-	2/15	ND - 0.97 (0.82)	collected	iples will be 21 months alth advisory	collected	mples will be d 24 months he health
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	0/6	-	1/5	ND - 0.61 (0.61)	0/5	-	2/11	ND - 2.0 (1.6)	12/15	ND - 3.9 (1.7)	was ameno will be repor Period 6	led. Results ted in a LTM	advis amended be report Period 7	sory was l. Results will ted in a LTM 7 Sampling ts Report.
Synthetic Organic Compo	ounds (SOCs) or Semi-Volatile Organic C	Compour	nds (SVOCs)																	
Benzo(a)pyrene	Leaching from linings of water storage tanks and distribution lines	ppb	0.2	MCL	0/19	-	0/6	-	0/5	-	0/5	-	0/11	-	4/15	ND - 0.017 (0.015)	collected after the he	iples will be 21 months alth advisory	collected after th	mples will be d 24 months he health
Bis(2-ethylhexyl)phthalate Notes:	Discharge from rubber and chemical factories	ppb	6.0	MCL	0/18	-	0/6	-	1/5	ND - 0.41 (0.41)	0/5	-	0/11	-	1/15	ND - 0.55 (0.55)	will be repor Period 6	led. Results ted in a LTM Sampling Report.	amended be report Period 7	sory was l. Results will ted in a LTM 7 Sampling ts Report.

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs), and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons, pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH had previously selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone E1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-2. Contamina	ants Detected in Drink	ing W	ater Sam	iples Col	Stage 4	Sampling	Stage 5 L	ONE E1 TM Sampling ry Period 1		M Sampling y Period 2	Sampling	e 5 LTM g Summary riod 3		M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5	Stage 5 LTM Sampling Summary Period 6	Stage Sampling Perio	Summary
			DOH	Basis of	Febru	ary 2022	Apr	il 2022	May	2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	December 2023	March	2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples Minimum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³										
Contaminants of Concern ¹																			
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-			
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-			
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-			
Xylenes (total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-			
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-	These samples will be	These sam	
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-	collected 21 months after the health advisory was amended. Results will be reported in a LTM Period 6 Sampling Results Report.	collected 2 after the advisor amended. I be reported Period 7 S Results	e health ry was Results will d in a LTM Sampling
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-			
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ¹⁰	ASI	0/9	-	0/6	_9	4/5	ND - 57 (52)	0/5	-	0/5	-	1/5	ND - 59 (59)			
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	5/9	ND - 1,780 (778)	2/4	ND - 490 (445)	0/5	-	0/5	-	0/5	-	0/5	-			
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	MCL	-	-	7/7	10 - 600 (306)	5/5	340 - 700 (578)	5/5	160 - 460 (350)	5/5	50 - 520 (354)	5/5	210 - 470 (372)			
Metals	I.	1	ı		ı	ı	1	, ,						, ,		, , ,		ı	
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	0/9	-	0/4	-	0/5	-	2/5	ND - 0.15 (0.15)	0/5	-	1/5	ND - 0.12 (0.12)	These samples will be	These sam	
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	4/9	ND - 0.31 (0.27)	0/4	-	0/5	-	0/5	-	0/5	-	0/5	(0.12) These sam collected after the heaves amend will be report	collected 21 months after the health advisory was amended. Results will be reported in a LTM	collected 2 after the advisor amended. F be reported	e health ry was Results will
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	9/9	2.2 - 2.5 (2.3)	4/4	2.2 - 2.4 (2.3)	5/5	1.9 - 2.0 (2.0)	5/5	2.0 - 2.2 (2.1)	5/5	1.9 - 2.0 (1.9)	5/5	2.0 - 2.1 (2.0)	Period 6 Sampling Results Report.	Period 7 S Results	Sampling
Cadmium	By-product of drinking water disinfection	ppb	5.0	MCL	0/9	-	0/4	-	0/5	-	0/5	-	1/5	ND - 0.080 (0.080)	1/5	ND - 0.054 (0.054)			

					•	Sampling nmary		ΓM Sampling ry Period 1		M Sampling y Period 2	Samplin	e 5 LTM g Summary riod 3		M Sampling y Period 4	Samplin	e 5 LTM g Summary riod 5	Stage 5 LTM Summary		Stage S Sampling S Perio	Summary
			DOH	Basis of	Februa	ary 2022	Apr	il 2022	Мау	2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	Decemb	er 2023	March	2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	9/9	1.2 - 1.5 (1.4)	4/4	1.1 - 1.1 (1.1)	5/5	0.97 - 1.2 (1.1)	5/5	0.92 - 0.99 (0.95)	5/5	1.0 - 1.1 (1.1)	5/5	1.8 - 1.9 (1.8)	These sam		These samp	
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	9/9	6.8 - 107 (41)	4/4	31.3 - 180 (95)	5/5	7.2 - 25 (14)	5/5	11 - 41 (22)	5/5	10.2 - 61 (28)	5/5	9.8 - 33 (20)	after the hea was amend will be report Period 6	alth advisory ed. Results ed in a LTM	after the advisor amended. F be reported	e health ry was Results will
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	9/9	0.094 - 0.46 (0.23)	4/4	0.32 - 1.2 (0.75)	5/5	0.13 - 0.25 (0.19)	5/5	0.14 - 0.48 (0.29)	5/5	0.14 - 0.38 (0.28)	5/5	0.14 - 0.60 (0.29)	Results	Report.	Period 7 S Results	Sampling
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	4/9	ND - 1.3 (1.1)	0/4	-	5/5	0.73 - 1.1 (0.89)	5/5	0.52 - 1.3 (0.84)	5/5	0.41 - 0.58 (0.46)	0/5	-				
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	1/9	ND - 0.081 (0.081)	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-				
Volatile Organic Compounds	(VOCs)																			
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di-bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	4/4	0.54 - 2.2 (1.5)	0/5	-	3/5	ND - 0.97 (0.90)	0/5	-	3/5	ND - 2.3 (1.1)	These sam collected 2 after the hea was amend will be report Period 63 Results	21 months alth advisory ed. Results ted in a LTM Sampling	These samp collected 2 after the advisor amended. F be reported Period 7 S Results	24 months e health ry was Results will d in a LTM Sampling
Synthetic Organic Compound	ls (SOCs) or Semi-Volatile Organ	ic Comp	ounds (SVOC	Cs)																
Benzo(a)pyrene	Leaching from linings of water storage tanks and distribution lines	ppb	0.2	MCL	0/9	-	0/4	-	0/5	-	0/5	-	0/5	-	2/5	ND - 0.012 (0.012)	collected 2 after the hea was amend	ılth advisory ed. Results	These samp collected 2 after the advisor	24 months e health ry was
Bis(2-ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	2/9	ND - 1.3 (1.3)	0/4	-	0/5	-	0/5	-	0/5	-	0/5	-	will be report Period 6 S Results	Sampling	amended. F be reported Period 7 S Results	Results will d in a LTM Sampling

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs), and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH had previously selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone E1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. This does not include the March 18, 2022 (initial) TPH results from Navy Hale Keiki School (Field Sample Number: E1-TW-0015244-22067-N-1-R1). This does include the re-sample results from Navy Hale Keiki School (Field Sample Number: E1-TW-0015244-22067-N-1-R1). This does include the re-sample results from Navy Hale Keiki School (Field Sample Number: E1-TW-0015244-22067-N-1-R1). This exceedance was one of five initial samples taken from the school and identified as isolated to a specific faucet. This exceedance is not associated with the JBPHH water distribution system. Therefore, it was not included in this table. For more information on this exceedance please see the Data Summary for Zone E1 LTM Period 1 posted on the Safe Waters website https://ijbphh-safewaters.org
 - a) The sample result collected from Navy Hale Keiki School on March 18, 2022 was 238 ppb for TPH, a combination of 118 ppb for TPH-d and 120 ppb for TPH-d and 120 ppb for TPH-g. This was an exceedance of the ISP of 211 ppb. Investigation into this exceedance determined through chemical analysis that the result was unrelated to fuel, including JP-5. However, further investigation was warranted through additional sampling. The re-sample results were non-detect.

10. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

	minants Detected in Drinki				Stage 4	Sampling nmary	Stage 5 LT	M Sampling y Period 1	Stage 5 LT	M Sampling y Period 2	Sampling	e 5 LTM g Summary riod 3		M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5	Stage 5 LTM Summary		Sampling	e 5 LTM g Summary riod 7
			DOH	Basis of	Februa	ary 2022	Apri	I 2022	Мау	2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	Decemb	er 2023	Marc	ch 2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³
Contaminants of Conce	rn¹	•												•						
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	-				
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	-				
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	-				
Xylenes (total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	-				
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	-				
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	These samp collected 2 after the hea was amende will be reported. Period 6 S Results		21 months alth advisory ed. Results ted in a LTM	collected after the advis amended	mples will be d 24 months he health sory was l. Results will ted in a LTM
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	-	-	0/4	-	0/5	-	0/2	-	0/2	-	0/2	will be report Period 6 to Results			7 Sampling ts Report.	
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ¹⁰	ISP	-	-	0/4	-	3/5	ND - 57 (55)	0/2	-	0/2	-	0/2	-				
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	-	-	3/4	ND - 590 (463)	0/5	-	0/2	-	0/2	-	0/2	-				
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	MCL	-	-	6/6	250 - 700 (558)	5/5	180 - 570 (436)	2/2	170 - 320 (245)	2/2	120 - 370 (245)	2/2	140 - 210 (175)				
Metals																				
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	-	-	1/5	ND - 1.2 (1.2)	3/5	ND - 4.8 (1.9)	0/2	-	0/2	-	0/2	-				
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	-	-	0/5	-	1/5	ND - 2.7 (2.7)	0/2	-	0/2	-	2/2	0.50 - 0.60 (0.55)	These sam		collected	mples will be I 24 months
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	-	-	5/5	1.9 - 2.0 (2.0)	5/5	1.9 - 2.2 (2.1)	2/2	1.9 - 1.9 (1.9)	2/2	1.9 - 2.0 (2.0)	2/2	1.9 - 2.0 (2.0)	collected 2 after the hea was amend will be report	alth advisory	advis amended	he health sory was . Results will
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	-	-	5/5	0.61 - 2 (1.1)	5/5	0.90 - 2.8 (1.4)	2/2	1.2 - 1.2 (1.2)	2/2	1.8 - 1.8 (1.8)	2/2	1.6 - 1.8 (1.7)	Period 6 Results	Sampling	Period 7	ted in a LTM 7 Sampling ts Report.
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	-	-	5/5	9.4 - 35 (23)	5/5	11 - 57 (29)	2/2	12 - 27 (20)	2/2	14 - 18 (16)	2/2	37 - 47 (42)				
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	-	-	2/5	ND - 0.88 (0.65) ⁹	5/5	0.14 - 1.7 (0.54)	1/2	ND - 0.27 (0.27)	1/2	ND - 0.24 (0.24)	1/2	ND - 0.56 (0.56)				

				_						Sampling	g Summary			Sampling	g Summary			Sampling	e 5 LTM g Summary riod 7
		DOH	Basis of	Februa	ary 2022	Apri	1 2022	Мау	2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	Decembe	er 2023	Marc	ch 2024
Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³		Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³
Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2.0	MCL	-	-	0/5	-	0/5	-	0/2	-	0/2	-	1/2	ND - 0.025 (0.025)	collected 2 after the heal	1 months lth advisory	collected after th adviso	mples will be I 24 months he health ory was
Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	-	-	0/5	-	4/5	ND - 0.91 (0.67)	1/2	ND - 1.2 (1.2)	0/2	-	0/2	-	will be reporte Period 6 S	ed in a LTM Sampling	be reporte Period 7	. Results will ed in a LTM 7 Sampling s Report.
inds (VOCs)																			
By-product of drinking water disinfection	ppb	80	MCL	-	-	0/5	-	0/5	-	0/2	-	1/2	ND - 0.72 (0.72)	2/2	0.39 - 0.53 (0.46)	collected 2 after the heal was amende will be reporte Period 6 S	1 months Ith advisory ed. Results ed in a LTM Sampling	collected after th adviso amended. be reported Period 7	mples will be I 24 months he health cory was . Results will ed in a LTM 7 Sampling as Report.
	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Inds (VOCs) By-product of drinking water	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Inda (VOCs) By-product of drinking water	Typical Source of Contaminant Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Inds (VOCs) Screening Ppb 2.0 50 80 80 80 80 80 80	Typical Source of Contaminant Units Project Screening Level DOH Screening Level Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Domain Screening Level Project Screening Level Ppb 2.0 MCL MCL MCL MCL By-product of drinking water	Typical Source of Contaminant Units DOH Project Screening Level Erosion of natural deposits; Discharge from refineries and factories; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	Typical Source of Contaminant Units Project Screening Level DOH Screening Level No. of Detects out of Samples Frosion of natural deposits; Discharge from refineries and factories; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Project Screening Level DOH Screening Level No. of Detects out of Samples MICL	Typical Source of Contaminant Units DOH Project Screening Level DOH Project Screening Level No. of Detects out of Samples Discharge from refineries and factories; Runoff from landfills; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Doh Project Screening Level No. of Detects out of Samples No. of Detects out of Samples O/5 MCL 0/5 MCL - 0/5 Doh Minimum (Average)³ Summary No. of Detects out of Samples O/5 MCL 0/5	Typical Source of Contaminant Units DOH Project Screening Level DOH Screening Level No. of Detects out of Samples Level No. of Detects out of Samples Maximum (Average)³ Erosion of natural deposits; Discharge from refineries and factories; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Ppb 3 ummary No. of Detects out of Maximum (Average)³ Maximum (Average)³ No. of Detects out of Samples No. of Detects No. of Detec	Typical Source of Contaminant Units Units Units DOH Project Screening Level Units DOH Project Screening Level Units DOH Project Screening Level Doh	Typical Source of Contaminant Units DOH Project Screening Level Units DOH Project Screening Level No. of Doh Screening Level Maximum (Average)³ Erosion of natural deposits; Discharge from refineries and factories; Runoff from cropland Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines DOH Project Screening Level No. of Dotects out of Samples No. of Detects out of Samples No. of Dotects out of Samples No. of Dotects out of Samples No. of Detects out of Samples No. of Detects out of Samples No. of Dotects out of Samples No. of Detects out of Samples No. of Dotects out of Samples No	Typical Source of Contaminant Units DOH Project Screening Level Units DOH Project Screening Level Units DOH Project Screening Level DOH Screening Level Dout of Maximum No. of Minimum No. of Minimum No. of Minimum No. of Dottors Out	Typical Source of Contaminant Units DOH Project Screening Level Discharge from refineries, Erosion of natural deposits; Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries, Erosion of natural deposits; Discharge from mines	Typical Source of Contaminant Units DOH Project Screening Level Units Doeteds On Maximum (Average) Samples Erosion of natural deposits; Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Doeteds On MCL Doeteds On Minimum (Average) Samples February 2022 April 2022 April 2022 April 2022 June 2022 Decem No. of Detects out of Samples Maximum (Average) Sampling Summary Period 1 Summary Period 2 June 2022 Decem No. of Detects out of Samples No. of Detects ou	Typical Source of Contaminant Units DOH Project Screening Level Units DOH Screening Level Doh Samples Doh Sampling Summary Period 2 Doh Minimum Dot of Detects out of Maximum (Average)³ Sampling Summary Period 3 Dot Dot Screening Level Doh Samples Doh Samples Doh Samples Doh MCL 0/5 - 0/5 - 0/5 Doh MCL Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines Doh MCL 0/5 Doh MCL 0/5 Doh MCL Do	Typical Source of Contaminant Units Dot Project Screening Level Detects out of Samples Samples Summary Period 1 Summary Period 2 Sampling Summary Period 2 Sampling Summary Period 3 Summary Period 2 Summary Period 2 Summary Period 3 Summary Period 3 Summary Period 3 Summary Period 3 Summary Period 2 Summary Period 3 Summary Period 4 Summary Period 3 Summary Period 4 Summary Period 3 Summary Period 4 Summary Period 4 Summary Period 4 Summary Period 3 Summary Period 4 Summary Period 3 Summary Period 3 Summary Period 4 Summary Period 4 Summary Period 2 Summary Period 3 Summary Period 3 Summary Period 3 Summary Period 4 Summary Period 3 Summary Period 3 Summary Period 3 Summary Period 4 Summary Period 3 Summary Period 3 Summary Period 4 Summary Period 4 Summary Period 2 Summary Period 4 Summary Period 2 Summary Period 2 Summary Period 2 Summary Period 4 Summary Period 2 Summary Period 2 Summary Period 2 Summ	Typical Source of Contaminant Units Pool Project Screening Level Units Units Project Screening Level Units Project Screening Level Units Project Screening Level Units Project Screening Level Units Units Project Screening Level Units Project Screening Level Units Project Screening Level Units Un	Typical Source of Contaminant Units DOH Project Screening Level Units U	Typical Source of Contaminant Units DOH Project Screening Level Dot Screening Level	Typical Source of Contaminant Units Corporating Level Units Corporation (Average) Units Corpor

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs), and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH had previously selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone E1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. This does not include the March 22, 2022 (initial) lead results from Montessori Center on Makalapa (Field Sample Number: E1-TW-0015290-22067-N-4). This does include the resampled results on April 8, 2022 (Field Sample Number: E1-TW-0015290-22067-N-4-R1). This exceedance was associated with Premise Plumbing and is not associated with the JBPHH water distribution system. Therefore, it was not included in this table. For more information on this exceedance please see the Data Summary for Zone E1 LTM Period 1 posted on the Safe Waters website https://jbphh-safewaters.org
 - The sample result collected from Montessori Center on Makalapa on March 22, 2022 was 30.2 ppb for lead. This was an exceedance of the action level of 15 ppb. Investigation into this exceedance determined that although it was likely to be a premise plumbing issue, further investigation was warranted through additional sampling. The re-sample results were below the action level.
- 10. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-4. Contaminants Detected in Drinking Water Samples Collected from Other Buildings in Zone E1

						Sampling nmary		M Sampling y Period 1		M Sampling ry Period 2	Samplin	e 5 LTM g Summary riod 3		M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5	Stage 5 LTM Summary		Sampling	e 5 LTM g Summary riod 7
			DOH	Basis of	Februa	ary 2022	Apri	I 2022	Мау	/ 2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	Decemb	er 2023	Marc	ch 2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³
Contaminants of Conce	rn¹																<u>'</u>			
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2	-				
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2	-				
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2	-				
Xylenes (total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2					
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2	-				
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2	These sam collected after the hea was amend will be repor Period 6 Results		11 months Ith advisory ed. Results ed in a LTM	collected after the advise amended. be reporte	mples will be I 24 months he health fory was . Results will ed in a LTM
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	0/6	-	0/4	-	0/6	-	0/4	-	0/8	-	0/2	was ameno will be repor Period 6 Results			7 Sampling ss Report.	
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	0/6	-	2/4	ND - 60 (55)	0/6	-	1/4	ND - 51 (51)	0/8	-	0/2					
Total Organic Carbon (TOC)⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	1/6	ND - 2,440 (2,440)	0/4	-	0/6	-	0/4	-	0/8	-	0/2	-				
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	MCL	-	-	4/4	70 - 460 (323)	4/4	20 - 360 (125)	4/4	30 - 560 (363)	7/7	30 - 510 (243)	2/2	420 - 470 (445)				
Metals	·																			
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	0/6	-	0/4	-	2/6	ND - 0.19 (0.15)	0/4	-	1/8	ND - 0.22 (0.22)	0/2	-				
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	0/6	-	0/4	-	1/6	ND - 0.74 (0.74)	0/4	-	0/8	-	0/2	-	These samp	1 months	collected	mples will be I 24 months he health
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	6/6	2.3 - 4.3 (2.9)	4/4	1.9 - 2.7 (2.3)	5/6	ND - 3.3 (2.6)	4/4	1.7 - 2.9 (2.4)	8/8	2.1 - 5.8 (2.7)	2/2	1.9 - 3.6 (2.8)	after the hea was amendo will be report Period 6 S	ed. Results ed in a LTM Sampling	advis amended. be reporte	ory was . Results will ed in a LTM 7 Sampling
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	6/6	0.80 - 1.6 (1.3)	4/4	1.1 - 1.5 (1.4)	2/6	ND - 1.2 (1.2)	4/4	0.75 - 1.2 (0.97)	8/8	1.2 - 2.0 (1.6)	2/2	1.7 - 1.8 (1.8)	Results	Report.	Result	s Report.
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	6/6	11 - 30 (23)	4/4	44 - 80 (62)	6/6	2.9 - 66 (22)	4/4	8.2 - 55 (26)	8/8	7.8 - 63 (23)	2/2	1.9 - 3.6 (2.8) was ame will be rep Period Resul				

						Sampling nmary		M Sampling by Period 1		M Sampling y Period 2	Sampling	5 LTM g Summary riod 3	- · · · · · · · · · · · · · · · · · · ·	M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5	Stage 5 LTM Summary		Stage 5 LTM Sampling Summary Period 7
			DOH	Basis of	Februa	ary 2022	Apri	I 2022	May	2022	Jun	e 2022	Decem	ber 2022	Jun	e 2023	Decemb	per 2023	March 2024
Contaminant	Typical Source of Contaminant	Units	Project Screening Level	DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples Maximum (Average) ³						
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	4/6	ND - 0.44 (0.32)	3/4	ND - 0.79 (0.37)	3/6	ND - 0.67 (0.52)	1/4	ND - 0.23 (0.23)	5/8	ND - 0.43 (0.24)	1/2	ND - 0.35 (0.35)	These sam		These samples will be collected 24 months
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	0/6	-	0/4	-	3/6	ND - 0.79 (0.61)	1/4	ND - 1.1 (1.1)	3/8	ND - 0.59 (0.55)	0/2	-	collected 2 after the hea was amend will be report	alth advisory ed. Results	after the health advisory was amended. Results will
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2.0	MCL	2/6	ND - 0.095 (0.086)	0/4	-	0/6	-	0/4	-	0/8	-	0/2	-	Period 6 : Results	Sampling	be reported in a LTM Period 7 Sampling Results Report.
Volatile Organic Compou	nds (VOCs)																		
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromo acetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	0/4	-	0/6	-	0/4	-	1/8	ND - 1.2 (1.2)	1/2	ND - 0.54 (0.54)	These sam collected 2 after the hea	21 months alth advisory	These samples will be collected 24 months after the health advisory was
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	-	-	1/4	ND - 1.3 (1.3)	0/6	-	2/4	ND - 3.2 (2.2)	3/8	ND - 8.5 (3.7)	1/2	ND - 0.59 (0.59)	was amend will be report Period 6 Results	ted in a LTM Sampling	amended. Results will be reported in a LTM Period 7 Sampling Results Report.
Synthetic Organic Compo	ounds (SOCs) or Semi-Volatile Organic	Compo	unds (SVOCs)															
Bis(2-ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	1/6	ND - 1.5 (1.5)	3/4	ND - 0.64 (0.63)	0/6	-	0/4	-	0/8	-	0/2	-	These samples with collected 21 more after the health advices amended. Rewill be reported in a Period 6 Sampli Results Report	21 months alth advisory led. Results ted in a LTM Sampling	These samples will be collected 24 months after the health advisory was amended. Results will be reported in a LTM Period 7 Sampling Results Report.

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs), and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results with a detectable contaminant. An average is the sum of the results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH had previously selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone E1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.
- 10. In Zone E1, there is a higher percentage of residences than other buildings and 68% of other buildings have been sampled in this zone. For this reason, there will be an increase of residences sampled to meet the sampling quotas going forward to ensure locations are not repeated and we will continue to sample locations that are representative of the zone.

						Sampling nmary		M Sampling ry Period 1		TM Sampling ry Period 2	Sampling	e 5 LTM g Summary riod 3	Stage 5 LTI Summary	M Sampling y Period 4	Sampling	e 5 LTM g Summary riod 5	Stage 5 LTI Summary		Sampling	e 5 LTM g Summary riod 7
					Febru	ary 2022	Apri	1 2022	Мау	/ 2022	Jun	e 2022	Decemb	per 2022	Jun	e 2023	Decemb	per 2023	Marc	ch 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average)
Contaminants of Concer	m¹																			
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁶	5.0	MCL	0/5	-	0/4	-	0/4	-	0/5	-	0/4	-	0/6	-				
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/5	-	0/4	-	0/4	-	0/5	1	0/4	-	0/6	-				
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/5	-	0/4	-	0/4	-	0/5	-	0/4	-	0/6	-				
Xylenes (total)	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/5	-	0/4	-	0/4	-	0/5		0/4	-	0/6	-				
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites.	ppb	10	EAL	0/4	-	0/4	-	0/4	-	0/5	-	0/4	-	0/6	-				
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	EAL	0/4	-	0/4	-	0/4	-	0/5	-	0/4	-	0/6	-	These sam collected 21 the health a amended. Ro reported in a 6 Samplin	months after dvisory was esults will be LTM Period	collected after th advisory wa Results will in a LTM	mples will be I 24 months he health vas amended. Il be reported M Period 7 ng Results
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	EAL	1/5	ND - 0.011 (0.011)	0/4	-	0/4	-	0/5		0/4	-	0/6	-	Rep	oort.		eport.
Total TPH ⁴	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	0/5	-	0/4	-	0/4	-	0/5	-	0/4	-	0/6	-				
Total Organic Carbon (TOC) ⁵	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	2/4	ND - 336 (329)	0/4	-	0/4	-	0/5	-	1/4	ND - 300 (300)	2/6	ND - 200 (200)				
Free Chlorine (Field Test) ⁸	Water additive used to control microbes	ppb	4,000	MCL	-	-	4/4	30 - 260 (108)	4/4	60 - 220 (120)	4/4	40 - 370 (200)	4/4	170 - 610 (383)	4/4	120 - 330 (190)				
Metals			L				l													
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/4	ND - 0.14 (0.14)	0/4	-	0/4	-	1/5	ND - 0.13 (0.13)	0/4	-	0/6	-				
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	ppb	10	MCL	4/4	0.11 - 0.48 (0.28)	0/4	-	0/4	-	0/5	-	0/4	-	0/6	These sa collected 2 the health amended. reported in 6/6 (4.3)	These sam collected 21 the health a	months after dvisory was	collected after th	mples will be I 24 months he health as amended
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	4/4	2.5 - 12 (6.7)	4/4	6 - 18 (10)	4/4	2.2 - 8.5 (5.2)	5/5	2.1 - 11 (5.0)	4/4	1.9 - 7.6 (4.3)	6/6		amended. Ro reported in a 6 Samplin Rep	LTM Period g Results	Results will in a LTM Samplin	Il be reported M Period 7 ng Results eport.
Chromium	Discharge from steel and pulp mills; Erosion of natural deposits	ppb	100	MCL	4/4	0.42 - 1.4 (0.88)	3/4	ND - 9.8 (3.9)	3/4	ND - 0.79 (0.64)	3/5	ND - 1.0 (0.70)	4/4	0.71 - 1.7 (1.4)	6/6	(4.2) O Gampii				

					•	Sampling nmary		M Sampling y Period 1		M Sampling y Period 2	Samplin	e 5 LTM g Summary riod 3		M Sampling / Period 4	Sampling	5 LTM g Summary riod 5	Stage 5 LTM Summary		Sampling	5 LTM Summary iod 7
					Februa	ary 2022	Apri	1 2022	Мау	2022	Jun	e 2022	Decemi	per 2022	Jun	e 2023	Decemb	er 2023	Marc	h 2024
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³	No. of Detects out of Samples	Minimum - Maximum (Average) ³
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	MCL	4/4	0.53 - 3.2 (2.0)	4/4	1.1 - 6.2 (3.7)	4/4	1.3 - 11 (4.4)	5/5	0.80 - 5.9 (2.5)	_10	_10	_10	_10				
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	MCL	3/4	ND - 2.2 (0.82)	4/4	0.14 - 0.61 (0.39)	2/4	ND - 0.22 (0.19)	1/5	ND - 0.22 (0.22)	_10	_10	_10	_10	These sam collected 21 the health a	months after dvisory was	collected after th	nples will be 24 months le health as amended.
Mercury	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland	ppb	2	MCL	0/4	-	0/4	-	0/4	-	0/5	-	2/4	ND - 0.033 (0.029)	0/6	-	amended. Re reported in a 6 Samplin Rep	LTM Period g Results	Results will in a LTM Samplin	I be reported I Period 7 g Results port.
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	4/4	0.35 - 1.3 (0.95)	0/4	-	2/4	ND - 0.47 (0.42)	3/5	ND - 0.95 (0.72)	0/4	-	0/6	-				'
Volatile Organic Compou	nds (VOCs)																			
Total Haloacetic acids (sum of mono-, di-, trichloroacetic acids and mono- and dibromoacetic acids)	By-product of drinking water disinfection	ppb	60	MCL	-	-	1/4	ND - 2.1 (2.1)	1/4	ND - 1.1 (1.1)	1/5	ND - 1.6 (1.6)	0/4	-	1/6	ND - 0.72 (0.72)	These sam			nples will be 24 months
Total trihalomethanes (sum of chloroform, bromoform, bromodichloromethane, and di- bromochloromethane)	By-product of drinking water disinfection	ppb	80	MCL	1/1	0.71	4/4	0.55 - 24 (8.4)	3/4	ND - 20 (9.8)	2/5	ND - 33 (21)	2/4	ND - 3.1 (2.4)	5/6	ND - 8.2 (4.8)	collected 21 the health a amended. Ro reported in a 6 Samplin Rep	dvisory was esults will be LTM Period g Results	after th advisory wa Results will in a LTM Samplin	he health as amended. I be reported I Period 7 g Results port.
Trichloroethene (TCE)	Discharge from metal degreasing sites and other factories	ppb	5.0	MCL	0/5	-	1/4	ND - 0.93 (0.93)	0/4	-	0/5	-	0/4	-	0/6	-				•
Synthetic Organic Compo	ounds (SOCs) or Semi-Volatile Organ	ic Comp	ounds (SVOC	Ss)																
Benzo(a)pyrene	Leaching from linings of water storage tanks and distribution lines	ppb	0.2	MCL	0/5	-	0/4	-	0/4	-	0/5	-	0/4	-	1/6	ND - 0.011 (0.011)	These sam collected 21 the health a amended. Ro	months after dvisory was	collected after th	nples will be 24 months le health as amended.
Bis(2-ethylhexyl)phthalate Notes:	Discharge from rubber and chemical factories	ppb	6.0	MCL	0/5	-	1/4	ND - 0.58 (0.58)	0/4	-	0/5		0/4	-	0/6	-	reported in a 6 Samplin Rep	LTM Period g Results	Results will in a LTM Samplin	I be reported I Period 7 g Results port.

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs), and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH had previously selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone E1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-
- 10. Per the June 2022 Drinking Water Long-Term Monitoring Plan, Lead and Copper samples will only be collected from residences, other buildings, and the entry points to the distribution system during LTM Months 4-24. The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823.pdf.

Table 1-6. Contaminants Detected in Drinking Water Samples Collected from JBPHH's Source Water (Waiawa Shaft - Post Chlorination)

					Sampling	g Period: Jai	nuary 2022	Sampli	ng Period: J	lune 2022	Sampling	Period: Dec	ember 2022	Sampling	Period: Febr	uary 2023
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Basis of DOH Screening Level ²	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)
Contaminants of Concern ¹			•					'		1						
Benzene	Discharge from factories; Leaching from gas storage tanks and landfills	ppb ⁴	5.0	MCL	0/1	-	Yes									
Ethylbenzene	Discharge from petroleum refineries	ppb	700	MCL	0/1	-	Yes	0/1	-	Yes	0/1	ı	Yes	0/1	-	Yes
Toluene	Discharge from petroleum factories	ppb	1,000	MCL	0/1	-	Yes									
m,p,o-Xylenes	Discharge from petroleum factories; Discharge from chemical factories	ppb	10,000	MCL	0/1	-	Yes									
1-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also, present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	ISP	0/1	-	Yes									
2-Methylnaphthalene	Used to make other chemicals such as dyes, and resins; also used to make vitamin K; and is present in cigarette smoke, wood smoke, tar, asphalt, and at some hazardous waste sites	ppb	10	ISP	0/1	-	Yes									
Naphthalene	Naphthalene is found in coal tar or crude oil and is used in the manufacture of plastics, resins, fuels, and dyes, and as a fumigant	ppb	17	ISP	0/1	-	Yes	0/1	-	Yes	0/1	1	Yes	0/1	-	Yes
Total Petroleum Hydrocarbons (TPHs)	TPH is petroleum and can contaminate drinking water through spills and other releases into the environment	ppb	266 ⁹	ISP	0/1	-	Yes ³	0/1	-	Yes	0/1	-	Yes	1/1	61	Yes
Total Organic Carbon (TOC) ⁴	Naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources	ppb	4,000	ISP	0/1	-	Yes									
Free Chlorine (Field Test) ⁸	Water Additive	ppb	4,000	MCL	-	-	-	1/1	670	Yes	-	-	-	-	-	-
Metals																
Antimony	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	ppb	6.0	MCL	1/1	0.092	Yes	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Arsenic	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production waste	ppb	10	MCL	1/1	0.027	Yes	0/1	-	Yes	0/1	-	Yes	0/1	-	Yes
Barium	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	ppb	2,000	MCL	1/1	1.7	Yes	1/1	1.7	Yes	1/1	2.2	Yes	1/1	1.9	Yes
Chromium	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; Runoff from waste batteries and paints	ppb	100	MCL	1/1	1.5	Yes	1/1	0.55	Yes	1/1	1.2	Yes	1/1	1.9	Yes
Copper	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	1,300	EAL	1/1	21	Yes	1/1	19	Yes	1/1	15	Yes	1/1	22	Yes
Lead	Corrosion of household plumbing systems; Erosion of natural deposits	ppb	15	EAL	1/1	0.27	Yes	1/1	0.23	Yes	1/1	0.29	Yes	1/1	0.29	Yes
Selenium	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines	ppb	50	MCL	1/1	0.70	Yes	1/1	1.3	Yes	1/1	1.3	Yes	0/1	-	Yes
Thallium	Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories	ppb	2	MCL	-	-	-	0/1	-	Yes	1/1	0.076	Yes	0/1	-	Yes
Volatile Organic Compounds	(VOCs) - ND															
Synthetic Organic Compound	ds (SOCs) or Semi-Volatile Organic Com	pounds (SVOCs)													

12

					Sampling Period: January 2022			Sampling Period: June 2022			Sampling Period: December 2022			Sampling Period: February 2023		
Contaminant	Typical Source of Contaminant	Units	DOH Project Screening Level	Screening	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³		No. of Detects out of Samples	Level	Meets DOH Screening Level? (Yes / No)	No. of Detects out of Samples	Level Detected ³	Meets DOH Screening Level? (Yes / No)
Bis(2-ethylhexyl)phthalate	Discharge from rubber and chemical factories	ppb	6.0	MCL	0/1	-	Yes	1/1	0.52	Yes	1/1	0.55	Yes	0/1	-	Yes

- 1. These contaminants are listed whether detect or non-detect (ND) because these are incident specific. All other contaminants are only listed if detected.
- 2. The DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs), previously established environmental action levels (EALs), and incident specific parameters (ISPs).
- 3. These numbers are the minimum and maximum values from all the sample test results. The average (or mathematical mean) includes all sample test results (excluding non-detects) divided by the total number results with detection only. Acronyms and explanation of terms used in this table are presented on the following pages.
- 4. For more information regarding Total Petroleum Hydrocarbons, refer to the FACT SHEET What Are Petroleum Hydrocarbons?, available online at: https://health.hawaii.gov/about/files/2021/12/21.12.16 What-Are-Petroleum-Hydrocarbons.pdf.
- 5. Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH had previously selected a TOC project screening level of 2,000 ppb under Stage 4. Each exceedance was investigated by reviewing the associated water quality data (e.g., BTEX results, TPH) and the IDWST determined that all TOC exceedances were inconclusive in association with petroleum hydrocarbons. Under the Drinking Water Long Term Monitoring Plan (under review during the LTM Period 3 report for Zone E1), DOH revised the TOC screening level to 4,000 ppb (previously 2,000 ppb).
- 6. Parts per billion (ppb) refers to the amount (or concentration) of a contaminant in the water.
- 7. Cells highlighted in green indicate the water sample results were below DOH Screening Levels.
- 8. On January 30 and February 25, 2022, DOH revised the LTM requirements to include the analysis of free chlorine. Chlorine is typically used as an additive to drinking water for disinfection purposes.
- 9. Per the June 2022 Drinking Water Long-Term Monitoring Plan, the ISP for Total TPHs was changed to 266 ppb (previously it was 211 ppb). The June 2022 Drinking Water Long-Term Monitoring Plan is available online at: https://health.hawaii.gov/about/files/2022/08/JBPHH-Drinking-Water-LTM-Plan-FINAL-20220823 pdf

<u>Drinking Water Distribution System Recovery Plan:</u> Stage 5 LTM Period 5 Sampling Results Report for Zone E1

What is the purpose of this Stage 5 LTM Period 5 Sampling Results Report?

This progress report presents the testing results from drinking water samples that have been collected from residences, schools, Child Development Centers, other buildings, and fire hydrants. These samples were collected after the health advisory had been amended and DOH determined drinking water was safe for human consumption. The health advisory was amended after the first four stages of the Drinking Water Distribution System Recovery Plan³ were completed in your zone. The JBPHH PWS #HI0000360 is committed to ensuring tap water is safe for human consumption after residents have returned home.

We are sharing this information with you to keep you updated on your community's water quality.

What was found?

The tables on the previous pages present all contaminants that were detected in drinking water samples that have been collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in your zone during Stage 5 LTM Period 1, LTM Period 2, LTM Period 3, LTM Period 4, and LTM Period 5. The DOH used multiple standards/criteria (called DOH Project Screening Levels) to assess the safety of the drinking water to include:

- EPA and Hawaii DOH Maximum Contaminant Levels (MCLs) standards for drinking water;
- Previously established Environmental Action Levels (EALs); and
- Incident Specific Parameters (ISPs).

This report together with the data demonstrates that the drinking water in your area (Zone E1) meets U.S. EPA and DOH standards that are applicable to the Navy Water System Incident.

All exceedances of DOH Project Screening Levels are thoroughly reviewed and investigated by the Navy, Army, and DOH, to (1) determine if the exceedance is associated with the JBPHH water distribution system or if it is associated with premise plumbing (i.e., it is localized to a specific faucet) and (2) determine the appropriate course of action to address the exceedance (e.g., re-flushing and replacing a faucet).

14

³ Drinking Water Distribution System Recovery Plan: https://www.cpf.navy.mil/Portals/52/Drinking-Water-Distribution-System-Recovery-Plan.pdf

There were no exceedances of screening levels in drinking water samples collected from residences, schools, Child Development Centers, other buildings, and fire hydrants during in LTM Period 2, LTM Period 3, LTM Period 4, or LTM Period 5 for Zone E1.

The Following Premise Plumbing Exceedances were detected (and were investigated/addressed) in Zone E1 during LTM Period 1:

Exceedance Location	Plumbing Fixture	Contaminant	Initial Result	Action Taken	Final Result
Building 364, Navy Hale Keiki School ¹	Classroom Faucet	TPHs	238 ppb	Re-sample Faucet	Non-Detect
Building 81, Montessori Center on Makalapa ²	Bathroom Faucet	Lead	30.2 ppb	Replaced Fixture	0.41 ppb

1. Building 364, Navy Hale Keiki School

The sample results collected from Building 364, Navy Hale Keiki School on March 18, 2022 was 238 ppb for TPHs, a combination of TPH-d at 118 ppb and TPH-o at 120 ppb (Field Sample Number: E1-TW-0015290-22067-N-4). This was an exceedance of the ISP of 211 ppb. This was one sample out of five (5) initial samples taken from the school, the other four (4) of which were non-detect for TPH. This faucet had been sampled previously during Stage 4 and those results were non-detect as well. Investigation into this exceedance determined through chemical analysis that the result was unrelated to fuel, including JP-5. However, further investigation was warranted through additional sampling. Two samples were collected as part of the investigation. One re-sample from the faucet where the exceedance occurred and one sample from a nearby faucet. The resample results collected on April 7, 2022 were non-detect (Field Sample Number: E1-TW-0015244-22067-N-1- R1). The school was notified on April 4, 2022, and the sink was secured until final re-sampling results were received.

2. Building 81, Montessori Center on Makalapa (Premise Plumbing Exceedance)

• The sample results collected from Building 81, Montessori Center on Makalapa on March 22, 2022 was 30.2 ppb for lead (Field Sample Number: E1-TW-0015290-22067-N-4). This was an exceedance of the action level of 15 ppb. Investigation into this exceedance determined that although it was likely to be a premise plumbing issue, further investigation was warranted through additional sampling. The faucet where the lead exceedance occurred was replaced. The faucet was flushed and re-sampled after the faucet was replaced. The re-sample results collected on April 8, 2022 were below the action level (Field Sample Number: E1-TW-0015290-22067-N-4-R1). The CDC was notified on April 1, 2022, and the sink was secured until final re-sampling results were received.

Total Organic Carbon (TOC) test results report any constituent containing carbon, many of which are naturally occurring and some of which may be man-made. The DOH selected a TOC project screening level of 4,000 parts per billion (ppb) for long term monitoring. Each exceedance is investigated by reviewing the associated water quality data (e.g., Disinfection byproducts and TPH results) for association with petroleum hydrocarbons. No TOC exceedances occurred in LTM Period 1, LTM Period 2, LTM Period 3, LTM Period 4, or LTM Period 5 for Zone E1.

What contaminants were tested?

Drinking water, including bottled water, can contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants tested can be obtained by calling the Hawaii DOH Safe Drinking Water Branch at 808-586-4258.

In order to ensure that drinking water is safe to drink, EPA and Hawaii DOH regulate the amount of certain contaminants in water provided by public water systems. For this incident, the primary categories of monitored contaminants include Volatile Organic Compounds (VOCs), Synthetic Organic Chemicals (SOCs)/Semi-Volatile Organic Compounds (SVOCs), metals, Total Petroleum Hydrocarbons (TPH), and Total Organic Carbon (TOC). A description of these contaminant categories can be found under *Explanation of Terms* located at the end of this report. The full list of contaminants that were tested for this zone are presented in the laboratory reports that are located at: https://jbphh-safewaters.org. For complete information on the interagency response, please visit: https://www.cpf.navy.mil/JBPHH-Water-Updates/.

What happened leading up to the public health advisory being issued?

The Red Hill Bulk Fuel Storage Facility jet fuel spill event was reported to have taken place on November 20, 2021. Subsequent reporting of fuel-like smell or visual sheen in addition to complaints of health issues from ingestion or dermal contact with the Navy and Army system water were received by the Navy and DOH. On November 28, 2021, the Navy reported that a chemical release of petroleum, which is a hazardous substance, entered the JBPHH drinking water distribution system from the Red Hill Shaft source. This release triggered an emergency response and DOH issuance of a public health advisory on November 29, 2021, for the entire JBPHH Public Water System No. HI0000360 (JBPHH System).

The Hawaii DOH, EPA, Navy, and Army formed the Interagency Drinking Water System Team (IDWST) to work on a coordinated effort to restore safe drinking water to all Navy Water System users.

Has the public health advisory been amended or lifted?

The health advisory for Zone E1 was amended on March 8, 2022 and the advisory for the entire JBPHH System was lifted on March 23, 2023. The amendment to the health advisory was based on the results of extensive flushing, sampling (10% of buildings), and testing activities performed in Zone E1. The IDWST evaluated multiple lines of evidence to determine whether or not drinking water was safe for consumption. DOH determined that the water in Zone E1 was safe and residents/occupants could use their tap water for all purposes including drinking, cooking, oral hygiene, and consumption by pets. LTM of drinking water will be performed to ensure drinking water remains safe for all residents and occupants of JBPHH. If new information becomes available that indicates contaminants are present in the drinking water that poses a threat to public health, additional investigation may be required.

Where does our water come from?

The source of water for the Navy Water System now comes from the Navy Waiawa Shaft, which was not impacted by the release of Jet Fuel (JP-5) that occurred at Red Hill, November 2021. The Waiawa Shaft has been sampled, and EPA and the DOH confirmed that it meets all federal and state drinking water standards. The Waiawa Shaft will be sampled (in subsequent sampling rounds) in accordance with the EPA and DOH requirements.

Additional sampling has also been done at the Waiawa shaft as a part of the EPA's fifth Unregulated Contaminate Monitoring Rule (UCMR 5) regulation. The water was tested for one metal (Lithium) and 29 different types of PFAS. All results were non-detect.

What has the IDWST done to clean the drinking water distribution system?

The IDWST evaluated multiple options for cleaning the Navy drinking water distribution system and determined that high-volume flushing of the Navy drinking water distribution system (all water mains/laterals/buildings) with 3 to 5 volumes of clean water from the Waiawa Shaft, followed by extensive testing to confirm that flushing worked, would restore safe drinking water to all Navy Water System users.

When was Long-Term Monitoring (LTM) water quality sampling conducted in Zone E1?

Between March 17, 2022 and April 8, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone E1 for LTM Period 1.

Between April 13, 2022 and April 25, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone E1 for LTM Period 2.

Between May 19, 2022 and May 25, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone E1 for LTM Period 3.

Between July 28, 2022 and November 4, 2022, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone E1 for LTM Period 4.

Between January 19, 2023 and April 27, 2023, drinking water samples were collected from residences, schools, Child Development Centers, other buildings, and fire hydrants in Zone E1 for LTM Period 5.

Where were samples taken?

Per the LTM approved sampling plan, 10 percent (10%) of all homes and buildings within Zone E1 were sampled. These houses/buildings will be geographically distributed throughout the area to provide spatial coverage along the water supply line. The intention of the LTM plan was to ensure that 65% of all Residences and other buildings in the zone are sampled before the completion of the 24 month period. In Zone E1, there is a higher percentage of residences than other buildings and 68% of other buildings have been sampled in this zone. For this reason, there will be an increase of residences sampled to meet the sampling quotas going forward to ensure locations are not repeated and we will continue to sample locations that are representative of the zone. In addition, the list of houses/buildings may be augmented based on additional information (e.g., houses/buildings where occupants reported specific health impacts, houses/buildings that are referred to the team by medical providers) may also be sampled.

Where can I get more information about the potential health effects associated with these contaminants?

Hawaii Department of Health (DOH)

https://health.hawaii.gov/about/navy-water-system-quality-updates/.

Call the DOH Safe Drinking Water Branch at 808-586-4258

US Environmental Protection Agency (EPA)

https://www.epa.gov/ground-water-and-drinking-water/forms/online-form-epas-office-ground-water-and-drinking-water.

Call EPA Region 9's Environmental Information Center at 1-866-372-9378

Explanation of Terms and Acronyms used in this Report

Action Level (AL). This AL is for Lead and Copper. The AL is a measure of the effectiveness of the corrosion control treatment in water systems. The AL is not a standard for establishing a safe level of lead or copper. The AL is the point at which certain provisions of the proposed standards must be initiated.

Contaminant. Contaminant is any physical, chemical, biological, or radiological substance or matter in water, and can be either healthy or unhealthy, depending on the particular substance and concentration. It could also be a physical parameter monitored such as pH or temperature.

DOH. Hawaii Department of Health

EPA. U.S. Environmental Protection Agency

Incident Specific Parameter (ISP). To more comprehensively monitor and respond to this specific petroleum contamination of drinking water, the DOH identified contaminants that require additional action prior to amending the Health Advisory. The ISPs are used as a line of evidence to evaluate the data generated in each zone during the investigation conducted by the IDWST.

Maximum Contaminant Level (MCL). An MCL is the maximum permissible level of a contaminant in water which is delivered to any user of a public water system. The MCL is set to protect the public from acute and chronic health risks associated with consuming water containing these contaminants.

Metals. Metals are not derived from living sources and in general do not contain carbon. Metals include antimony, arsenic, asbestos, barium, beryllium, cadmium, chromium, copper, cyanide, fluoride, lead, mercury, nitrate, nitrite, selenium, and thallium. These contaminants get into drinking water supplies through industrial discharge or spills, erosion of natural deposits, corrosion, sewage discharge, fertilizer runoff, and other sources.

ND. Non-Detect

Project Specific Screening Level. DOH uses multiple criteria to assess the safety of the drinking water including maximum contaminant levels (MCLs) previously established environmental action levels (EALs) and incident specific parameters (ISPs).

Synthetic Organic Compounds (SOCs)/Semi-Volatile Organic Compounds (SVOCs). SOCs and SVOCs may be used interchangeably and are man-made, organic

(carbon-based) chemicals that are less volatile than Volatile Organic Contaminants (VOCs). They are used as pesticides, defoliants, fuel additives, and as ingredients for other organic chemicals.

DOH Environmental Action Level (EAL). The DOH Environmental Action Levels (EALs) are concentrations of contaminants in drinking water and other media (e.g., soil, soil gas, and groundwater) below which the contaminants are assumed to not pose a significant threat to human health or the environment. Exceeding these EAL does not necessarily indicate that contamination at the site poses environmental hazards but generally warrants additional investigation.

Total Petroleum Hydrocarbons (TPH). TPH is a term used to describe a large family of several hundred chemical compounds that come from crude oil. Crude oil is used to make petroleum products, which can contaminate the environment. TPH is comprised of detected results from TPH-Gasoline, TPH-Diesel, and TPH-Oil.

Total Organic Carbon (TOC). TOC is naturally present in the environment, but also can be an indicator of contamination, including petroleum or other sources.

Free Chlorine. Chlorine is added to drinking water as part of the treatment process. Adding chlorine is the most common way to disinfect drinking water. Disinfection kills bacteria, viruses, and other microorganisms that could cause disease or illness. Chlorine is effective and continues to keep the water safe as it travels from the treatment plant to the consumer's tap. Chlorine measurements provide another line-of-evidence for evaluating drinking water quality.

Total Trihalomethanes (TTHM). TTHM is the sum of the concentration in milligrams per liter of the trihalomethane compounds (trichloromethane [chloroform], dibromochloromethane, bromodichloromethane and tribromomethane [bromoform]).

Units. A unit is the concentration of contaminant found in the water. For this report, the units are expressed in U.S. Standard Units.

U.S. Standard Unit (Name)	Acronym	Equivalent International System of Units (Name)	Acronym
parts per billion	ppb	micrograms per Liter	μg/L

Volatile Organic Compounds (VOCs). VOCs are a class of chemicals that contain carbon and evaporate, or volatilize, easily into air at room temperature. VOCs are found in a variety of commercial, industrial, and residential products, including gasoline, solvents, cleaners and degreasers, paints, inks and dyes and pesticides.