

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AECOM August 6, 2024

1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fraction listed below. This SDG was received on May 12, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

Revisions:

580-111967-1

Volatiles, GRO and Methane - Sample ID HU193 was corrected to HU093

LDC Project # 54234_RV3:

SDG # Fraction

580-111708-1/22C260, 580-111780-1/22C286, 580-111830-1, 580-111868-1, 580-111967-1/22C352/22C355/22C356

Volatiles, Semivolatiles, Polynuclear Aromatic Hydrocarbons, Metals, Wet Chemistry, Gasoline Range Organics, Total Petroleum Hydrocarbons as Extractables, Polychlorinated Dioxins/Dibenzofurans, Methane

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely.

Stella Cuenco

Operations Manager/Senior Chemist

scuenco@lab-data.com

	1,000 pages-Al	DV											At	tachr	nent	: 1																	
	90/10 2B/4 E	DD		L	DC#	54	234	(AE	CO	М -	Но	nol	ulu,	НΙ	Re	d H	ill C	Dily	Wa	ste,	СТ	0 1	8F0	176	5)								
LDC	SDG#	DATE REC'D	(3) DATE DUE		DA 60D)	SV (827	OA 70E)	PA (82 ⁻ -SI	70E	(5 Met (601	tals	GF (82 LU		TPI (801		SG TPI (801	H-E	Dio:	xins 90A)	Meth (17													
Matı	ix: Water/Soil		•	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	580-111708-1 /22C260	05/12/22	06/03/22	1	0	1	0	1	0	0	0	1	0	1	0	-	-	1	0	0	0												
Α	580-111708-1 /22C260	05/12/22	06/03/22	4	0	2	0	2	0	2	0	4	0	1	0	-	-	2	0	4	0												
В	580-111780-1 /22C286	05/12/22	06/03/22	6	0	3	0	3	0	2	0	6	0	1	0	-	-	3	0	6	0												
С	580-111830-1	05/12/22	06/03/22	12	0	6	0	6	0	5	0	10	0	-	-	-	-	6	0	12	0												
D	580-111868-1	05/12/22	06/03/22	8	0	4	0	4	0	4	0	8	0	-	-	-	•	4	0	8	0												
E	580-111967-1 /22C352/22C355 /22C356	05/12/22	06/03/22	6	0	6	0	3	0	-	-	6	0	3	0	1	0	3	0	2	0												
Tota	T/SC			37	0	22	0	19	0	13	0	35	0	6	0	1	0	19	0	32	0	0	0	0	0	0	0	0	0	0	0	0	184
	90/10 2B/4 E	EDD		LI	DC#	54	234	(AE	CO	М -	Но	nol	ulu,	HI	Re	d H	ill C	Dily	Wa	ste,	СТ	0 1	8F0	176	5)								
LDC	SDG#	DATE REC'D	(3) DATE DUE		lk. 20B)	Br,0 S0 (30)	O ₄	NO (30		NO NO (35:	₂ -N	(35	e II 500 E B)	(45 SIO	00-	Diss (45 SIO	00-	D(DC 80A)	TC (906	DC 60A)												
Matı	ix: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	580-111708-1 /22C261	05/12/22	06/03/22	2	0	2	0	2	0	2	0	1	0	1	0	1	0	2	0	2	0												
В	580-111780-1	05/12/22	06/03/22	2	0	2	0	2	0	2	0	-	-	-	-	-	•	2	0	2	0												
С	580-111830-1	05/12/22	06/03/22	5	0	5	0	5	0	5	0	-	-	-	-	-	-	5	0	5	0												\square
D	580-111868-1	05/12/22	06/03/22	4	0	4	0	4	0	4	0	-	-	-	-	-	-	4	0	4	0												
E	580-111967-1 /22C352	05/12/22	06/03/22	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0												
																																	\dashv
Tota	T/SC			14	0	14	0	14	0	14	0	2	0	2	0	2	0	14	0	14	0	0	0	0	0	0	0	0	0	0	0	0	90

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: April 25, 2022

Parameters: Volatiles

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111708-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU084**	580-111708-1**	Water	03/21/22
HU083	580-111708-2	Water	03/21/22
HU075**	580-111708-3**	Water	03/21/22
HU073	580-111708-4	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits.
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
02/25/22	Acetone	30.4	HU084** HU074**	UJ (all non-detects)	Α
03/30/22	Chloromethane	22.7	HU083 HU075** HU073	UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-385816	03/31/22	tert-Butylbenzene (13.03) sec-Butylbenzene (13.21) p-Isopropyltoluene (13.33) n-Butylbenzene (13.67) 1,3,5-Trichlorobenzene (14:44)	0.300 ug/L 0.274 ug/L 0.298 ug/L 0.348 ug/L 0.211 ug/L	HU083 HU075** HU073

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Samples HU083 and HU073 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU073	03/21/22	Ethylbenzene	0.082 ug/L	HU075** HU074**

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU074**	Ethylbenzene	0.040 ug/L	0.070U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU075** and HU074** were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr		
Analyte	HU075**	HU074**	RPD (Limits)
Benzene	0.070U	0.031	77 (≤50)
Ethylbenzene	0.070U	0.040	55 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
HU083 HU075** HU073	All laboratory calibrated analytes reported as TICs	J (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D and TIC quantitation, data were qualified as estimated in five samples.

Due to trip blank contamination, data were qualified as not detected in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-111708-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU084** HU074**	Acetone	UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU083 HU075** HU073	Chloromethane	UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU083 HU075** HU073	All laboratory calibrated analytes reported as TICs	J (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-111708-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU074**	Ethylbenzene	0.070U ug/L	A	t

)G# bora	: 54234A1a VALIDATION : 580-111708-1 :tory: Eurofins, Tacoma, WA OD: GC/MS Volatiles (EPA SW-846 Meti	Sta	age 2B/4	WORKSHEET	2nd	Date: 6 21 Page: bf Reviewer: 7 Reviewer: 7
ie sa	ト ていて mples listed below were reviewed for ead ion findings worksheets.			tion areas. Validatio	on findings are	e noted in attached
	Validation Area			Comm	ents	
l.	Sample receipt/Technical holding times	414				
II.	GC/MS Instrument performance check	6				
III.	Initial calibration/ICV	A- 19W	1/0 psp	= 15,12	ler	= 20
IV.	Continuing calibration	Δ_			eu =	20/50
V.	Laboratory Blanks	SW		.v		
VI.	Field blanks	رىبى	TB=	2,4		
VII.	Surrogate spikes	\(\lambda \)				
VIII.	Matrix spike/Matrix spike duplicates	7	cs			
IX.	Laboratory control samples	4	ies ly			
Х.	Field duplicates	رىبى	0 = 3	15		
XI.	Internal standards	^				
XII.	Target analyte quantitation	Ç4/	Not reviewed for	Stage 2B validation.		
XIII.	Target analyte identification	~		Stage 2B validation.		
XIV.	System performance	A		Stage 2B validation.		
XV.	Overall assessment of data	Δ	THOS TOVIOWOU ICE	Clago LD Validation.		
ote:	A = Acceptable ND = No N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	ource blank R:
	Client ID			Lab ID	Matrix	Date
, ,	2= XXV HU084**			580-111708-1**	Water	03/21/22
,	1U083			580-111708-2	Water	03/21/22
1	-lU075**			580-111708-3**	Water	03/21/22
	HU073 TB			580-111708-4	Water	03/21/22
	HU073 TB HU074**			580-111708-5**	Water	03/21/22
.						
,						
otes:						
М	B 580 385013					
	540-385816					
\top						

LDC	#:	94	234	A	2
LUC	#	9 1	- /	<u>' ' '</u>	1~

VALIDATION FINDINGS CHECKLIST

Page:	_1of	_2
Reviewer:	FT	

lethod: \	Volatiles ((EPA SW	846 Method	8260 <i>V</i>

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	1			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration			· · · · · · · · · · · · · · · · · · ·	
Did the laboratory perform a 5 point calibration prior to sample analysis?	_			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	_			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	_	-		
Were all percent differences (%D) ≤ 20% ?		_		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) ≤ 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) ≤ 50% in the ending CCV?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?		-		
Were target analytes detected in the field blanks?	_			
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			_	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			_	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			-	

LDC#: 54234A/a

VALIDATION FINDINGS CHECKLIST

Page: 2_of_2 Reviewer:__FT___

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples		-		
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		١		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?		<u> </u>		
XII. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	/			
Were manual integrations reviewed and found acceptable?	/		<u> </u>	
Did the laboratory provide before and after integration printouts?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

METHOD: VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butyibenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
ป. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Aliyi chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #:	5/2	34A	h
--------	-----	-----	---

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	of	_/
Reviewer:_	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

YN	N/N/A Were all %D within the validation criteria of ≤20 %D?									
#	Date n	Standard ID	Compound	Finding %D (Limit: <20.0% / 30%)	Associated Samples	Qualifications				
18	2 25 219	1CY- TACO 48	F	30.4	1,5,	14 at 143/A (ND)				
	1749				MB 580-385013					
	, , , ,	<u> </u>								
			<u> </u>							
132	3 30 22	1CY-TACO4X	A	22.7	2-74	1 du /11/ (ND)				
L	1628				MB 530-385316	′ \				
 										
-										
						· · · · · · · · · · · · · · · · · · ·				
-										
-										
ļ										
}—		•								
-						·				
-										
-										
-										
-										
-						+				
-	 									
1										
-										
-										

LDC #:	542	34A	/a
--------	-----	-----	----

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	of	_
Reviewer:	FT	

	METHOD: GC/MS VOA (EPA SW 846 Method 8260 ノン										
	Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".										
	YNNA Was a met	hod blank associated with every sample in this SDG? /									
	M N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?										
	Y/N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.										
,	Blank analysis date: 3/7/2										
	Conc. units: uall			Α	ssociated Sar	mples:		9 +>	-) (ND)	
	Compound	Blank ID				\$	Sample Identific	ation		-	
		MB 530	- 38581	0							
۲۱	e ccc	0.300 (
• '	£6E		13.21)								
	999		13.33)								
	[1]	0.348	(13.61)								
	1,3,5- Trichlombenze		(14.44)								
				ļ							
				· · · · · · · · · · · · · · · · · · ·				-			•
]										

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

V AL N/A Were target	PA SW 846 Me planks identified	ethod 8260 /2 ed in this SDG?	ld hlanks?	ION FINDI <u>Field E</u>		KSHEET	(^ t)	Rev	Page:of riewer: <u>FT</u>	
Blank units: 49 Asso Sampling date: 321	22	dints.		-0				_			
Field blank type: (circle one	Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: TB Associated Samples: 3 15										
Compound	Blank ID				s	ample Identifica	ition	······································			
arrest error transfer by Alphania de la same error	<u> </u>		5								
4 EF	0.082	0.0	040/0.	NOTO							
									77	·	
Blank units: Asso Sampling date: Field blank type: (circle one	ociated samp		ank / Othe	er:	Asso	ciated Sample	es:				
Compound	Blank ID				s	ample Identifica	tion				
rain (ne an les alles amendade) rain (ne accepte l'orgène de la company de la la company de la compa											
					,						
									1		

					-						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC#: 54234/テ/② VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	of	_
Reviewer:	FT	

ETHOD: GC/MS VOA (EPA N N/A Were field du N N/A Were target	A SW 846 Method 8260 uplicate pairs identified in the compounds detected in the	nis SDG?		
	Concentration	(ig)L,	DDD	OUA
Compound	3	5	RPD (≤ 50%)	QUAL
٧	0.0704	0.031	77	
EE	0.0704	0.040	55	
			4	
	Concentration	()	RPD	QUAL
Compound			(≤ %)	
			1	
	Concentration	()		
Compound			RPD (≤ %)	QUAL
	4			
	Concentration	()	RPD	QUAL
Compound			(≤ %)	QUAL
	 		 	
	 			

LDC #: 57-3441A

VALIDATION FINDINGS WORKSHEET <u>Target Analyte and TIC</u>

Page:	<u>l</u> of <u> </u>
eviewer.	*

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
		2-4	All laboratory calibrated analytes reported as		Jdets/A (v)
		1	tentatively identified compounds (TIC)		

LDC# 5/2344/a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	1	_of_	1
Reviewer:_	F	T	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 /2

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the target analytes identified below using the following calculations:

RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of target analyte

A_{is} = Area of associated internal standard

C_x = Concentration of target analyte S = Standard deviation of the RRFs

Cis = Concentration of internal standard

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	(S. U std)	RRF (<u>S-U</u> std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL TACOYS	2/15/22	K CC FF‡	0.50SV 1.74 XV 1.5403	0. SOSO .7YX0 .5Y03	0.541/ 1.752/ 1.5445	0.541/ 1.752/ 1.5445	10.2	10.2 6,5 10.2
2	ICAL TACOYB	3/30/22	cc FFF	0.4867 1.8256 1:6258	0.4867 1.8296 1.6288	0-500.570 1.8427 1.5375	3 0.5203 1.8427 1.5375	9.0 9.9 5.4	9.0 9.9 5.4
3									
4									

Comments:			
	Add Control of the Co		

LDC#: 54234A

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:	<u>1_of_1_</u>
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 \mathcal{D})

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where:

,

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

ave. RRF = initial calibration average RRF

A_x = Area of target analyte

 $\hat{C_x}$ = Concentration of target analyte

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	ecV 1126	3/24/22	K CC FFF	0.541/ 1.752/ 1.8445	0.5062 1.87 / 1.783	0,5062 .87 .783	6.4	6.4
2	ceN 1103	3/31/22	K CC FFF	0.5203 1.8427 1.5375	0.4843 1.819 1.696	0,4843 1.819 1.696	6.9	6.9 1.3 10.3
3								
4								

LDC#: 54234 A/a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1_	_of_	1
Reviewer:_	FT		

METHOD: GC/MS VOA (EPA SW 846 Method 8260 /

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: # /

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	10.0	1/-0	1/0	טון	U
1,2-Dichloroethane-d4		10.3	103	/03	1
Toluene-d8		9.95	99	99	
Bromofluorobenzene	V	8.97	90	90	

Comments:	 	

LDC#: 54234A/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:_	1	of	1
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\stackrel{\frown}{P}$

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration

LCSDC = Laboratory control sample duplicate concentration

		pike		Sample		cs	Lo	SD	LCS	/LCSD
Compound		Ided	Conce (い	ntration	Percent	Recovery	Percent	Recovery	R	PD
provided the second of the sec	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
1,1-Dichloroethene	10.0	10.0	4.1나	4.20	83	83	४५	84	1)
Trichloroethene			4.62	4.59	92-	92	92	92		1
Benzene			4.82	4.86	96	96	97	97	1	,
Toluene			5.10	5.01	102	102	100	טטן	2	2
Chlorobenzene			5.16	5.27	103	[103]	105	105	2	2

Comments:	 Mar. 1	 	

LDC#: 54234A

matrices only.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	of_	1	_
Reviewer:_		FT		

METHOD: GC/MS VOA (EPA SW 846 Method 8260 \nearrow

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

Conce	entrati	·	Example:		
A_{x}	=	(A _{is})(RRF)(V _o)(%S) Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D.	<u>#1</u> ,	K
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	Conc. =	56435	(10)
l _s	=	Amount of internal standard added in nanograms (ng)		414 301	(o. 541)
RRF	=	Relative response factor of the calibration standard.		7.017	- 11
V _o `	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	=	2.31	ug L
Df	=	Dilution factor.			
%5	=	Percent solids, applicable to soils and solid			

Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
4	K	2.517	2.517	-
<u> </u>				
			Sample ID Compound (ugl)	Sample ID Compound (ugl) (ugl)

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 14, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B & 4

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111708-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU084**	580-111708-1**	Water	03/21/22
HU075	580-111708-3	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- (Non-detected estimated): The analyte was not detected and the associated UJ numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q' MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/28/22	Bis(2-chloroisopropyl) ether Diethylphthalate Pentachlorophenol	27.3 29.0 36.7	All samples in SDG 580-111708-1	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-385291 (All samples in SDG 580-111708-1)	2,4-Dimethylphenol 2-Chlorophenol 4-Chloroaniline Bis(2-chloroethyl) ether Hexachlorobutadiene	22 (≤20) 24 (≤20) 21 (≤20) 22 (≤20) 25 (≤20)	NA	-

X. Field Duplicates

Samples HU075 and HU074** were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111708-1	All TICs	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D and TIC quantitation, data were qualified as estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-111708-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU084** HU075 HU074**	Bis(2-chloroisopropyl) ether Diethylphthalate Pentachlorophenol	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU084** HU075 HU074**	All TICs	NJ (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

SDG Labo	#: 54234A2a VALIDATIO #: 580-111708-1 ratory: Eurofins, Tacoma, WA HOD: GC/MS Semivolatiles (EPA SW-84	St	age 2B/4	S WORKSHEET	. Р	Date: 6 2 Page: of 6 Page: 5 P
	samples listed below were reviewed for eation findings worksheets.	ach of the f	ollowing valida	tion areas. Validation	findings are note	ed in attached
	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	AIA				
11.	GC/MS Instrument performance check	Δ	,			
III.	Initial calibration/ICV	A,A	2/0 P	SD = 15, 12	1cY ±	20
IV.	Continuing calibration Lending	500		' ςυ	V £ 20/57	<i></i>
V.	Laboratory Blanks	4				
VI.	Field blanks	N				
VII.	Surrogate spikes	Δ		·		
VIII.	Matrix spike/Matrix spike duplicates	N	05			
IX.	Laboratory control samples	رسي	LOSID			
X.	Field duplicates	M)	D= 2	3		
XI.	Internal standards	1				
XII.	Target analyte quantitation	SN	Not reviewed for	Stage 2B validation.	TICE - NJA	12/2 (V)
XIII.	Target analyte identification	\\\ \(\)	Not reviewed for	Stage 2B validation.	MI	
XIV.	System performance		Not reviewed for	Stage 2B validation.	***	
LXV.	Overall assessment of data	10				
Note:	N = Not provided/applicable R = Ri	No compound nsate rield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID		····	Lab ID	Matrix	Date
1	HU084**			580-111708-1**	Water	03/21/22
2	HU075 🕜			580-111708-3	Water	03/21/22
3	HU074**			580-111708-5**	Water	03/21/22
4						
5						
6						
7						
8						
9						
Notes:						

MB 580 - 385291

Page: 1 of 2
Reviewer: FT

Method: Semivolatiles (EPA SW 846 Method 8270 E)

Validation Area	Yes	No	NA	Findings/Comments		
I. Technical holding times						
Were all technical holding times met?	/					
Was cooler temperature criteria met?	/					
II. GC/MS Instrument performance check	•					
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/					
Were all samples analyzed within the 12 hour clock criteria?						
Illa. Initial calibration						
Did the laboratory perform a 5 point calibration prior to sample analysis?	/					
Were all percent relative standard deviations (%RSD) ≤ 15% and relative response factors (RRF) within method criteria?	/					
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of > 0.990?						
IIIb. Initial Calibration Verification						
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		•				
Were all percent differences (%D) ≤ 20%?						
IV. Continuing calibration	•					
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?						
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?						
V. Laboratory Blanks						
Was a laboratory blank associated with every sample in this SDG?	/					
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/					
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.						
VI. Field blanks						
Were field blanks were identified in this SDG?		/	-			
Were target analytes detected in the field blanks?						
VII. Surrogate spikes						
Were all surrogate percent recovery (%R) within QC limits?						
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?						
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R?						
VIII. Matrix spike/Matrix spike duplicates						
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?						

LDC #: 9년23년 A2 VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			\			
IX. Laboratory control samples						
Was an LCS analyzed per extraction batch?	/					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	,	_				
X. Field duplicates						
Were field duplicate pairs identified in this SDG?						
Were target analytes detected in the field duplicates?		/				
XI. Internal standards						
Were internal standard area counts within -50% to +100% of the associated calibration standard?	\	1				
Were retention times within ± 30 seconds of the associated calibration standard?						
XII. Target analyte quantitation						
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/					
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/					
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\					
XIII. Target analyte identification						
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/					
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/					
Were chromatogram peaks verified and accounted for?						
Were manual integrations reviewed and found acceptable?						
Did the laboratory provide before and after integration printouts?						
XIV. System performance						
System performance was found to be acceptable.	1	1				
XV. Overall assessment of data						
Overall assessment of data was found to be acceptable.						

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WETHOD, GONIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #:	542	34Ada	_
--------	-----	-------	---

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	/ of
Reviewer:	FT

5000

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ') と270 E

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

У Y N	N/A N/A		es (%D) and relative re within the validation c	esponse factors (RRF) within method criter	ia for all CCC's and SPCC	's? (C)
#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
<u> </u>	3 28/22	cov	MMM	27.3		AI)	1+ du /113/A (av M)
	753		LL	29.0			
	<u> </u>		TT	36.7			1-1u1/A
					L		
	T		T			<u> </u>	1

LDC#: 5/23/12a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	of	_7
Reviewer:	FT	

METHOD: GC/MS BNA (Method & 2-70+

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Was a LCS required?

N/A

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	Les 10	B	()	()	22 (20)	A11 (w)	John 1P and ND
	580 -385	29) c	()	()	24 ()		7
		T	()	()	2) ()		
		В	()	()	22 ()		
		<u> </u>	()	()	25 (V)	J .	
Ш		·	()	()	()		
			()	()	()		
			()	()	()		
			()		(
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
\blacksquare			()		, ,		
\parallel			()		, ,		·
			, , ,	()	, ,		
H			,		/		
\vdash			()	()	()		
			()	()	()		
H			()	()	()		
H			()	()	()		
			()	()	()		
				()	()		

LDC #: 54234A2a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:1	of	_1_
Reviewer:		FT

METHOD: GCMS 8270E

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

Ax = Area of compound

average RRF = sum of the RRFs/number of standards

Cx = Concentration of compound

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs

X = Mean of the RRFs

Ais = Area of associated internal standard Cis = Concentration of internal Standard

4	Standard ID	Calibration Date	Compound	Reported (RRF 500 std)	Recalculated (RRF500 std)	Reported AverageRRF (Initial)	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compound	(KKF 500 Std)	(KKF300 Std)	(mittal)	(Initial)		
	ICAL	1/24/2022	Α	1.0690	1.0690	1.0044	1.0044	11.0	11.0
	TACO51		U	0.1794	0.1794	0.1815	0.1815	13.3	13.3
			LL	1.3352	1.3352	1.2963	1.2963	8.5	8.5
			SS	0.2325	0.2325	0.2584	0.2584	10.5	10.5
			BBB	Linear					

LDC #: 54234A2a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:1_	_ of _	_1
Reviewer:	F	<u> </u>

METHOD: GCMS 8270E

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

Ax = Area of compound

average RRF = sum of the RRFs/number of standards

Cx = Concentration of compound

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs X = Mean of the RRFs

Ais = Area of associated internal standard

Cis = Concentration of internal Standard

	Object of ID	Calibration	0	Reported (RRF 500 atd)	Recalculated	Reported AverageRRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#_	Standard ID	Date	Compound	(RRF 500 std)	(RRF500 std)	(Initial)	(Initial)		
	ICAL	1/24/2022	Α	1.0690	1.0690	1.0044	1.0044	11.0	11.0
	TACO51		υ	0.1794	0.1794	0.1815	0.1815	13.3	13.3
			LL	1.3352	1.3352	1.2963	1.2963	8.5	8.5
			SS	0.2325	0.2325	0.2584	0.2584	10.5	10.5
			BBB	quadratic					

LDC#: 34234A2a

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u>1</u>	of_1_	
Reviewer:_	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 E)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

A_x = Area of target analyte

C_x = Concentration of target analyte

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard Cis = Concentration of internal standard

	·				Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	cov	3/28/12	(1st IS)	1.0044	0.8259	0.8259	17.8	17.8
		' -	(2 nd IS)	0.1815	0.1269	0.1869	3.0	3.0
		1322	(3 rd IS)	1-2963	1.673	1.673	29·U	290
1			(4 th IS)	0.2584	0.2587	0.2587	0.)	0^
	}		BBB (6) (5th IS)	2000	2000	2001)	0'	o'
<u> </u>			(6 th IS)					
2			(1st IS)					
l			(2 nd IS)					
			(3 rd IS)					
1			(4 th IS)					
	į		(5 th IS)					
<u></u>			(6 th IS)					
3			(1st IS)					
			(2 nd IS)					
			(3 rd IS)	 	ļ			
			(4 th IS)					
1		,	(5 th IS)					
L	<u> </u>		(6 th IS)		L	<u> </u>		

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:	<i>5</i> Y 2	34A2a
--------	--------------	-------

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	10	f1_
Reviewer:_	FT	_

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 [∠])

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	1000	668.1	67	67	0
2-Fluorobiphenyl		658.9	66	66	
Terphenyl-d14		794.2	79	79	
Phenoi-d5		176.7	18	18	
2-Fluorophenol		326.4	33	33	
2,4,6-Tribromophenol	J	572.4	57	57	<i>y</i>

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenoi					
2,4,6-Tribromophenol					

LDC#: 54734AJa

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

۲	'age: <u>1</u> ot <u>1</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

SSC = (Ax)(Cis)(Fv)(Df) (A_{IS})(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)*100

Where: A_x= Area of the target analyte

A_{is}= Area for the specific internal standard

C_{is} = Concentration of internal standard Fv =Final volume of extract

Df= Dilution factor

Ws= Initial weight of the sample

%S≃ Percent Solid

SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

10/10 580 - 385 791 LCS/LCSD samples:

		ipike dded		pike entration		CS		sn	ıcs	/I CSD
Compound		ia li		2 4	Percent	Recovery	Percent I	Recovery	R	RPD
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol	2.0	2.0	0.506	0.599	28	2×	30	30	6	6
N-Nitroso-di-n-propylamine	•									
4-Chloro-3-methylphenol	-									
Acenaphthene										
Pentachlorophenol	4.0	4.0	a.44	2.25	61	6)	56	56	8	8
Pyrene LL	2. O	2.0	1.68	1.65	84	84	83	83	2	2
						,				
										

LDC#: 54234120C

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page	:	1	_of_	_1_
Reviewer:		FT	·	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 🗁

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	ntratio	$n = (A_{s})(I_{s})(V_{s})(DF)(2.0)$ $(A_{ls})(RRF)(V_{s})(V_{s})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. <u>Les</u> <u>Phino</u> 1 580-385291
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	2 / 2
Is	=	Amount of internal standard added in nanograms (ng)	Conc. = (65660)(100)(2)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(23083) (1.0044) (1000)
V_{l}	=	Volume of extract injected in microliters (ul)	=
V_t	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	
%S	=	Percent solids, applicable to soil and solid matrices only.	
2.0	=	Factor of 2 to account for GPC cleanup	

#	Sample ID	Target Analyte	Reported Concentration	Calculated Concentration (U.G. 4	Qualification
	LOS	Pheno !	0.566	0.566	
ļ					
			-		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B & 4

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111708-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU084**	580-111708-1**	Water	03/21/22
HU075	580-111708-3	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU075 and HU074** were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification
Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234A2b

SDG #: 580-111708-1

Stage 2B/4

2nd Reviewer

Laboratory: Eurofins, Tacoma, WA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
II.	GC/MS Instrument performance check	Δ	,
III.	Initial calibration/ICV	Δ / λ	% PSD = 15 12 101 = 20
IV.	Continuing calibration ending	1	CW = 20/50
V.	Laboratory Blanks	Δ	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	2	ds
IX.	Laboratory control samples	A	Les IP
X.	Field duplicates	ND	0 = 23
XI.	Internal standards	7	
XII.	Target analyte quantitation		Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	Δ	Not reviewed for Stage 2B validation.
XIV.	System performance	۵	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

EB = Equipment blank

TB = Trip blank

SB=Source blank

OTHER:

Client ID	Lab ID	Matrix	Date
HU084**	580-111708-1**	Water	03/21/22
HU075 D	580-111708-3	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

586-38529

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2 Reviewer: FT

Method: Semivolatiles (EPA SW 846 Method 8270 E)

Va lidation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check		<u> </u>		
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 15% and relative response factors (RRF) within method criteria?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification	_			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	_			
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?				
Were target analytes detected in the field blanks?		-		
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				

LDC#: 54234A2h

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction_batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	_			
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Target analyte quantitation	,	,		
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?		-		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
Were manual integrations reviewed and found acceptable?	_			
Did the laboratory provide before and after integration printouts?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD, GONNO SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 54234A2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _	_1_	_of _	_1_	
Review	/er:	F	Т	

METHOD: GCMS 8270D SIM

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

Ax = Area of compound

average RRF = sum of the RRFs/number of standards

Cx = Concentration of compound

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs

X = Mean of the RRFs

Ais = Area of associated internal standard Cis = Concentration of internal Standard

		Calibration		Reported	Recalculated	Reported AverageRRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID	Date	Compound	(RRF 500ug/Lstd)	(RRF 500ug/L std)	(Initial)	(Initial)		
	ICAL	1/14/2022	s	1.0790	1.0790	1.0577	1.0577	5.4	5.4
			GG	1.3227	1.3227	1.3260	1.3260	4.9	4.9
	TACO50		UU	see curve					
			DDD	see curve					
			111	see curve					

LDC#: 54234A2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	c	of_	_1	
Reviewe	r	:	F	T_	

Method: PAH 8270E SIM

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
1/14/2022	GCMS	III	1	0.023501	0.01
			2	0.037762	0.02
			3	0.077310	0.05
			4	0.126190	0.1
			5	0.246460	0.2
			6	0.611850	0.5
			7	1.267900	1
			8	2.564400	2
			9	6.866000	5
			10	13.724000	10
			11	26.812000	20
			12	72.035000	50
			13	133.590000	100

Regression Output

Re	po	rte	d

Constant	0.172544	1.061400
Std Err of Y Est		
R Squared	0.998844	0.995000
Degrees of Freedom		
X Coefficient(s)	1.353978	1.300800
Std Err of Coef.		
Correlation Coefficient	0.999422	
Coefficient of Determination (r^2)	0.998844	0.995000

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:1		of_	_1
Reviewer	·	_F1	Γ

Method: PAH 8270E SIM

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
1/14/2022	GCMS	UU	1	0.039012	0.02
ì			2	0.080690	0.05
			3	0.137640	0.1
			4	0.259600	0.2
			5	0.632050	0.5
			6	1.277300	1
Ì			7	2.486800	2
			8	6.547500	5
			9	12.965000	10
			10	24.658000	20
			11	65.315000	50
			12	117.340000	100

Regression Output

Reported

Constant	0.510013	1.430000
Std Err of Y Est		
R Squared	0.997599	0.999000
Degrees of Freedom		
X Coefficient(s)	1.194570	1.255900
Std Err of Coef.		
Correlation Coefficient	0.998799	
Coefficient of Determination (r^2)	0.997599	0.999000

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:1	of	: 	1
Reviewer	:	FT	

Method: PAH 8270E SIM

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
1/14/2022	GCMS	DDD	1	0.051554	0.02
			2	0.099365	0.05
			3	0.179370	0.1
			4	0.321600	0.2
			5	0.777150	0.5
			6	1.505500	1
			7	2.930600	2
			8	7.683500	5
l l			9	14.918000	10
			10	28.998000	20
			11	79.045000	50
			12	140.030000	100

Regression Output

Reported

Constant	0.544670	2.224000
Std Err of Y Est		
R Squared	0.996939	0.999000
Degrees of Freedom	*****	
X Coefficient(s)	1.429574	1.497900
Std Err of Coef.		, ,
Correlation Coefficient	0.998468	
Coefficient of Determination (r^2)	0.996939	0.999000

LDC #: 542 34 A2b

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	<u>1of_</u>	1
Reviewer:	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_x = Area of target analyte A_{is} = Area of associated internal standard

 $C_x =$ Concentration of target analyte

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	cer	4/1/22	5 (1st IS)	1.0577	0.9605	0.9605	9.2	9.2
		.1.1	G 4 (2 nd IS)	1.3260	1.200	1.200	9.5	9.5
		1306	UU (3 rd IS)	500	475	435	13.0	13.0
			DDD (4 th IS)		462	462	7.7	7.7
			(5 th IS)		439	439	12.3	12.3
			(6 th IS)					
2			(1st IS)					
			(2 nd IS)	·				
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
<u></u>			(6 th IS)					
3			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
<u></u>			(6 th IS)					

Comments: Re	efer to Continuing (Calibration findings w	<u>orksheet for list of</u>	t qualifications a	ind associated	samples when	reported results	do not agree withi	n 10.0% of
the recalculated	d results								

LDC#: 54234 A2b

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u>	of_	1_
Reviewer:	FT	

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5 W - d/O	1000	642.8	64	64	U
2Fluorobiphenyl YY-d1D		740.8	74	74	1
Terphenyl-d14		753.2	75	75	
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

Sample ID.

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

LDC#: 54234A2b

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

Page	<u> 1 of 1 </u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

SSC = (Ax)(Cis)(Fv)(Df) (A_{IS})(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)*100

Where: A_x= Area of the target analyte

A_{is}= Area for the specific internal standard

C_{IS} = Concentration of internal standard Fv =Final volume of extract

Df= Dilution factor

Ws= Initial weight of the sample

%S= Percent Solid

SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS/LCSD samples: LCS/D 580- 385 39)

	Spike		Spike		LCS		LCSD		L CS/L CSD	
Compound		dded	Concentration		Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenaphthene	2.0	2.0	1.30	1.27	65	65	64	64	2	2
Pentachlorophenol										
Pyrene	2. 0	2.0	1.55	1.5)	77	77	76	76	2	2
						ļ				

LDC#: 5/234A26

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	_of_	1
Reviewer:	FT	•	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 🛱

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	entratio	on = $(A_v)(I_s)(V_1)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_1)(%S)$	Example:	
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. 10> 580-38,529 GG	
\mathbf{A}_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard		`
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = 85105 (100) (2	
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	9875 (1.3260) (10	00)
V_{i}	=	Volume of extract injected in microliters (ul)	=	
V _t	=	Volume of the concentrated extract in microliters (ul)	1.30ug/L	
Df	=	Dilution Factor.	1. 30 % 7/12	
%S	=	Percent solids, applicable to soil and solid matrices only.		
2.0	=	Factor of 2 to account for GPC cleanup		

#	Sample ID	Target Analyte	Reported Concentration (પજ્	Calculated Concentration	Qualification
	les	99	1.30	1.30	
.					
				}	
1					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 21, 2022

Parameters: Metals

Validation Level: Stage 4

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-111708-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
HU084	580-111708-1	Water	03/21/22	
HU074	580-111708-5	Water	03/21/22	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan. Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples		
PB (prep blank)	Manganese	11.3 ug/L	All samples in SDG 580-111708-1		
ICB/CCB	Calcium Magnesium Manganese Sodium	0.131 mg/L 0.121 mg/L 0.00660 mg/L 0.187 mg/L	All samples in SDG 580-111708-1		

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Laboratory Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Field Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

LDC #: 54234A4b

VALIDATION COMPLETENESS WORKSHEET

SDG #: 580-111708-1

Laboratory: Eurofins, Tacoma, WA

Stage 4

Reviewer: 2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AA	
II.	Instrument Calibration	A	
III.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N.	
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	LCSILCSD
X.	Field Duplicates	N	
XI.	Target Analyte Quantitation	A	
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HU084	580-111708-1	Water	03/21/22
2	HU074	580-111708-5	Water	03/21/22
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Notes.	 			 		
					•	

METHOD: Trace Metals (EPA SW 846 Methods	6010	/6020)/7000)	
Validation Area	Yes	No	NA	Comments
I. Technical holding times			-l	
Were all technical holding times met?	V	I		
Were all water samples preserved to a pH of	1			
<2.	_			
II. ICP-MS Tune	L		اا	
Were mass resolutions within 0.1 amu for all			V	
isotopes in the tuning solution?				
Were %RSDs of isoptoes in the tuning			1./	
solution ≤5%?				
III. Calibration				
Were all instruments calibrated daily?	V			
Were the proper standards used?	V			
Were all initial and continuing calibration				
verifications within the 90-110% (80-120% for	V			
mercury) QC limits?		<u> </u>		
Were the low level standard checks within 70-				
130%? 80-120%	$\overline{}$			
Were all initial calibration correlation	1			
coefficients within limits as specifed by the	V	1		
method?		<u> </u>		
IV. Blanks	·			
Was a method blank associated with every	/			
sample in this SDG?	Ľ			
Was there contamination in the method	V			
blanks?	V			
Was there contamination in the initial and	V			
continuing calibration blanks?	L	<u> </u>		
V. Interference Check Sample	·			
Were the interference check samples	1	1		
performed daily?	,	<u> </u>	 	
Were the AB solution recoveries within 80-	\ \			
120%?				
VI. Matrix Spike/Matrix Spike Duplicates/Lak	orato	T DU	ipiicate	s T
Were MS/MSD recoveries within the QC				
limits? (If the sample concentration exceeded				
the spike concentration by a factor of 4, no			*	
action was taken.)	├	╀		
Were the MS/MSD or laboratory duplicate		'		
relative percent differences (RPDs) within the				
QC limits?	<u> </u>			
VII. Laboratory Control Samples	TV			T
SDG?	I v	<u> </u>		

Were the LCS recoveries and RPDs (if	1							
applicable) within QC limits?								
METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)								
Validation Area	Yes	No	NA	Comments				
VIII. Internal Standards								
Were all percent recoveries within the 30-								
120% (60-125% for EPA Method 200.8) QC			\checkmark					
limits?			V					
If the recoveries were outside the limits, was			1					
a reanalysis performed?								
IX. Serial Dilution								
Were all percent differences <10%?			V					
Was there evidence of negative interference?			./					
If yes, professional judgement will be used to			`					
qualify the data.								
X. Target Analyte Quantitation			************					
Were all reporting limits adjusted to reflect	1							
sample dilutions?	L v							
Were all soil samples dry weight corrected?			\checkmark					
XI. Overall Assessment of Data								
Was the overall assessment of the data found	V			·				
to be acceptable?	ľ							
XII. Field Duplicates								
Were field duplicates identifed in this SDG?		/						
Were target analytes detected in the field			V					
duplicates?								
XIII. Field Blanks								
Were field blanks identified in this SDG?		V						
Were target analytes detected in the field								
blanks?			"					

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1 Reviewer: ATV

All circled elements are applicable to each sample.

		^
Sample ID	Matrix	Target Analyte List (TAL)
1,2	W	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
·		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:_	1	_of_	1	
Reviewer: A	ITA			

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L

Soil preparation factor applied: NA

Associated Samples: all Code: b

	Jonochtratic						=	 -	
Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (ug/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
Mn		11.3		56.5					
Ca			0.131	655					
Mg			0.121	605					
Mn			0.00660	33					
Na			0.187	935					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Reviewer: ATL

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 $R = Found \times 100$ True

Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

Standard ID	Type of Analysis	Element	mall Found (ugA)	mg True (ug/L)	Recalculated %R	Reported %R	Acceptable (Y/N)
ICVL	ICP (Low Level calibration)	Mn	0.0214	0.0200	107	107	У
	ICP/MS (Low Level calibration)						
IOV	ICP (Initial calibration)	K	38.35	40.000	9,6	96	У
	ICP/MS (Initial calibration)						·
	CVAA (Initial calibration)						
COV	ICP (Continuing calibration)	COV	97.07	100.00	97	97	У
	ICP/MS (Continuing calibration)						
	CVAA (Continuing calibration)		·				

ICP-MS TUNE	Calculation	Mass	Actual (Mean Counts / Axis)	Required (Counts / Axis)	Recalculated %RSD	Acceptable (Y/N)
	Mass Axis		·	± 0.1 AMU	NA	
	%RSD			≤ 5% RSD		

Comments:	·	
	•	

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page:_	of
Reviewer:	ATU

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample,	a laboratory control sample and a matrix spike sample were recalculated using the following formula
---	---

 $%R = Found \times 100$ True

Found = Concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ (S+D)/2

Where, S = Original sample concentration

D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = |I-SDR| \times 100$

Where, I = Initial Sample Result (mg/L)

SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

Sample ID	Type of Analysis	Element	Mg L Found/S/I (units)	Mg/L True/D/SDR (units)	Recalculated %R / RPD / %D	Reported %R / RPD / %D	Acceptable (Y/N)
ICSAB	ICP interference check	Mn	1.050 mg/L	1.000 mg/L	105	105	У
ics	Laboratory control sample	May	18610	20000	93	93	Y
	Matrix spike		(SSR-SR)				
	Duplicate						
	Post digestion spike						
	ICP serial dilution				·		

Comments:	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of	
Reviewer:_	ATL	_

METH	HOD: Trace Metals (EP	A SW 846 Method 6010/6020/7000)			
Y N Y N	N/A Have results N/A Are results w	ow for all questions answered "N". Not been reported and calculated correct within the calibrated range of the instru tion limits below the CRDL?	ly?		
Detec equati	ted analyte results for _ ion:				using the following
Concen RD FV In. Vol. Dil	tration = \frac{(RD)(FV)(Dil)}{(ln. Vol.)} = Raw data conce = Final volume (m = Initial volume (m = Dilution factor	1)	ppm ×1000 =	29440 pp	b
#	Sample ID	Analyte	Reported Concentration (MAIL)	Calculated Concentration () (G)	Acceptable (Y/N)
		Ca	29000	29440	У
	2	Na ·	160000	159200	y .

Note:		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 21, 2022

Parameters: Wet Chemistry

Validation Level: Stage 4

Laboratory: Eurofins, Tacoma, WA/EMAX Laboratories, Inc.,

Torrance, CA

Sample Delivery Group (SDG): 580-111708-1/22C261

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU084	580-111708-1/C261-01	Water	03/21/22
HU074	580-111708-5/C261-02	Water	03/21/22
HU084MS	580-111708-1/C261-01MS	Water	03/21/22
HU084MSD	580-111708-1/C261-01MSD	Water	03/21/22
HU074MS	580-111708-5/C261-02MS	Water	03/21/22
HU074MSD	580-111708-5/C261-02MSD	Water	03/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

Dissolved Organic Carbon and Total Organic Carbon by EPA SW 846 Method 9060A

Ferrous Iron by Standard Method 3500-Fe B

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Silica and Dissolved Silica by Standard Method 4500-SiO2 C

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
HU084	Nitrate as N	73.25 hours	48 hours	J- (all detects)	Р
HU074	Nitrate as N	70.37 hours	48 hours	J- (all detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Chloride	0.516 mg/L	All samples in SDG 580-111708-1/22C261

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HU084MS/MSD (HU084)	Nitrate/Nitrite as N	48 (90-110)	41 (90-110)	J- (all detects)	А

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitation met validation criteria.

The results for the dissolved metals sample analysis were greater than the total metals sample analysis as follows:

		Concentra	tion (mg/L)
Sample	Analyte	Total	Dissolved
HU084	Silica	61.1	79.6

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to technical holding time and MS/MSD %R, data were qualified as estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-111708-1/22C261

Sample	Analyte	Flag	A or P	Reason (Code)
HU084 HU074	Nitrate as N	J- (all detects)	Р	Technical holding times (h)
HU084	Nitrate/Nitrite as N	J- (all detects)	Α	Matrix spike/Matrix spike duplicate (%R) (q)

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-111708-1/22C261

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-111708-1/22C261

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234A6 Stage 4 SDG #: 580-111708-1/22C261 Laboratory: Eurofins, Tacoma, WA Reviewer: Sub-Laboratory: EMAX Laboratories, Inc., Torrance, CA 2nd Reviewer: METHOD: (Analyte) Alkalinity (SM2320B), Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0), DOC (EPA SW-846 Method 9060A), Ferrous Iron (SM3500-FE B), Nitrate/Nitrite-N (EPA Method 353.2), Silica, Dissolved Silica (SM4500-SIO2 C), TOC (EPA SW-846 Method 9060A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Comments Validation Area Sample receipt/Technical holding times 11 Initial calibration III. Calibration verification IV Laboratory Blanks V Field blanks VI. Matrix Spike/Matrix Spike Duplicates VII. Duplicate sample analysis VIII. Laboratory control samples IX. Field duplicates X. **Target Analyte Quantitation** Overall assessment of data Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet EB = Equipment blank FB = Field blank Client ID Lab ID Matrix Date C261-01 HU084 580-111708-1 Water 03/21/22 2 HU074 Water 580-111708-5 03/21/22 3 HU084MS 580-111708-1MS Water 03/21/22 HU084MSD 580-111708-1MSD Water 03/21/22 4 5 HU074MS 580-111708-5MS Water 03/21/22 6 HU074MSD 580-111708-5MSD Water 03/21/22 8 9 10

Notes:

11 12 13

Page 1 of 2 Reviewer: ATL

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
I. Technical holding times		<u> </u>		<u> </u>
Were all technical holding times met?		V		
II. Calibration				
Were all instruments calibrated at the				
required frequency?	V			
Were the proper number of standards				
used?	V			
Were all initial and continuing calibration	. /			
verifications within the QC limits?			İ	
Were all initial calibration correlation				
coefficients within limits as specifed by the	V			
method?				
Were balance checks performed as				
required?			\ \	
III. Blanks				
Was a method blank associated with every	V			
sample in this SDG?				
Was there contamination in the method		V		
blanks?	L	V		
Was there contamination in the initial and	1			
continuing calibration blanks?	V		<u> </u>	
IV. Matrix Spike/Matrix Spike Duplicates/L	.aborat	ory Du	plicates	S
Were MS/MSD recoveries within the QC				
limits? (If the sample concentration		./		
exceeded the spike concentration by a		\ \ \		
factor of 4, no action was taken.)				
Were the MS/MSD or laboratory duplicate				
relative percent differences (RPDs) within	V			
the QC limits?				
V. Laboratory Control Samples				
Was a LCS analyzed for each batch in the	V			
SDG?	V			
Were the LCS recoveries and RPDs (if	1/			
applicable) within QC limits?			<u> </u>	
X. Target Analyte Quantitation				
Were all reporting limits adjusted to reflect	V			
sample dilutions?		<u> </u>		
Were all soil samples dry weight corrected?	<u></u>	<u></u>	LV	
XI. Overall Assessment of Data		·		
Was the overall assessment of the data	\ \			
found to be acceptable?	<u> </u>		<u></u>	

Page 2 of 2 Reviewer: ATL

METHOD: Inorganics	1		1	
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates				
Were field duplicates identifed in this SDG?		V		
Were target analytes detected in the field duplicates?			V	
XIII. Field Blanks				
Were field blanks identified in this SDG?				
Were target analytes detected in the field blanks?			V	

LDC #: <u>\$4234</u>A6

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATC

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2	pH TDS (C)(F)(NO3 NO2 (SO), O-PO4 (AIK)CN NH3 TKN (TOO C16+ C104 (BY) (N/D)(N/2-N) (DOC)
1	ph tds ci f NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4 (7621) (\$102) (\$15 \$102)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
5,6	pH TDS(C)(F)(G) NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4(BT)
3,4	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (NO3/NO2-N)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4

Comments:	 	 	 	 	······

LDC #: 54234AG

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page: 1 of 1
Reviewer: 41

All circled dates have exceeded the technical holding time.

N N/A

Were all samples preserved as applicable to each method?

YN N/A We	ere all cooler ter	nperatures within	validation criteria	?	<u>Code:</u>	h	
Method:		NO3-N (8	EPA 300.0)				
Parameters) <u>.</u>	water				·	
Technical h	olding time:	48h	MS.				
Sample ID	Sampling date	Analysis date	Total Time	Qualifier	Analysis date	Total Time	Qualifier
(10:30-7 13:30 3121127 13:46-7 16:46 3121122	14:45 3/24/27 3/24/27	73.25	J/VJ/P(det	cct)		
2	13:46-) 16:46 3121 22	3/24/22	70.37				
	,		,				
				ļ			
				ļ			
					- · · · · · · · · · · · · · · · · · · ·		

VALIDATION FINDINGS WORKSHEET Blanks

Page:	1_of_1
Reviewer:	ATL

METHOD:Inorganics, Method See Cover

Conc. units: ug/L Associated Samples: All

Analyte	Blank ID	Blank ID	Blank		 				
	РВ	ICB/CCB (mg/L)	Action Limit	No Qualifiers					
CI		0.516	2580						
						 	1		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 54234A6	
----------------	--

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_ <u>1</u> _	
eviewer	ΔΤ	I	

METHOD: Inorg	anics, EPA Method_See cover
	ifications below for all questions answered "N". Not applicable questions are identified as "N/A".
<u>Y)N N/A</u>	Was a matrix spike analyzed for each matrix in this SDG?
Y(N) N/A Y(N) N/A	Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor
_	of 4 or more, no action was taken.
N N/A	Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples?
LEVEL IV ONL'	Y:
Y) N N/A	Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications Code: q
	3/4	W	NO2/NO3-N	48 (90-110)	41 (90-110)		1	J-/UJ/A (detect)
F								
\vdash								
L								

Comments:		-		

LDC #: 54234AG

VALIDATION FINDINGS WORKSHEETS Target Analyte Quantitation

Page 1 of 1 Reviewer: ATV

METHOD: Inorganics

Sample ID	Analyte	Total Result	Dissolved Result	Qualification	Det/ND
1	SiO2	61.1	79.6	text	Det.
				-	
_					
•		 			

Comments:

LDC #: 54234AG

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:		of_	1
Reviewe	r:	A	\mathbb{Z}

Method: Inorganics, Meth-	od <u>See Cover</u>	
The correlation coefficient (r) fo	or the calibration of <u></u>	was recalculated.Calibration date: 03/24/22
An initial or continuing calibrati	on verification percent r	ecovery (%R) was recalculated for each type of analysis using the following formula:
%R = <u>Found X 100</u>	Where,	Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution
True		True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/l)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.2	0.0552			
		s2	0.25	0.0788	0.99956		
	F-	s3	0.5	0.1534			.,
	+	s4	1	0.2743			γ
		s5	2	0.4701			
		s6	5	1.1967			
	l	s7	10	2.4918			
CCV Calibration verification	Fe2t	FOUND 14.968	TRUE 15,000		100	100	Y
CCV (3/3/ C06:00) Calibration verification	TOC	25.665	25,000		103	103	У
C(V) Calibration verification	SiO2	14.455	15.000		95	96	Y

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 5423

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page:	_of
Reviewer:_	ATL

METHOD: Inorganics, Method	see cover
----------------------------	-----------

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$ True

Where,

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ (S+D)/2

Where,

S =

Original sample concentration

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / S (units)	MG/L True / D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	Alkalinity	93352	100 000	93	93	Y
3	Matrix spike sample	NO2/NO3-N	(SSR-SR) 240.043	500.00	48	48	У
3/4	Duplicate sample	N02/N03-N	781.23	817.10	4	4	Y

Comments:			
		,	

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:	of
Reviewer:	ATU

METHOD: Inor	rganics, Method	see cover		
Please see qua YN N/A YN N/A YN N/A	alifications below fo Have results been Are results within Are all detection I	or all questions answered " n reported and calculated of the calibrated range of the limits below the CRQL?	N". Not applicable questic correctly? e instruments?	ons are identified as "N/A".
Compound (an	alyte) results for	N03 - N e following equation:		reported with a positive detect were
Concentration =		Recalculation		
V (4x0.00	9)x (0.0381+	$0.001) + (0.361)^{2}$	(0.361) × 1000	= 1029.003771
		2. × 0.009	7((110	

#	Sample ID	Analyte	Reported Concentration (MG/L)	Calculated Concentration (µg L)	Acceptable (Y/N)
		N03-N	1000	1029	У
		NO3-N NO3/NO2-N	580	577.057	
		TOC	950	945.213	
		Alkalinity	100000	100288	
	L	DOC "	1200	1205.62	
	2	a-	250000	236835	
	2	NO3/NO2-N	M	ND (14.946)	
	2	TOC	2800	2794.681	
	2	Alkalinity	130000	125763	
	2	DOC	3100	3062,83	
	1	Fe2+	ND mg/L	ND mg/L	
		3102	61.1	91.146	
		Dis SiO2	79.6	79.658	V

Note:	 	 	
	 	 	—

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 24, 2022

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2B & 4

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111708-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU084**	580-111708-1**	Water	03/21/22
HU083	580-111708-2	Water	03/21/22
HU075**	580-111708-3**	Water	03/21/22
HU073	580-111708-4	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r2) was greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples HU083 and HU073 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU075** and HU074** were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

SDG _abor METH The s	DC #: 54234A7 VALIDATION COMPLETENESS WORKSHEET SDG #: 580-111708-1 Stage 2B/4 aboratory: Eurofins, Tacoma, WA METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached alidation findings worksheets.						
	Validation Area				Commer	nts	
I.	Sample receipt/Technical holding times	AIA					
11.	GC/MS Instrument performance check	Δ					
111.	Initial calibration/ICV	40	12	16	V = 20		
IV.	Continuing calibration & which	۵		د	W = 20	20	
V.	Laboratory Blanks	6					
VI.	Field blanks	ND.	TB=	2.4			
VII.	Surrogate spikes	A					
VIII.	Matrix spike/Matrix spike duplicates	7	es				
IX.	Laboratory control samples	Δ.	K210				
X.	. Field duplicates W 0 = 3 5						
XI.	Internal standards						
XII.	II. Target analyte quantitation Not reviewed for Stage 2B validation.						
XIII.	Target analyte identification	A	Not reviewed	for Stage 2B val	idation.		
XIV.	System performance	4	Not reviewed	for Stage 2B val	idation.		
XV.	Overall assessment of data	10					
Note:	N = Not provided/applicable R = Rin	o compounds sate ield blank	s detected	D = Duplic TB = Trip l EB = Equi		SB=S OTHE	ource blank :R:
	Client ID			Lab ID		Matrix	Date
1	HU084**			580-111708	3-1**	Water	03/21/22
2	HU083 [™] TP			580-111708	3-2 *	Water	03/21/22
3	HU075**			580-111708	3-3**	Water	03/21/22
4	ни073 ТВ			580-111708	3-4	Water	03/21/22
5	ниот4**			580-111708	3-5**	Water	03/21/22
6							
7							
8							
9							
Votes:					T	T	
$\vdash +$							
							
$\vdash \vdash$							· · · · · · · · · · · · · · · · · · ·

VALIDATION FINDINGS CHECKLIST

Page: 1_of_2 Reviewer: FT

Method: Volatiles (EPA SW 846 Method 8260 / Luf1

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?	/			
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 15% and relative response factors (RRF) within method criteria?		***		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?				
IIIb. Initial Calibration Verification			,	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20% ?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) ≤ 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) ≤ 50% in the ending CCV?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?				
Were target analytes detected in the field blanks?		_		
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	_			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			_	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	

LDC#: 54234 A7

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments	
	162	NO	IVA	Findings/Comments	
IX. Laboratory control samples		-			
Was an LCS analyzed for this SDG? Was an LCS analyzed per analytical batch?					
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within					
the QC limits?					
X. Field duplicates					
Were field duplicate pairs identified in this SDG?		,			
Were target analytes detected in the field duplicates?				<u> </u>	
XI. Internal standards				·	
Were internal standard area counts within -50% to +100% of the associated calibration standard?					
Were retention times within ± 30 seconds of the associated calibration standard?		Ĺ			
XII. Target analyte quantitation		T		·	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?					
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?					
XIII. Target analyte identification					
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/				
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?					
Were chromatogram peaks verified and accounted for?					
Were manual integrations reviewed and found acceptable?					
Did the laboratory provide before and after integration printouts?				<u> </u>	
XIV. System performance					
System performance was found to be acceptable.	/				
XV. Overall assessment of data					
Overall assessment of data was found to be acceptable.					

LDC#: 54234A7

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	of	1
Reviewe	r:	FT	

Method: GRO C6-C12

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
3/28/2022	TACO36	GRO (C6-C12)	1	20.508	5
ii i			2	26.341	10
			3	52.520	25
			4	75.085	50
			5	115.340	100
			6	573.400	500
			7	1134.000	1000
			8	1657.500	1500
II .	į		9	2768.500	2500

Regression Output

Re	no	rte	d
ΛE	NU	ııc	u

Constant	18.060742	161.890000
Std Err of Y Est		
R Squared	0.999916	0.999000
Degrees of Freedom		
X Coefficient(s)	1.100290	1.103200
Std Err of Coef.		
Correlation Coefficient	0.999958	
Coefficient of Determination (r^2)	0.999916	0.999000

LDC#: 51234 A7

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	_1of	1_
Reviewer:_	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\mbox{ LM }\mbox{ }\mbox{\cite{METHOD}}$

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where:

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of target analyte C_x = Concentration of target analyte

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	cev	4/3/22	GRO C6-C12	1.00	0.894	0. 8943	10.6	10.6
2	ocv	4/4/22	V	1.00	0.893	0.893	10.7	10.7
						رخ		
3	cer	4/4/22	1	[.00	0.793	0.793	20.7 19.2	19.2
		102			0.800	0.8017		
4								

LDC #:	54	23	4	A	7
LDC#:	<i>7</i> {	_	•		,

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	of_	1
Reviewer:_	F٦	Γ.	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 LMF T

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID:

SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8			,	/	
Bromofluorobenzene	N	8.79	88	8⊀	J

Comments:				

LDC#: 54234A7

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:_	1	of	1	
Reviewer:_		FT		

METHOD: GC/MS VOA (EPA SW 846 Method 8260 LMF T

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration

LCSDC = Laboratory control sample duplicate concentration

LCS ID: MB 580- 38617 D

		Spike Spiked Sample <u>I CS</u> Added Concentration				cs	LCSD		I CS/I CSD	
Compound		2[V)	(uo	1 1	Percent	Recovery	Percent	Recovery	R	PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
GRO C6-C12 1,1-Dichloroethe ne	1000	1000	899	908	90	90	91	9)	1	1
Trichloroethene										
Benzepe										
Toluene										
Chlorobenzene										

Comments:	 	 	

LDC#: 54234A7

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1_	of_	1
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 レックラブ

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

Conce	entratio	on = $\frac{(A_x)(I_s)(DF)}{(A_{is})(RRF)(V_o)(\%S)}$	Example:
A_x	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. 105 530 - 3,86170 GRO C6-012
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	Conc. = (19226300/166607)(10) - 161.89)
l _s	=	Amount of internal standard added in nanograms (ng)	1.1032
RRF	=	Relative response factor of the calibration standard.	
V_o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 899.29 ug/L
Df	=	Dilution factor.	, , ,
%S	=	Percent solids, applicable to soils and solid matrices only.	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	LOS	GRO (6-012	४वव	899.29	-
	V				
				A17-17-18-11-11-11-11-11-11-11-11-11-11-11-11-	
				The second secon	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA/

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 580-111708-1/22C260

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU075	580-111708-3/22C260-01	Water	03/21/22
HU074**	580-111708-5/22C260-02**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples HU075 and HU074** were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 580-111708-1/22C260

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data

Qualification Summary - SDG 580-111708-1/22C260

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification
Summary - SDG 580-111708-1/22C260

No Sample Data Qualified in this SDG

Sub-L	aboratory: <u>EMAX Laboratories, Inc., T</u> I OD: GC TPH as Extractables (EPA SV	orrance, CA V-846 Metho	od 8015C)		2nd	Reviewer:
	amples listed below were reviewed for etion findings worksheets.	each of the f	ollowing valida	ation areas. Validat	ion findings are	e noted in attach
	Validation Area			Com	ments	
l.	Sample receipt/Technical holding times	AA	,			
11.	Initial calibration/ICV	AΔ	0/0	MD/ICV =	20	
III.	Continuing calibration	Α		CUY 4	w	
IV.	Laboratory Blanks	4				
V.	Field blanks	N				
VI.	Surrogate spikes	Δ				
VII.	Matrix spike/Matrix spike duplicates	N	LS			
VIII.	Laboratory control samples	A	KS IP			
IX.	Field duplicates	NO	D=	= 1,2		
X.	Target analyte quantitation	A	Not reviewed fo	r Stage 2B validation.		
XI.	Target analyte identification	\ <u>\</u>		r Stage 2B validation.		
XII	Overall assessment of data					
	ates sample underwent Stage 4 validation			EB = Equipment bla	Matrix	Date
		260-0	,]	580-111708-3	Water	03/21/22
<u> </u>	HU074** 22.0	2260-0	2	580-111708-5**	Water	03/21/22
3						
4						
5			***			
3						
7			****			
3						
9						
10						
11						
12						
13		····				
otes:						
\bot		-				
1	1 1		1 1			

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Page:___of

Reviewer:

LDC #: 54234A8a

SDG #: 580-111708-1/22C260

Laboratory: Eurofins, Tacoma, WA

Method: VGC HPLC	T			
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?	/			
Ila. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?				
Were the RT windows properly established?		· .		
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20%?				
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				·
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?		•	·	
V. Field Blanks				
Were field blanks identified in this SDG?				. '
Were target analytes detected in the field blanks?				
VI. Surrogate spikes	, ——,			
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC#: 54234 AXA

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area		No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
X. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	_			
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?				
Were manual integrations reviewed and found acceptable?	/			
Did the laboratory provide before and after integration printouts?	_			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC#: 5/234 A8a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1_	of_	1
Reviewer:	F	Т	

METHOD: GC	HPLC	

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

		Calibration		Reported CF	Recalculated CF	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Date	Compound	CF (SDU std)	CF (SOU std)	CF (initial)	CF (intial)	%RSD	%RSD
1	ICA L	8/12/2/	Diese/ 40-024	27380	27380	263/8.7	263/8.7	9.7	9.7
		, ,						1 /	
l									
2									
3									
3									
				<u> </u>					
<u> </u>				<u> </u>					
4									
				 			<u> </u>		
L	<u>L</u>		<u> </u>	JL		<u> </u>	L	<u> </u>	L

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the	<u>1e</u>
recalculated results.	

LDC #:	542	3	4A8	/
--------	-----	---	-----	---

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	_1_of_1_	
Reviewer:	FT	

METHOD:	GC	HPLC	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	ccV	3/75/22	Diesel cp-czy	5000	222.12	225.12	11	11
		,						
2								
3								
,	·							
<u></u>								
4								

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 5/234A8a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	_of_	1
Reviewer:		FT	

METHOD: _GC _ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID: #2

SS = Surrogate Spiked

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Bromobenzene		100	80.033	80	80	b
Bromobenzene Hexacosane		25	18.457	74	74	V

Sample ID:_

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
					·	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	вв	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	К	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	CC	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	х	Triphenyl Phosphate		

LDC #:	54234 A8a
--------	-----------

VALIDATION FINDINGS WORKSHEET

Page	_1_of	1

Reviewer:___

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

METHOD:	GC	HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA)

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added

LCSD = Laboratory Control Sample duplicate

D SCO34WL LCS/LCSD samples:

	Sp Add	ike	Spike S	Sample	LC	es	LC	SD	LCS/L	CSD
Compound	(mg	1/2)	(M	Concentration (Mg/L) Perce		Recovery	Percent I	Recovery	RP	D
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
TPH Diesel	5.0	5.0	5.46	5.43	109	109	109	109	/	1
							·			

Comments.	 	 	·····	

LDC #:	54	23	413	89

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	1	_of_	1_
Reviewer:	F	T	

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Concentration= (A)(Fv)(Df)

(RF)(Vs or Ws)(%S/100)

Example:

Sample ID. DS CO34WL: TPH Diesel Range

A= Area or height of the target analyte to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the target analyte

In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample

%S= Percent Solid

Concentration = 14365700 (10) = 26318.69795 (1000) 5.46 mg/L

#	Sample ID	Target analyte	Reported Concentrations (mg)	Recalculated Results Concentrations (ma /)	Qualifications
	les	TPH Diesel Range	5.46	5.46	
		/		- /	

Comments:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: June 29, 2022

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111708-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU084**	580-111708-1**	Water	03/21/22
HU075	580-111708-3	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-241569	04/05/22	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF CCDD Total HxCDD Total HxCDD Total HyCDF Total PCDF Total PCDF Total PCDDF Total PCDDF Total PCDDF Total PCDDF Total PCDDF Total PCDDF	0.00000405 ug/L 0.000000699 ug/L 0.000000911 ug/L 0.000000398 ug/L 0.00000177 ug/L 0.00000177 ug/L 0.00000153 ug/L 0.00000153 ug/L 0.00000153 ug/L 0.00000150 ug/L 0.00000150 ug/L 0.00000361 ug/L 0.00000361 ug/L 0.00000869 ug/L 0.00000326 ug/L 0.00000326 ug/L	All samples in SDG 580-111708-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU084**	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HxCDF Total HpCDF Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.00000067 ug/L 0.0000010 ug/L 0.00000088 ug/L 0.00000057 ug/L 0.00000064 ug/L 0.00000091 ug/L 0.0000029 ug/L 0.0000015 ug/L 0.0000015 ug/L 0.0000012 ug/L 0.0000013 ug/L 0.000013 ug/L 0.0000082 ug/L 0.0000045 ug/L	0.00000067U ug/L 0.0000010U ug/L 0.00000088U ug/L 0.00000057U ug/L 0.00000077U ug/L 0.00000091U ug/L 0.0000029U ug/L 0.0000029U ug/L 0.0000015J ug/L 0.0000012J ug/L 0.0000013J ug/L 0.0000013J ug/L 0.0000082J ug/L 0.0000045J ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU075	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HxCDF Total PCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.00000038 ug/L 0.00000030 ug/L 0.00000070 ug/L 0.00000025 ug/L 0.00000025 ug/L 0.00000021 ug/L 0.00000021 ug/L 0.0000063 ug/L 0.0000011 ug/L 0.0000015 ug/L 0.0000015 ug/L 0.0000015 ug/L 0.0000015 ug/L 0.0000042 ug/L 0.0000042 ug/L 0.0000043 ug/L 0.0000043 ug/L 0.0000044 ug/L 0.0000044 ug/L	0.0000038U ug/L 0.0000030U ug/L 0.0000070U ug/L 0.0000037U ug/L 0.0000025U ug/L 0.0000022U ug/L 0.0000042U ug/L 0.0000063U ug/L 0.0000011J ug/L 0.0000015J ug/L 0.0000075J ug/L 0.0000043J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L
HU074**	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF OCDD Total HxCDD Total HxCDD Total HpCDF Total PCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.00000055 ug/L 0.00000053 ug/L 0.00000054 ug/L 0.00000039 ug/L 0.00000067 ug/L 0.00000025 ug/L 0.00000015 ug/L 0.0000015 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000018 ug/L 0.0000018 ug/L 0.00000018 ug/L 0.0000018 ug/L 0.0000018 ug/L 0.0000018 ug/L 0.0000018 ug/L	0.0000055U ug/L 0.0000053U ug/L 0.0000054U ug/L 0.0000039U ug/L 0.0000067U ug/L 0.00000048U ug/L 0.0000030U ug/L 0.000015J ug/L 0.000013J ug/L 0.000013J ug/L 0.0000044J ug/L 0.0000094J ug/L 0.0000055J ug/L 0.0000055J ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples HU075 and HU074** were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr		
Analyte	HU075	HU074**	RPD (Limits)
1,2,3,4,6,7,8-HpCDD	0.000010	0.000010	0 (≤50)
1,2,3,4,6,7,8-HpCDF	0.0000038	0.0000055	37 (≤50)
1,2,3,4,7,8-HxCDD	0.00000030	0.0000053	55 (≤50)
1,2,3,4,7,8-HxCDF	0.0000070	0.0000054	26 (≤50)
1,2,3,4,7,8,9-HpCDF	0.0000037	0.0000039	5 (≤50)
1,2,3,6,7,8-HxCDD	0.00000025	0.0000067	91 (≤50)
1,2,3,7,8-PeCDF	0.00000022	0.0000048	74 (≤50)
1,2,3,7,8,9-HxCDD	0.0000055	0.0000028	65 (≤50)
1,2,3,7,8,9-HxCDF	0.00000040	0.0000048	18 (≤50)
2,3,4,6,7,8-HxCDF	0.00000042	0.0000025	51 (≤50)
2,3,4,7,8-PeCDF	0.00000021	0.000096U	191 (≤50)
OCDD	0.000063	0.0000030	71 (≤50)
OCDF	0.000015	0.000011	31 (≤50)
Total HxCDD	0.000011	0.000015	31 (≤50)
Total HxCDF	0.000015	0.0000013	14 (≤50)
Total HpCDD	0.000010	0.0000010	0 (≤50)
Total HpCDF	0.00000075	0.0000094	22 (≤50)
Total PeCDF	0.00000043	0.0000048	11 (≤50)
Total PCDD/PCDF	0.000013	0.000093	33 (≤50)
Total PCDD	0.000084	0.0000055	42 (≤50)
Total PCDF	0.000042	0.0000038	10 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111708-1	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

For sample HU084**, 2,3,7,8-TCDF was not confirmed in the 2nd column since the 1st column result was less than the reporting limit.

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-111708-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU084** HU075 HU074**	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-111708-1

	T	T		
Sample	Analyte	Modified Final Concentration	A or P	Code
HU084**	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDF Total PCDF Total PCDF Total PCDDF Total PCDDF Total PCDDF	0.00000067U ug/L 0.0000010U ug/L 0.00000088U ug/L 0.00000057U ug/L 0.00000077U ug/L 0.00000091U ug/L 0.0000029U ug/L 0.0000029U ug/L 0.000015J ug/L 0.0000012J ug/L 0.0000013J ug/L 0.000013J ug/L 0.0000082J ug/L 0.0000082J ug/L	А	b
HU075	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDF Total PCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.0000038U ug/L 0.0000030U ug/L 0.0000070U ug/L 0.0000037U ug/L 0.0000025U ug/L 0.0000022U ug/L 0.0000021U ug/L 0.0000031U ug/L 0.0000011J ug/L 0.0000015J ug/L 0.0000015J ug/L 0.0000043J ug/L 0.0000043J ug/L 0.0000084J ug/L 0.0000042J ug/L	А	b

Sample	Analyte	Modified Final Concentration	A or P	Code
HU074**	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF OCDD Total HxCDD Total HxCDD Total HyCDF Total PeCDF Total PCDDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000055U ug/L 0.0000053U ug/L 0.0000054U ug/L 0.00000039U ug/L 0.00000067U ug/L 0.00000025U ug/L 0.0000030U ug/L 0.0000015J ug/L 0.0000013J ug/L 0.0000094J ug/L 0.0000094J ug/L 0.0000093J ug/L 0.0000055J ug/L 0.0000055J ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-111708-1

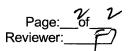
No Sample Data Qualified in this SDG

SDG	#: 54234A21 VALIDATIO #: 580-111708-1 ratory: <u>Eurofins, Tacoma, WA</u>		PLETENESS age 2B/4	S WORKSHEET	P	Date: 6 23 Page:lofl ewer:f1
METI	HOD: HRGC/HRMS Polychlorinated Dioxi				2nd Revi (A)	ewer:
	samples listed below were reviewed for eation findings worksheets.	ch of the ic	ollowing vallua	tion areas. validation	Tindings are note	M in allached
	Validation Area			Comme	nts	
1.	Sample receipt/Technical holding times	AIA				
11.	HRGC/HRMS Instrument performance check		<u> </u>			
111.	Initial calibration/ICV	<u>A</u> / <u>A</u>	% p>D	= 20/20	1eV = 20]	3 D
IV.	Continuing calibration	A	ļ	' CW 4	20/30	
V.	Laboratory Blanks	SW			1	
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	Δ	4010			
IX.	Field duplicates	SW	D = 2	ろ		
X.	Labeled Compounds	Δ				
XI.	Target analyte quantitation	W	Not reviewed for	Stage 2B validation.		
XII.	Target analyte identification		Not reviewed for	Stage 2B validation.		
XIII.	System performance		Not reviewed for	Stage 2B validation.		
XIV.	Overall assessment of data					
Note: ** Indic	N = Not provided/applicable R = Rin	lo compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source bl OTHER:	ank
	Client ID			Lab ID	Matrix	Date
1	HU084**			580-111708-1**	Water	03/21/22
2	HU075			580-111708-3	Water	03/21/22
3	HU074**			580-111708-5**	Water	03/21/22
4						
5						
6						
7						
8						
<u> </u>						

MB 410-241269

10 Notes: LDC#: 54234 A2

VALIDATION FINDINGS CHECKLIST


Page:_) of	v
Reviewer:		

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Validation Area	Yes	No	NA	Findings/Comments				
I. Technical holding times								
All technical holding times were met.	\							
Cooler temperature criteria was met.								
II. GC/MS Instrument performance check								
Was PFK exact mass 380.9760 verified?								
Were the retention time windows established for all homologues?								
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing								
Is the static resolving power at least 10,000 (10% valley definition)?	/							
Was the mass resolution adequately check with PFK?	\							
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?	/							
Illa. Initial calibration			_					
Was the initial calibration performed at 5 concentration levels?	\							
Were all percent relative standard deviations (%RSD) ≤ 20% for labaled/ unlabeled	/							
Did all calibration standards meet the Ion Abundance Ratio criteria?	/							
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery	/							
IIIb. Initial Calibration Verification								
Was an initial calibration verification standard analyzed after each initial calibration	_							
Were all percent differences (%D) ≤ 20% for unlabeled and 30% for labeled		٠,						
IV. Continuing calibration								
Was a contiuning calibration performed at the beginning and end of each 12 hour	/							
Were all percent differences (%D) ≤ 20% for unlabeled and 30% for labeled	_							
Did all routine calibration standards meet the Ion Abundance Ratio criteria?	/							
Was the signal to noise ratio for each target compound and for each recovery and internal standard \geq 10?	-							
V. Laboratory Blanks								
Was a method blank associated with every sample in this SDG?		1						
Was a method blank performed for each matrix and whenever a sample extraction								
Was there contamination in the method blanks? If yes, please see the Blanks								
VI. Field blanks								
Were field blanks were identified in this SDG?								
Were target compounds detected in the field blanks?			/					

LDC#: 54234421

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments			
VII. Matrix spike/Matrix spike duplicates							
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?							
Were the MS/MSD percent recoveries (%R) and the relative percent differences							
VIII. Laboratory control samples							
Was an LCS analyzed per extraction batch?	/						
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within							
IX. Field duplicates							
Field duplicate pairs were identified in this SDG.							
Target compounds were detected in the field duplicates.							
X. Internal standards							
Were internal standard recoveries within the 40-135% criteria?							
Was the minimum S/N ratio of all internal standard peaks ≥ 10?							
XI. Compound quantitation							
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/						
Were the correct internal standard (IS), quantitation ion and relative response factor	/						
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and							
XII. Target compound identification							
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?							
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?							
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?							
Did compound spectra contain all characteristic ions listed in the table attached?							
Was the Ion Abundance Ratio for the two quantitation ions within criteria?							
Was the signal to noise ratio for each target compound and labeled standard \geq							
Does the maximum intensity of each specified characteristic ion coincide within \pm 2	/						
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in							
Was an acceptable lock mass recorded and monitored?							
XIII. System performance							
System performance was found to be acceptable.							
XIV. Overall assessment of data							
Overall assessment of data was found to be acceptable.							

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			-	_

LDC #: 54234A21

VALIDATION FINDINGS WORKSHEET Blanks

Page:	_1	_of_	1_
Reviewer:		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)

Was the method blank contaminated?

Blank extraction date: 4/5/22 Blank analysis date: 4/6/22 Associated samples:____

	Conc.	units:	ug/L
--	-------	--------	------

Compound	Blank ID	Sample Identification							
	MB 410 -241269	5x		1	2	3			
О	0.00000405	0.000002025		0.00000067U	0.00000038U	0.0000055U		_	
С	0.000000699	0.000003495		0.0000010U	0.00000030U	0.00000053U			
κ	0.00000911	0.000004555		0.00000088U	0.00000070U	0.00000054U			
Р	0.00000398	0.000001990		0.00000057U	0.00000037U	0.00000039U			
D	0.00000805	0.000004025		0.00000077U	0.00000025U	0.00000067U			
L	0.0000117	0.000005850		0.00000064U					
.1	0.00000483	0.000002415			0.00000022U	0.00000048U			
М	0.0000153	0.000007650			0.00000042U	0.00000025U			
J	0.00000537	0.000002685		0.00000091U	0.00000021U				
G	0.0000176	0.000008800		0.0000029U	0.0000063U	0.0000030U			
т	0.0000150	0.000007500		0.0000026J	0.0000011J	0.0000015J			
x	0.0000361	0.000018050		0.0000015J	0.0000015J	0.0000013J			
Υ	0.00000803	0.000004015		0.0000012J	0.00000075J	0.00000094J			
w	0.0000102	0.000005100		0.00000091J	0.00000043J	0.00000048J			
Total PCDD/PCDF	0.0000869	0.000043450		0.000013J	0.000013J	0.0000093J			
Total PCDD	0.0000326	0.000016300		0.0000082J	0.0000084J	0.0000055J			
Total PCDF	0.0000543	0.000027150		0.0000045J	0.0000042J	0.0000038J	-		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC#:_54234A21

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:	_1_	_of_	_1_
Reviewer:	F	T	

METHOD: 8290A

	202Concentration (ug/L)		(≤50)
Compound	2	3	RPD
F	0.0000010	0.0000010	0
0	0.0000038	0.0000055	37
С	0.00000030	0.0000053	55
κ	0.0000070	0.0000054	26
Р	0.0000037	0.0000039	5
D	0.00000025	0.0000067	91
I	0.00000022	0.0000048	74
E	0.0000055	0.0000028	65
N	0.0000040	0.0000048	18
М	0.0000042	0.0000025	51
J	0.0000021	0.0000096U	191
G	0.0000063	0.0000030	71
Q	0.0000015	0.0000011	31
Т	0.000011	0.0000015	31
х	0.0000015	0.000013	14
U	0.0000010	0.0000010	0
Υ	0.0000075	0.00000094	22
w	0.0000043	0.0000048	11
Total PCDD/PCDF	0.000013	0.000093	33
Total PCDD	0.000084	0.0000055	42
Total PCDF	0.0000042	0.000038	10

LDC #:54234A21

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	1	_of_	1
Reviewer: _		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?

Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		all	all analytes qualified I, EMPC (estimated maximum possible concentration)		J det/A (k)
			N- no 2nd column		text (V)
			H-no and column confirmation. Result - R		
			\		

Comments: See sample calculation verification worksheet for recalculations

LDC #: 54234A21

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1
Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Com	pound (IS)	(10/50/100 std)	(10/50/100 std)	(Initial)	(Initial)		
1	ICAL	10/19/2022	2,3,7,8-TCDF	(13C-2,3,7,8-TCDD)	0.9828	0.9828	1.0337	1.0337	10.7	10.7
l	DF17611B		2,3,7,8-TCDD	(13C-2,3,7,8-TCDF)	1.0607	1.0607	1.0851	1.0851	7.0	7.0
1			1,2,3,6,7,8-HxCDD	(13C-1,2,3,6,7,8-HxCDD)	1.0101	1.0101	0.9892	0.9892	2.4	2.4
ł.			1,2,3,4,6,7,8-HpCDD	(13C-1,2,3,4,6,7,8,-HpCDD)	1.0307	1.0307	1.0266	1.0266	3.2	3.2
			OCDF	(13C-OCDD)	0.9228	0.9228	0.9332	0.9332	4.1	4.1

LDC #: 54234A21

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1 Reviewer: ___FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(10/50/100 std)	(10/50/100 std)	(Initial)	(Initial)		
1	ICAL	1/6/2022	2,3,7,8-TCDF	1.0576	1.0576	1.1309	1.1309	15.1	15.1
ł	DF18471		2,3,7,8-TCDD	1.0589	1.0589	1.1359	1.1359	16.7	16.7
			1,2,3,6,7,8-HxCDD	1.0166	1.0166	1.0526	1.0526	5.1	5.1
	1		1,2,3,4,6,7,8-HpCDD	1.0509	1.0509	1.0671	1.0671	8.3	8.3
			OCDF	0.9190	0.9190	0.9320	0.9320	4.0	4.0

LDC #: 5/23/A2/

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

Page:_	_/ _{of_}	_/
Reviewer:_		-7

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

A. = Area of compound. C = Concentration of compound. A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

Reported Recalculated Reported Recalculated Calibration Average RRF **RRF RRF** # Standard ID Date Compound (Reference Internal Standard) (initial) (CC) (CC) %D %D CCN 4/6/22 1.0337 0.9939 0.9939 2,3,7,8-TCDF (13C-2,3,7,8-TCDF) 1.085 9.5 0.9820 0.9820 2,3,7,8-TCDD (13C-2,3,7,8-TCDD) 0807 0 9892 3.1 1.023 .023 1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD) .004 1.0266 2. 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD) 1.004 0,9332 0.9045 0.9049 3 OCDF (13C-OCDD) 35 CON 0.997 0.997 2 2,3,7,8-TCDF (13C-2,3,7,8-TCDF) 6.9 1.01 1.01 2,3,7,8-TCDD (13C-2,3,7,8-TCDD) 0.4 0.9933 0.9933 0.4 1,2,3,6,7,8-HxCDD (¹³C-1,2,3,6,7,8-HxCDD) 1.054 1.054 2. 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD) 0.9397 0,-0.9397 0.7 OCDF (13C-OCDD) 309 0.9 .12 1.12 (Les) 2,3,7,8-TCDF (13C-2,3,7,8-TCDF) 359 0.8 2,3,7,8-TCDD (13C-2,3,7,8-TCDD) 1. 0526 1.048 0.4 1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD) .04X 3,3 1.0671 1.032 .032 1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD) 0.9320 0,9094 , _ OCDF (13C-OCDD)

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 54234A2)

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 10-241269

		Spike Spiked Sample		· · · · · · · · · · · · · · · · · · ·		cs		SD	LCS	I CSD
Compound	II .	ded 		ntration	Percent	Recovery	Percent Recovery		RPD	
	LCS	LCSD	LCS	I CSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
2,3,7,8-TCDD		0.000200			94	94	101	101	7	7
1,2,3,7,8-PeCDD	9 00100	0,00100	0.00108	0.00115	10.7	צטו	112	115	6	6
1,2,3,4,7,8-HxCDD	0.00100	0.000995	0.00103	0.000995	103	103	ρO	טטן	3	3
1,2,3,4,7,8,9-HpCDF	0.00100	0.00100	0.0009X	0.000930	99	99	93	93	6	6
OCDF	0.00200	0.02.00	0.00207	0.00198	104	104	99	99	4	4
				,			,	,	1	
,										
	, , , , , , , , , , , , , , , , , , ,					4				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC# 54234AZ/

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page: 1_of_1_ Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Y N N/A Y N N/A

%S

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Percent solids, applicable to soil and solid matrices

Example:

Sample I.D. #\ , OCOP

Conc. = (235) (200)(20) (1/1000) (1459143) (0.9332) (1043.5)

0.0000006615 ug/L

					
#	Sample ID	Compound	Reported Concentration	Calculated Concentration (vg 17	Qualification
	#/	000 F	0.00000066	0.00000066	122
				···	
				·	
	<u></u>	<u> </u>		L	

Laboratory Data Consultants, Inc. **Data Validation Report**

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Project/Site Name:

LDC Report Date: August 24, 2022

Parameters: Methane

Validation Level: Stage 2B & 4

Laboratory: Energy Laboratories, Billings, MT

Sample Delivery Group (SDG): 580-111708-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU084**	580-111708-1**	Water	03/21/22
HU083	580-111708-2	Water	03/21/22
HU073	580-111708-4	Water	03/21/22
HU074**	580-111708-5**	Water	03/21/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility. Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

Retention time windows were established as required by the method for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

Retention times of all analytes in the calibration standards were within the established retention time windows for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples HU083 and HU073 were identified as trip blanks. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-111708-1

No Sample Data Qualified in this SDG

SDG a abor	#:54234A51 VALIDATION COMPLETENESS WORKSHEET B #:54234A51 Stage 4							
Γhe s	IOD: GC Methane (Method RSK-175) amples listed below were reviewed for eaction findings worksheets.	ch of the fo	ollowing valida	tion areas. Validation	findings are	noted in attached		
	Validation Area			Comme	nts			
<u>l.</u>	Sample receipt/Technical holding times	AID						
II.	Initial calibration/ICV	ゲバ	0/0 PS	D/10 = 20 20 20 20 20 20 20 2				
111.	Continuing calibration Leveling	Δ	,	CCV = 20/2	<u>o</u>			
IV.	Laboratory Blanks	<u>\</u>						
V.	Field blanks	NO	78=	7,3				
VI.	Surrogate spikes	Δ		·				
VII.	Matrix spike/Matrix spike duplicates	N						
VIII.	Laboratory control samples	<u>A</u>	res 19		···			
IX.	Field duplicates	N						
X.	Target analyte quantitation	4						
XI.	Target analyte identification	<u>\</u>	MI					
ΧII	Overall assessment of data	<u> </u>			<u></u>			
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sou OTHER	irce blank :		
	Client ID			Lab ID	Matrix	Date		
1	HU084 ←¥			580-111708-1	Water	03/21/22		
2	HU083 TB			580-111708-2	Water	03/21/22		
3	HU073 TP7			580-111708-4	Water	03/21/22		
4	HU074 ← ₩			580-111708-5	Water	03/21/22		
5								
6								
7								
8								
9					<u> </u>			
10					<u> </u>			
11				_				
12 Notes:				L	<u> </u>			
	AD- 110-229111		TT			1		
\Box	MB 410-239148	<u> </u>			 			
$\vdash +$	H17 410-239643							
oxdot								

LDC #: 54234 AS) VALIDATION FINDINGS	LDC #: 54234 AS) VALIDATION FINDINGS CHECKLIST Method: VGC HPLC						
Method: VGC _HPLC		7	_				
Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
Were all technical holding times met?							
Was cooler temperature criteria met?							
Ila. Initial calibration							
Did the laboratory perform a 5 point calibration prior to sample analysis?							
Were all percent relative standard deviations (%RSD) ≤ 20%?							
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?			/				
Were the RT windows properly established?							
Ilb. Initial calibration verification							
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?							
Were all percent differences (%D) ≤ 20%?							
III. Continuing calibration							
Was a continuing calibration analyzed daily?							
Were all percent differences (%D) < 20%?							
Were all the retention times within the acceptance windows?							
IV. Laboratory Blanks				·			
Was a laboratory blank associated with every sample in this SDG?							
Was a laboratory blank analyzed for each matrix and concentration?		<u> </u>					
Was there contamination in the laboratory blanks?			L				
V. Field Blanks							
Were field blanks identified in this SDG?		[_]					
Were target analytes detected in the field blanks?							
VI. Surrogate spikes							
Were all surrogate percent recovery (%R) within the QC limits?							
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?							
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			•				
VII. Matrix spike/Matrix spike duplicates			,				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?							
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?							
VIII. Laboratory control samples							
Was an LCS analyzed per analytical or extraction batch?							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/						

LDC#: 94234 AS

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
X. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?				
Were manual integrations reviewed and found acceptable?	/			
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC#: 54234AS)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	<u>1of1</u>
eviewer:	FT

METHOD: GC	HPLC	
VIETHUD: GC	HPLC	

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date آع	Compound	CF 4 std)	CF 49 (59.4 std)	CF (initial)	CF (intial)	%RSD	%RSD
1	1CAL	5/18/22	Methane	1812347	1812347	1893854	1893853.78	8.6	8.6
		1 21							
2								·	
					·				
				·					
3							·		
4									

Comments:	: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0%	of the
recalculated	d results.	

LDC #: 91234A5)

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:	FT

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	ecv	3/31/22	Methane	59.4	51.6	5). (13.1	13./
		0036						
	MBI							
2	cev	3/31/22	V	V	53.3	53.7	10.3	10.3
	# I							
3	ccy	3/31/22	\\	J	53.2	53.2	10.5	10.5
	MBZ							
4	ac v	3/31/22	V	↓	55.7	55.7	6.3	6.3
		2306						

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 54234Ax)

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	_of_	1
Reviewer:		FT	

METHOD: _GC _ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Propene		20.2	16.9	84	४५	Ū
1						

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
А	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	ВВ	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	СС	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	X	Triphenyl Phosphate	<u> </u>	

I DC #·	94234A5)
LDC #:	

VALIDATION FINDINGS WORKSHEET

Page:	<u>1</u> of <u>1</u>
-------	----------------------

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

GC HPLC **METHOD:**

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA)

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added

LCSD = Laboratory Control Sample duplicate

410-239643 LCS/LCSD samples:_

	Spi Add	ike ded	Spike S Concer	Sample ntration	LO		LC		LCS/L	
Compound	(ug	V	(ug	(V)	Percent I	Recovery	Percent F	Recovery	RP	D
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Methane	59.4	59.4	58.7	96.5	93	93	95	95	2	2
						リ				
				-						
								,		

Comments:	 		

LDC #: 54234A5	
----------------	--

VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

Page: _	_1_of_	1_
Reviewer:	_FT_	

METHOD:	√ GC	HPLC

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

(DE)/\/ \/\-\/0/-0 \/- 00\	Example:			
(RF)(Vs or Ws)(%S/100) Sample ID. LES 4107: 339643 Methane A= Area or height of the target analyte to be measured Fv= Final Volume of extract	•			
Df= Dilution Factor RF= Average response factor of the target analyte Concentration = 104808805				
In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample				
%S= Percent Solid = 55.342 Ng				

					7 1
#	Sample ID	Target analyte	Reported Concentrations (49	Recalculated Results Concentrations (NO)	Qualifications
	ic>	methane	55.3	55.342	
					
ļ					
					
-					

Comments:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU087	580-111780-2	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU091	580-111780-4	Water	03/22/22
HU086A	580-111780-5	Water	03/22/22
HU085A	580-111780-6	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated, High Bias): The analyte was analyzed for and positively identified by J+ the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory.
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high.
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/30/22	Chloromethane	22.7	All samples in SDG 580-111780-1	UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/04/22	Methyl isobutyl ketone	24.8	All samples in SDG 580-111780-1	UJ (all non-detects)	Α

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples HU087, HU091, and HU085A were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
HU087	Dibromofluoromethane	120 (80-119)	All analytes	J+ (all detects)	Р
HU092	1,2-Dichloroethane-d4	119 (81-119)	All analytes	J+ (all detects)	Р
HU085A	1,2-Dichloroethane-d4	121 (81-118)	All analytes	NA	-

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
HU092MS/MSD (HU092)	Methyl ethyl ketone	27 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
HU088 HU087 HU092 HU085A	All TICs	NJ (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, continuing calibration %D, surrogate %R, and TIC quantitation, data were qualified as estimated in six samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-111780-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU088 HU087 HU092 HU091 HU086A HU085A	Chloromethane	UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU088 HU087 HU092 HU091 HU086A HU085A	Methyl isobutyl ketone	UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU087 HU092	All analytes	J+ (all detects)	Р	Surrogates (%R) (s)
HU088 HU087 HU092 HU085A	All laboratory calibrated analytes reported as TICs	NJ (all detects)	A	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG ; .abor	VALIDATION COMPLETENESS WORKSHEET OG #: 580-111780-1 Stage 2B boratory: Eurofins, Tacoma, WA ETHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)						P	Date: 6/20/ Page:
he s	→ T\C samples listed below were reviewed for each ation findings worksheets.			/alidat	tion areas. Validatior	ı fin	ıdings are note	ed in attached
	Validation Area				Comme		s	
l.	Sample receipt/Technical holding times	A/A						
II.	GC/MS Instrument performance check	Δ						
111.	Initial calibration/ICV	A 19W	0/0	PSD	=15,12		101 =	w
IV.	Continuing calibration lending	SW	<u> </u>		' cu	<u> </u>	= 20/50	
V.	Laboratory Blanks	\land						
VI.	Field blanks	NO	118 =	- 2	. 4. 6			
VII.	Surrogate spikes	ليو					(
VIII.		ريس						
IX.	Laboratory control samples	A	icsl	0				
Χ.	Field duplicates	N						
XI.	Internal standards	Δ						
XII.	Target analyte quantitation / TC	(h						
XIII.	Target analyte identification	N		-				
XIV.		N						
XV.	Overall assessment of data	7						
lote:	A = Acceptable ND = No N = Not provided/applicable R = Rins	o compounds sate eld blank	; detected		D = Duplicate TB = Trip blank EB = Equipment blank		SB=Source bla OTHER:	ank
	Client ID				Lab ID	N	fatrix	Date
	HU088				580-111780-1	V	Vater	03/22/22
~ T	HU087 ✓				580-111780-2	v	Vater	03/22/22
↑	HU092				580-111780-3	v	Vater	03/22/22
- 1	HU091				580-111780-4	V	Vater	03/22/22
	HU086A				580-111780-5	V	Vater	03/22/22
- I	HU085A				580-111780-6	V	Vater	03/22/22
	HU092MS			·	580-111780-3MS	V	Vater	03/22/22
8_					580-111780-3MSD		Vater	03/22/22
ا و								
otes:						_		
<u>, N</u>	NB 580-386271						·	
ı	!!			l		-	1	

TARGET COMPOUND WORKSHEET

METHOD: VOA

		*·····································		
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB, tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Aliyl chloride	U1. Nonanai
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#: 54234Bla

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	of
Reviewer:_	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N N/A Y (N/ N/A Were all %D within the validation criteria of ≤20 %D?

#	Date	Standard ID (CV - \$\frac{12}{5}\) TA CO 4 \(\frac{1}{5}\)		Finding %D (Limit/<20.0%/30%)	Associated Samples	Qualifications	
	3 30 22	10V-野TACO48	A	22.7	Al)	Jtat/us/A	NN
	3 30 22	FT					
							·
			-				
 							
ļ —							
 							······································
-							
-							
					and the second s		

LDC#: 542348)~

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	of
Reviewer:_	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\mathcal O$)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

(Y/N)	N/A \	Nere percent difference	es (%D) and relative r	esponse factors (RR	F) within method criter	ia for all CCC's and SPCC's	s?
YN	N/A \	Were all %D and RRFs	within the validation of	criteria of ≤20 %D and	1 ≥0.05 RRF ?		(c)
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	4/4/22	col- TA co 48	*	24.8		AII	J+/41/A ND
	1490			<u>'</u>			
							
-							
1			<u> </u>		<u> </u>		
	· · · · · · · · · · · · · · · · · · ·						
-							
 							
ļ			<u> </u>	 		<u> </u>	
							
		* Meth	1 isobuty	Kelones			
				* Keto	e		

LDC#: 542348)a

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:_	/_of_	7
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ♥)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". A/N/ALY

Were all surrogate %R within QC limits?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Sample ID	Surrogate	%Recovery (Limits)			Qualifications	
	3	DCE	119	(81-119)	1+du /p	NOT Det	
				()	/		
		0.00	<u> </u>			1.0	
	ما	DCE	2	(81-118)	1+ du 1/2	ND	
	:						
	7	OFM	120	(80-119)	J+du /P	ND + Det	
				()			
				()			
				()			
				()			
				()			
				()			
				()			
				()			

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

.LDC#: 54234B)~

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	1	_of_	1_
Reviewer:	F	т	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 17)

Please see qualifications below for all	questions answered "N". Not applica	ble questions are identified as "N/A".

YN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

√ N N/A

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	7+8	27	()	()	27 (20)	3	Jan/A ND
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	, , , , , , , , , , , , , , , , , , ,	
			()	()	()		

LDC #: 512218/a

VALIDATION FINDINGS WORKSHEET Target Analyte and TIC

Page:	
Reviewer:	A

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
		1-3,6	All tentatively identified compounds (TIC)		NJdets/A (v)

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 14, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU092RE	580-111780-3RE	Water	03/22/22
HU086A	580-111780-5	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. q
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the ٧ problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
HU092RE	All analytes	15	7	X (all non-detects)	Α

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/31/22	2,4-Dinitrophenol Diethylphthalate 3,3'-Dichlorobenzidine	21.8 23.3 32.9	HU092	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	А

Date	Analyte	%D	Associated Samples	Flag	A or P
04/01/22	3,3'-Dichlorobenzidine	22.7	HU088 HU086A	UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-385463	03/29/22	Di-n-butylphthalate (8.87)	0.210 ug/L	HU088 HU092 HU086A

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HU092MS/MSD (HU092 HU092RE)	3,3'-Dichlorobenzidine	0 (27-129)	0 (27-129)	UJ (all non-detects)	А
HU092MS/MSD (HU092)	4-Chloroaniline	0 (33-117)	0 (33-117)	UJ (all non-detects)	Α

Although the MS/MSD %Rs were severely low (0%), due to the presence of emulsion in the sample and matrix interference, using professional judgment (i.e.), 3,3'-dichlorobenzidine and 4-chloroaniline results were qualified as estimated (UJ) instead of recommended for exclusion (X).

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
HU092MS/MSD (HU092)	Hexachlorobutadiene	22 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-385463 (HU088 HU092 HU086A)	3,3'-Dichlorobenzidine 4-Chloroaniline	11 (27-129) 27 (33-117)	- 25 (33-117)	UJ (all non-detects) UJ (all non-detects)	Р

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-385463 (HU088 HU092 HU086A)	3,3'-Dichlorobenzidine	98 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111780-1	All TICs	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were recommended for exclusion as follows:

Sample	Analyte	Reason	Flag	A or P
HU092RE	All analytes	Extracted outside holding time.	х	Α

Due to continuing calibration %D, MS/MSD %R, LCS/LCSD %R, and TIC quantitation, data were qualified as estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-111780-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU092	2,4-Dinitrophenol Diethylphthalate 3,3'-Dichlorobenzidine	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU088 HU086A	3,3'-Dichlorobenzidine	UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU092	2,4-Dimethylphenol 4-Chloroaniline	UJ (all non-detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R) (e)
HU092	3,3'-Dichlorobenzidine	UJ (all non-detects)	Р	Laboratory control samples (%R) (I)
HU088 HU086A	4-Chloroaniline	UJ (all non-detects)	Р	Laboratory control samples (%R) (I)
HU092RE	All analytes	Х	Α	Overall assessment of data (d)
HU088 HU092 HU086A	All TICs	NJ (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG#			LETEN tage 2B		WORKSHEET		Date: 6/20 Page:
+ The sa	OD: GC/MS Semivolatiles (EPA SW-846 イレ の			⁄alidati	on areas. Validation		
	Validation Area				Commer	nts	
1.	Sample receipt/Technical holding times	A LSW					
II.	GC/MS Instrument performance check	4	4				
Ш.	Initial calibration/ICV	A/A	1/v p	50	=15 12	101=	£ 20
IV.	Continuing calibration endury	5W			cu	1 = 20/5	Ū Ū
V.	Laboratory Blanks	SW					
VI.	Field blanks	N					
VII.	Surrogate spikes	Α					
VIII.	Matrix spike/Matrix spike duplicates	300				•	
IX.	Laboratory control samples	SW	الحما	0			
Х.	Field duplicates	N					
XI.	Internal standards	$\overline{\lambda}$					
XII.	Target analyte quantitation /10	SW	· · · · · · · · · · · · · · · · · · ·				
	Targot analyse quartitioner.	N					
XIII.	Target analyte identification						
XIV. XV.	System performance Overall assessment of data	SW SW			-		
lote:	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	detected		D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sour OTHER:	rce blank
c	lient ID				Lab ID	Matrix	Date
7 1 H	U088				580-111780-1	Water	03/22/22
	U092 ·				580-111780-3	Water	03/22/22
1	U086A				580-111780-5	Water	03/22/22
	U092MS				580-111780-3MS	Water	03/22/22
- 1	U092MSD				580-111780-3MSD	Water	03/22/22
	12 RE				-3RE	7	1,1/
7	11.5					V	
8							
9				$\neg \uparrow$			
otes:							
- 1 M	8 580-385463						
- M	3 530- 386529						
	+ 110 #6	BBB on	,ly				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WEITIOD: GC/MS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL, Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachiorostyrene
M. Isophorone	OO. 4-Nitroanifine	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothlophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzídine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachiorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 54234B2a

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_		
Reviewer:	FT	

Att-circled dates have exceeded the technical holding times.

Y.N. N/A. Were all cooler temperatures within validation criteria?

METHOD : GC/			within validation 8270				(h)
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifie
6	W		3/22/22	46 12	47 22	19	J-/X/A
				1	1.1		ND
			-				, NO
	 						
	-						
	ļ <u>.</u>						
				!			
	 						
	ļ						
		·					
				-			
	+						
	+					 	

TECHNICAL HOLDING TIME CRITERIA

Water:

Extracted within 7 days, analyzed within 40 days.

Soil:

Extracted within 14 days, analyzed within 40 days.

LDC#: 54234BZa

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:	$U_{\mathbf{f}}$
0 -	
Reviewer:	h l

METHOD: GC/MS SVOA(EPA Method 8270 E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y N/N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF? Finding %D Finding RRF Standard ID (Limit: <20.0%) Date Compound (Limit: >0.05) **Associated Samples** Qualifications 3 31 22 CON - TA 0040 ALW INSTE HHMB 980-385463 BBB 1 cu Just CW-TAWW 22.7 BBB

LDC#: 54234 PoZa

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_/ of	_
Reviewer:	FT	

	Y N N/A Was a m	below for all quese ethod blank analgethod blank analgethod ethod blank asso	stions answered yzed for each m yzed for each co ociated with ever	atrix? oncentration pro ry sample? se see qualifica 3 3 2 2	eparation level?	s "N/A".] ア ろ	(ND		
	Compound	Blank ID							
	The state of the s	MB 580-	085163						
10	XX	0.210 (8.81)							
								· · · · · · · · · · · · · · · · · · ·	
	Blank extraction date:	Blank ar	nalysis date:	Associa	ited Samples:_				
	Compound	Blank ID							
	And the second s								

LDC #: 54234 1320

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	_{f_/
Reviewer:	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 で)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y)N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

QN N/A Was a MS/MSD analyzed every 20 samples of each matrix?

		ms/msD analyz he MS/MSD perd					nt differ	ences (RP	D) w	ithin the QC limits?	(e)
#	MS/MSD ID	Compound		MS %R (Limits)	9	MSD %R (Limits)	R	PD (Limits)		Associated Samples	4 Qualifications
	446	BBB	0	(27-129)	0	(27-129)		()	2.6	1-1×/A F7 ND
		T	0	(33-117)	0	(33-117)		()	2	J ND
		lu		()		()	22	20		2	Jam/A MD
				()		()		()		• ·
				()		()		()		
				()		()		()		
				()		()	<u> </u>)		
				()		()		()	using pro	essional judgment
				()		()	<u> </u>	()	(emillions) in	the sample a
				()		()		(_)	matrix int	wtermu).
				()		()		()	BBB + T	were qualified
				()		()		()	J-/UJ/A	insferd)
				()		()		()	9 1-/x	A
			ļ				ļ)	/ /	
				()		()		()		
			<u> </u>	()		()		()		
				()		()		()		
				()		()		()		
				()		()		()		
				()		()		()		
				()		()		()		

LDC#: 54234B20

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	<u>/</u> of
Reviewer:	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 🐷)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N/N/A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

ORE S

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	LOSID-	BBB	11 (27-129	()	()	1-73,	J-MJP ND
	580-38546	5 T	11 (27-129) 27 (33-117)	25 (33-1)7	()	MB 580-385463	
		BBB	()	()	98 (20)		Jan 18
			()	()	, ()		13
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
					(
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()				

LDC #: 54234 B 2a

VALIDATION FINDINGS WORKSHEET <u>Target Analyte Quantitation</u>

Page:	1	_of_	_1
Reviewer	F	Т	

METHOD: GCMS SVOA EPA SW 846 Method 8270 🗲

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (V)

YN N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

YN N/A Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	TIC compounds	Qualifications
		All	All Tentatively Identified Compounds results (TICs)	NJ/A

Comments:	See sample calculation verification worksheet for recalculations	
		_

LDC #: 5423482a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	of
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A

Was the overall quality and usability of the data acceptable?

7			<u> </u>		<u>(d)</u>
#	Date	Sample ID	Compound	Finding	Qualifications
		6	AII	extractel entside	x /Δ
				H.T.	
	-				
\longrightarrow					
	=				

Comments:		 		
				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU086A	580-111780-5	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification
Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG #Labora METH The sa	DC #: 54234B2b VALIDATION COMPLETENESS WORKSHEET DG #: 580-111780-1 Stage 2B aboratory: Eurofins, Tacoma, WA IETHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E-SIM) he samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached alidation findings worksheets.							
	Validation	Area				Comme	ents	
ı.	Sample receipt/Technical ho	olding times	AIA					
II.	GC/MS Instrument performa		Δ					
111.	Initial calibration/ICV		44	% P	> D	± 15	10	NEW
IV.	Continuing calibration	ndin	Δ			W 4 20	N	
V.	Laboratory Blanks	7	A					
VI.	Field blanks		<i>N</i>					
VII.	Surrogate spikes		Δ					
VIII.	Matrix spike/Matrix spike du	plicates	4					
IX.	Laboratory control samples		A	10s/	0			
X.	Field duplicates		N			····		
XI.	Internal standards		A	Carloss and the Carloss and t				
XII.	Target analyte quantitation		N					
XIII.	Target analyte identification		N					
XIV.	System performance	# MASS Alexander	N					***************************************
XV.	Overall assessment of data							
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rin	o compounds sate eld blank	detected		D = Duplicate TB = Trip blank EB = Equipment blank	OTH	Source blank ER:
	Client ID			***************************************		Lab ID	Matrix	Date
_	1U088					580-111780-1	Water	03/22/22
4	1U092					580-111780-3	Water	03/22/22
1	HU086A					580-111780-5	Water	03/22/22
4 F	HU092MS					580-111780-3MS	Water	03/22/22
	HU092MSD				580-111780-3MSD	Water	03/22/22	
6								
7								
8								
9								
Notes:					T			
<u> </u> M	B 580-3851	03						
-								

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 21, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22
HU092DUP	580-111780-3DUP	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- P RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Manganese	3.40 ug/L	HU092
ICB/CCB	Calcium Magnesium Manganese Potassium Sodium	0.147 mg/L 0.129 mg/L 0.00570 mg/L 0.280 mg/L 0.110 mg/L	HU092
ICB/CCB	Calcium Magnesium Manganese Potassium Sodium	0.0813 mg/L 0.0753 mg/L 0.00320 mg/L 0.359 mg/L 0.180 mg/L	HU088

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU092	Manganese	23 ug/L	23J+ ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to laboratory blank contamination, data were qualified as estimated in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU092	Manganese	23J+ ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

LDC #: 54234B4b

VALIDATION COMPLETENESS WORKSHEET

SDG #: 580-111780-1 Laboratory: Eurofins, Tacoma, WA Stage 2B

Reviewer: # 2nd Reviewer

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l	Sample receipt/Technical holding times	AIA	
11.	Instrument Calibration	A	
III.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	LN_	·
VI.	Matrix Spike/Matrix Spike Duplicates	A_	(3,4)
VII.	Duplicate sample analysis	A	5
VIII.	Serial Dilution	A	
IX.	Laboratory control samples	A	LCS / LCSD
X.	Field Duplicates	l N	
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HU088	580-111780-1	Water	03/22/22
2	HU092	580-111780-3	Water	03/22/22
3	HU092MS	580-111780-3MS	Water	03/22/22
4	HU092MSD	580-111780-3MSD	Water	03/22/22
5	HU092DUP	580-111780-3DUP	Water	03/22/22
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Notes:	 	 	 		 	 	 	 	

LDC #: 54234B4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: #TU

All circled elements are applicable to each sample.

<u> </u>		
Sample ID	Matrix	Target Analyte List (TAL)
	7	
1,2	W_{-}	Al, Sb, As, Ba, Be, Cd, Ca) Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K) Se, Ag, Na) Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
QC		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
3,4,5	_W_	Al, Sb, As, Ba, Be, Cd, Ca) Cr, Co, Cu, Fe, Pb, Mg Mn Hg, Ni, K, Se, Ag, Na Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
! !		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

LDC #: 54234B4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:	_1	_of_	1
Reviewer:			

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L

Soil preparation factor applied: NA

Associated Samples: 2 Code: b

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (ug/L)	Maximum ICB/CCB ^a (mg/L)	Action Level	2				
Mn		3.40		17.0					
Ca			0.147	735					
Mg			0.129	645					
Mn			0.00570	28.5	23J+				
К			0.280	1400			 		
Na	_		0.110	550					

Sample Concentration units, unless otherwise noted: ug/L Associated Samples: 1

Analyte	Maximum PB ^a (mg/Kg)	PB ^a	Maximum ICB/CCB ^a (mg/L)	Action Level					
Ca			0.0813	406.5					
Mg			0.0753	376.5					
Mn			0.00320	16					
к			0.359	1795					
Na			0.180	900					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 28, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22
HU092DUP	580-111780-3DUP	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0 Nitrate/Nitrite as Nitrogen by EPA Method 353.2 Dissolved Organic Carbon and Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
HU088	Nitrate as N	58.38 hours	48 hours	J- (all detects)	Р
HU092	Nitrate as N	55.85 hours	48 hours	J- (all detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples		
ICB/CCB	Chloride	0.516 mg/L	All samples in SDG 580-111780-1		

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

Initial calibration blank data were not performed.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HU092MS/MSD (HU092)	Nitrate/Nitrite as N	54 (90-110)	58 (90-110)	UJ (all non-detects)	Α

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to technical holding time and MS/MSD %R, data were qualified as estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-111780-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU088 HU092	Nitrate as N	J- (all detects)	Р	Technical holding times (h)
HU092	Nitrate/Nitrite as N	UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R) (q)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG#	#: <u>54234B6</u> VALIDAT #: <u>580-111780-1</u> atory: <u>Eurofins, Tacoma, WA</u>		LETENESS tage 2B	WORKSHEET		Date: 7/20/2 Page:l of _l Reviewer:
METH DOC (IOD: (Analyte) Alkalinity (SM2320B), (EPA SW-846 Method 9060A), Nitrate	Bromide, Chlo /Nitrite-N (EP/	oride, Fluoride A Method 353	, Nitrate-N, Sulfate (.2), TOC (EPA SW-	EPA Method 846 Method 9	300.0), 060A)
	amples listed below were reviewed for tion findings worksheets.	each of the fo	ollowing valida	tion areas. Validatio	on findings are	noted in attached
	Validation Area			Comm	ents	
I.	Sample receipt/Technical holding times	A ISW				
II	Initial calibration	A				
111.	Calibration verification	A			At 140	
IV	Laboratory Blanks	SW				
· v	Field blanks	N				
VI.	Matrix Spike/Matrix Spike Duplicates	SW	(3,4)			
VII.	Duplicate sample analysis	A	5			
VIII.	Laboratory control samples	A	LCS I LCSI)		
IX.	Field duplicates	N				
X.	Target Analyte Quantitation	N				
X	Overall assessment of data	L A				
Note:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	irce blank :
	Client ID			Lab ID	Matrix	Date
1 1	HU088			580-111780-1	Water	03/22/22
2 I	HU092			580-111780-3	Water	03/22/22
3 H	HU092MS			580-111780-3MS	Water	03/22/22
3 H	HU092MSD			580-111780-3MSD	Water	03/22/22
	HU092DUP			580-111780-3DUP	Water	03/22/22
6				_		
5 I 6 7						
8						
9						
10						
11						
12						
13						
14						
Votes:						

LDC #: 54 234BG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter Parameter
1,2	PH TDS (CIVE) NO, SO, O-PO, (AIR) CN NH, TKN (TOC) C16+ C10, (BY) (M3/1/1/02-1) (POC)
,	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
3,4	ph tos (C)(F) (10), NO, (SO), O-PO, AIK CN NH, TKN (TOO) C16+ C10, (DY) (NO3/N)(2-N) (DOC)
5	PH TDS CI F NO3 NO2 SO4 O-PO4 (AIK) CN NH3 TKN TOC Cr6+ CIO4 (103/1002-10)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH_TDS_CI_F_NO3_NO2_SO4_O-PO4_AIK CN NH3 TKN TOC Cr6+ CIO4
	DH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	DH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	DH TDS CLE NO NO SO O-PO AIK CN NH TKN TOC Cr6+ CIO

Comments:___

LDC #: 54234BG

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	_of_	_
Reviewer:	ATT	/

All circled dates have exceeded the technical holding time.

N N/A Were all samples preserved as applicable to each method?

丛	IV IV/A	were all samples preserved as applicable to each method?	_ , 1
		e all cooler temperatures within validation criteria?	Onde: h

Method:		N03-N	(EPA 300.0))			
Parameters:		wat	er		·		
Technical h	olding time:	48 hrs	(2days)				
Sample ID	Sampling date	Analysis date	Total Time	Qualifier	Analysis date	Total Time	Qualifier
1	11:44 -> 14:44 3 22 22 14:40-> 17:40 3 22 22	01:07 3 25 22 01:3 3 25 22	58,38	JUJP (dete	ct)		Y.
2	3/22/22	3/25/22	55.85	1			
		_					
		·					
						:	

LDC #: 54234B6_

VALIDATION FINDINGS WORKSHEET Blanks

Page:		O	
Reviewer:	ATL		

METHOD: Inorganics, Method See Cover

Conc. units: ug/L Associated Samples: All

Analyte	Blank ID	Blank ID	Blank									
	PB	ICB/CCB (mg/L)	Action Limit	No Qualifiers								
CI		0.516	2580									

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 54234B6	
----------------	--

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_1
Reviewer:	ΑT	<u>L</u>

METHOD: Inorq	ganics, EPA Method <u>See cover</u>
Please see qua	lifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y /N N/A	Was a matrix spike analyzed for each matrix in this SDG? ได้ย์ น้ำหนั้ง
Y N N/A Y (N)N/A	Were matrix spike percent recoveries (%R) within the control limits of 75 125? If the sample concentration exceeded the spike concentration by a factor
_	of 4 or more, no action was taken.
ŶN N/A	Were all duplicate sample relative percent differences (RPD) ≤ 20% for water samples and ≤35% for soil samples?
LEVEL_IX ONL	Y:
$\vee N(N/\Delta)$	Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications Code: q
	3/4	W	NO2/NO3-N	54 (90-110)	58 (90-110)		2	J-/UJ/A (non-detect)
L								
L								
Ш								

Comments:	 			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU087	580-111780-2	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU091	580-111780-4	Water	03/22/22
HU086A	580-111780-5	Water	03/22/22
HU085A	580-111780-6	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples HU087, HU091, and HU085A were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG # Labora	t: 54234B7 VALIDATION t: 580-111780-1 atory: Eurofins, Tacoma, WA IOD: GC/MS Gasoline Range Organics	S	stage 2B	SS WORKSHEE	2nd	Date: 6/20 Page: / of Reviewer: Reviewer:
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing val	idation areas. Validat	ion findings are	e noted in attached
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	ΔV				
11.	GC/MS Instrument performance check					
III.	Initial calibration/ICV	4/4	12	10V = 2	W	
IV.	Continuing calibration levelure	6		cw =	20/20	
V.	Laboratory Blanks	K			•	
VI.	Field blanks	ND	TP =	3, 4, 6		
VII.	Surrogate spikes	Δ_		, , , , , , , , , , , , , , , , , , ,		
VIII.	Matrix spike/Matrix spike duplicates	N	U>			
IX.	Laboratory control samples	Δ_	ics IX	7		
X.	Field duplicates	N				
XI.	Internal standards	A _				
XII.	Target analyte quantitation	N				
XIII.	Target analyte identification	N_				
XIV.	System performance	N_				
XV.	Overall assessment of data	4				
Note:	N = Not provided/applicable $R = Ri$	No compounds nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank
	Client ID			Lab ID	Matrix	Date
1	HU088			580-111780-1	Water	03/22/22
2	HU087 ✓			580-111780-2	Water	03/22/22
3 1	HU092			580-111780-3	Water	03/22/22
	HU091 '			580-111780-4	Water	03/22/22
5	HU086A			580-111780-5	Water	03/22/22
$\overline{}$	HU085A v			580-111780-6	Water	03/22/22
7						
8			**			
9						
Notes:			TT		T	
	18 580 - 386417					
\vdash						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA/

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 580-111780-1/22C286

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU086A	580-111780-5/22C286-01	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 580-111780-1/22C286

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data

Qualification Summary - SDG 580-111780-1/22C286

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification
Summary - SDG 580-111780-1/22C286

No Sample Data Qualified in this SDG

Labor Sub-L	#: 580-111780-1/22C286 eatory: Eurofins, Tacoma, WA aboratory: EMAX Laboratories, Inc., T	orrance, CA	tage 2B		2nd	Page: / of_ Reviewer: / P Reviewer: / P
	amples listed below were reviewed for outlined to the state of the sta	each of the fo	ollowing valida	ation areas. Validat	ion findings are	noted in attached
	Validation Area			Com	ments	
ī.	Sample receipt/Technical holding times	$\Delta \Delta$,			
II.	Initial calibration/ICV	41/	0/0 P>V	11cl =20		
III.	Continuing calibration endury	1	1 1	1 cw = 20	120	
IV.	Laboratory Blanks	A			1	Assert 4.
V.	Field blanks	N				
VI.	Surrogate spikes					
VII.	Matrix spike/Matrix spike duplicates	<u> </u>	4			
VIII.	Laboratory control samples	4	10010			
IX.	Field duplicates	N_			·	
X.	Target analyte quantitation	N				
XI.	Target analyte identification	N				
LXII	Overall assessment of data	$\perp \Lambda$				
Note:	N = Not provided/applicable R = F	No compounds Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1	HU086A 2-	z c 286 -	01	580-111780-5	Water	03/22/22
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
Notes:				-		
∐ ↓	NBLKIW					
$\Vdash \downarrow$						
$\Vdash \downarrow$						-

VALIDATION COMPLETENESS WORKSHEET

LDC #: 54234B8a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

June 29, 2022

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU086A	580-111780-5	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-240079	04/01/22	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HyCDD Total PeCDF Total PCDD Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.000000784 ug/L 0.000000867 ug/L 0.000000801 ug/L 0.000000432 ug/L 0.00000100 ug/L 0.000000617 ug/L 0.00000120 ug/L 0.00000120 ug/L 0.00000353 ug/L 0.00000784 ug/L 0.00000784 ug/L 0.00000702 ug/L 0.00000722 ug/L 0.00000242 ug/L	All samples in SDG 580-111780-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU088	1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDF Total PeCDF Total PCDD/PCDF Total PCDD/PCDF	0.00000062 ug/L 0.0000018 ug/L 0.0000011 ug/L 0.0000012 ug/L 0.0000035 ug/L 0.0000019 ug/L 0.0000058 ug/L 0.0000058 ug/L	0.00000062U ug/L 0.0000018U ug/L 0.0000011U ug/L 0.0000012U ug/L 0.0000035J ug/L 0.0000019J ug/L 0.0000058J ug/L
HU092	1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF OCDD Total HxCDD Total HxCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.0000010 ug/L 0.00000042 ug/L 0.0000016 ug/L 0.0000012 ug/L 0.0000014 ug/L 0.0000042 ug/L 0.0000028 ug/L 0.0000014 ug/L	0.0000010U ug/L 0.00000042U ug/L 0.0000016U ug/L 0.0000012J ug/L 0.0000014J ug/L 0.0000042J ug/L 0.0000028J ug/L 0.0000014J ug/L
HU086A	1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.0000022 ug/L 0.00000079 ug/L 0.00000092 ug/L 0.00000068 ug/L 0.0000017 ug/L 0.0000012 ug/L 0.0000013 ug/L 0.0000011 ug/L 0.0000059 ug/L 0.0000053 ug/L	0.0000022U ug/L 0.00000079U ug/L 0.00000092U ug/L 0.00000068U ug/L 0.0000017J ug/L 0.0000017J ug/L 0.0000013J ug/L 0.000011J ug/L 0.0000059J ug/L 0.0000053J ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG DPWG64870/WG64304	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

The system performance was acceptable for samples which underwent Stage 4 Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in three samples.

Due to laboratory blank contamination in three samples.	n, data were qualifi	ied as not detected or es	timated

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-111780-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU088 HU092 HU086A	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU088	1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDF Total PeCDF Total PCDD/PCDF Total PCDDF	0.00000062U ug/L 0.0000018U ug/L 0.0000011U ug/L 0.0000012U ug/L 0.0000035J ug/L 0.0000019J ug/L 0.0000058J ug/L	Α	b
HU092	1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF OCDD Total HxCDD Total HxCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000010U ug/L 0.00000042U ug/L 0.0000016U ug/L 0.0000012J ug/L 0.0000014J ug/L 0.0000042J ug/L 0.0000028J ug/L	А	b
HU086A	1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD/ Total PCDD/ Total PCDD	0.0000022U ug/L 0.00000079U ug/L 0.00000092U ug/L 0.0000037U ug/L 0.000017J ug/L 0.000022J ug/L 0.000013J ug/L 0.000011J ug/L 0.000015J ug/L 0.000059J ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG	#: 54234B21 VALIDATIO #: 580-111780-1 ratory: <u>Eurofins, Tacoma, WA</u>		LETENESS tage 2B	S WORKSHEET		Date: $L/2^2$ Page: /_ of/ Reviewer:/ Reviewer://	/22		
MET	HOD: HRGC/HRMS Polychlorinated Dioxi	ins/Dibenzo	ofurans (EPA	SW-846 Method 829		rteviewer.			
	samples listed below were reviewed for ea ation findings worksheets.	ch of the fo	ollowing valida	ition areas. Validatio	n findings are	e noted in attached			
	Validation Area			Comm	ents				
I.	Sample receipt/Technical holding times	4/4							
II.	HRGC/HRMS Instrument performance check	Δ	,		Jabelu		1		
III.	Initial calibration/ICV	A 1A	°/0 P	50 4 20/2U	/ abelt	d 101 = 20	130		
IV.	Continuing calibration	6	,		CU = ZC	130			
V.	Laboratory Blanks	5W				1			
VI.	Field blanks	N							
VII.	Matrix spike/Matrix spike duplicates	Δ		· · · · · · · · · · · · · · · · · · ·					
VIII.	Laboratory control samples	Δ	100 ID						
IX.	Field duplicates	N							
X.	Labeled Compounds	Δ							
XI.	Target analyte quantitation	N							
XII.	Target analyte identification	N	7.4874						
XIII.	System performance	N							
XIV.	Overall assessment of data	Δ			31-34Marke				
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHER	urce blank :			
	Client ID			Lab ID	Matrix	Date			
1	HU088			580-111780-1	Water	03/22/22			
2	HU092			580-111780-3	Water	03/22/22			
3	HU086A			580-111780-5	Water	03/22/22			
4	HU092MS			580-111780-3MS	Water	03/22/22			
5	HU092MSD			580-111780-3MSD	Water	03/22/22			
6									
7			W150						
8									
9									
10									
lotes:	T 1					1			
1	1B 410-240679								
+									

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_	 	 	 	 	 ····	 	 	
	 	 	 	 	 ····	 	 	

LDC #: 54234B21	
-----------------	--

VALIDATION FINDINGS WORKSHEET Blanks

Page: __	<u>1_of_1_</u>
Reviewer:	FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Were all samples associated with a method blank?

Y Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)

Y Was the method blank contaminated?

Blank extraction date: 4/1/22 Blank analysis date: 4/1/22 Associated samples: All

Conc. units: ug/L

Compound	Blank ID				Sam	ple Identificatio	n		
	MB 410 -240079	5x		1	2	3			
F	0.000000784	0.000003920				0.0000022U			
κ	0.000000867	0.000004335			0.0000010U				
L	0.00000801	0.000004005		0.00000062U		0.00000079U			
E	0.00000432	0.000002160							
N	0.0000100	0.000005000		0.0000018U					
м	0.00000861	0.000004305		0.0000011U	0.00000042U	0.00000092U			
J	0.00000617	0.000003085		0.0000012U		0.00000068U			
G	0.0000120	0.000006000			0.0000016U	0.0000037U			<u> </u>
Т	0.00000432	0.000002160			0.0000012J				
x	0.00000353	0.000017650		0.0000035J	0.0000014J	0.0000017J			
U	0.00000784	0.000003920				0.0000022J			
w	0.00000617	0.000003085		0.0000019J		0.0000013J	-		
Total PCDD/PCDF	0.0000702	0.000035100		0.000058J	0.0000042J	0.000011J	<u></u>	 -	
Total PCDD	0.00000242	0.000012100			0.0000028J	0.0000059J		 	
Total PCDF	0.00000415	0.000020750	.,	0.0000058J	0.0000014J	0.0000053J			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #:54234B21

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	1	_of_	1
Reviewer:		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?

N/A Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		all	all analytes qualified I, EMPC (estimated maximum possible concentration)		J det/A (k)
		-	******		
<u></u>					
		-			
		100			
				AN A	
<u> </u>					
					1

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Methane

Validation Level:

Stage 2B

Laboratory:

Energy Laboratories, Billings, MT

Sample Delivery Group (SDG): 580-111780-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU088	580-111780-1	Water	03/22/22
HU087	580-111780-2	Water	03/22/22
HU092	580-111780-3	Water	03/22/22
HU091	580-111780-4	Water	03/22/22
HU086A	580-111780-5	Water	03/22/22
HU085A	580-111780-6	Water	03/22/22
HU092MS	580-111780-3MS	Water	03/22/22
HU092MSD	580-111780-3MSD	Water	03/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples HU087, HU091, and HU085A were identified as trip blanks. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Methane - Laboratory Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Methane - Field Blank Data Qualification Summary - SDG 580-111780-1

No Sample Data Qualified in this SDG

SDG#	:54234B51 VALIDATIC f:580-111780-1 atory:_ <u>Eurofins, Tacoma, WA</u>		LETEN tage 2E		WORKSHEET		F	Date: <u>1</u> /20, Page: <u>1</u> of ewer:		
METH	METHOD: GC Methane (Method RSK-175)									
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing v	⁄alida	tion areas. Validatio	n fii	ndings are note	ed in attache		
	Validation Area Comments									
I.	Sample receipt/Technical holding times	A , A								
11.	Initial calibration/ICV	4/4	1/0 12	3 17	/1W = 20					
111.	Continuing calibration ending	\ <u>\</u>			CW = 20	w				
IV.	Laboratory Blanks	Δ			•					
V.	Field blanks	NO	TB	= 2	4 6					
VI.	Surrogate spikes	A								
VII.	Matrix spike/Matrix spike duplicates									
VIII.	Laboratory control samples	<u>A</u>	LCS	,				<u></u>		
IX.	Field duplicates	N N								
X.	Target analyte quantitation	N								
XI.	Target analyte identification	N						<u>-</u>		
XII	Overall assessment of data						<u></u>			
Note:	N = Not provided/applicable R = Ri	No compounds nsate Field blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blan	k	SB=Source b OTHER:	lank		
	Client ID				Lab ID	N	latrix	Date		
1+ 1	HU088				580-111780-1	V	Vater	03/22/22		
2 I	HU087 /				580-111780-2	\	Vater	03/22/22		
3 I	HU092		***		580-111780-3	<u> </u> \	Vater	03/22/22		
4 I	HU091				580-111780-4	V	Vater	03/22/22		
	HU086A				580-111780-5	V	Vater	03/22/22		
6 I	HU085A /				580-111780-6	V	Vater	03/22/22		
7 H	-1U092MS				580-111780-3MS	<u> </u>	Vater	03/22/22		
8 I	HU092MSD				580-111780-3MSD	Vater	03/22/22			
9					****	\perp				
10										
11										
12			***				<u></u>			
Notes:						Γ				
-M	18 410-239148									
lacksquare										

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Volatiles Parameters:

Validation Level: Stage 2B

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU078	580-111830-2	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU071	580-111834-2	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU089	580-111838-2	Water	03/23/22
HU080	580-111846-1	Water	03/23/22
HU078	580-111846-2	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU081	580-111851-2	Water	03/23/22
HU096	580-111851-3	Water	03/23/22
HU095	580-111851-4	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- S Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
02/25/22	Acetone	30.4	HU072 HU071 HU090 HU089 HU080 HU082 HU081 HU095	J+ (all detects) UJ (all non-detects)	A
03/30/22	Chloromethane	22.7	HU079 HU078 HU078 HU096	UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/28/22	Methyl isobutyl ketone	21.4	HU072 HU071 HU090 HU089 HU080 HU082 HU081 HU095	UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-385816	03/31/22	tert-Butylbenzene (13.03) sec-Butylbenzene (13.21) p-Isopropyltoluene (13.33) n-Butylbenzene (13.67) 1,3,5-Trichlorobenzene (14:44)	0.300 ug/L 0.274 ug/L 0.298 ug/L 0.348 ug/L 0.211 ug/L	HU079 HU078 HU078 HU096

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
HU096	n-Butylbenzene (13.66)	0.34 ug/L	0.34U ug/L

VI. Field Blanks

Samples HU078, HU071, HU089, HU078 (580-111830-2), HU081, and HU095 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU089	03/23/22	Acetone	3.2 ug/L	HU090
HU078	03/23/22	Ethylbenzene	0.082 ug/L	HU079
HU081	03/23/22	Benzene	0.031 ug/L	HU082

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU090	Acetone	3.3 ug/L	5.0U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU079 and HU080 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
HU079 HU078 HU072 HU089 HU080 HU078 HU082 HU081 HU096 HU095	All laboratory calibrated analytes reported as TICs	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, continuing calibration %D, and TIC quantitation, data were qualified as estimated in twelve samples.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

Due to trip blank contamination, data were qualified as not detected in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU072 HU071 HU090 HU089 HU080 HU082 HU081 HU095	Acetone	J+ (all detects) UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU079 HU078 HU078 HU096	Chloromethane	UJ (all non-detects)	A	Initial calibration verification (%D) (c)
HU072 HU071 HU090 HU089 HU080 HU082 HU081 HU095	Methyl isobutyl ketone	UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU079 HU078 HU072 HU089 HU080 HU078 HU082 HU081 HU096 HU095	All laboratory calibrated analytes reported as TICs	NJ (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

Sample	Analyte TIC (RT in minutes)	Modified Final Concentration	A or P	Code
HU096	n-Butylbenzene (13.66)	0.34U ug/L	Α	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU090	Acetone	5.0U ug/L	A	t

LDC#: 54234C1a VALIDA	ATION COMPLETENESS WORKSHEET	Date: 6/20/22
SDG #: 580-111830-1	Stage 2B	Page: <u>_/</u> _of_ <u>_/</u>
Laboratory: Eurofins, Tacoma, WA	·	Reviewer:
		2nd Reviewer:/
METHOD COMONIA CLASSEDA OMACO	(O.M454 0000D)	

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

+ TIC

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
II.	GC/MS Instrument performance check	Δ	
111.	Initial calibration/ICV	1000	% RSO = 15, 12 1CV = 20
IV.	Continuing calibration endura	5W	cw = 20150
V.	Laboratory Blanks	رياي	* *
VI.	Field blanks	رسي	TB = 2, 4, 6, 8, 10, 12
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	2	٥>
IX.	Laboratory control samples	Δ	es 10
X.	Field duplicates	ND	D= 1,7
XI.	Internal standards		
XII.	Target analyte quantitation / C	(N	
XIII.	/ / Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note: A = Acceptable ND = No compound R = Rinsate SW = See worksheet FB = Field blank

 $\begin{array}{ll} \text{ND = No compounds detected} & \text{D = Duplicate} \\ \text{R = Rinsate} & \text{TB = Trip blank} \\ \text{FB = Field blank} & \text{EB = Equipment blank} \\ \end{array}$

SB=Source blank OTHER:

Client ID	Lab ID	Matrix	Date
12 HU079 D	580-111830-1	Water	03/23/22
2 2 HU078 TB	580-111830-2	Water	03/23/22
3 [†] 1 HU072	580-111834-1	Water	03/23/22
4 HU071 TB	580-111834-2	Water	03/23/22
5 [†] 1 HU090	580-111838-1	Water	03/23/22
6 [†] HU089 TB	580-111838-2	Water	03/23/22
7 1 HU080 17	580-111846-1	Water	03/23/22
8 ⁺ 2 HU078 TB	580-111846-2	Water	03/23/22
9 [†] 1 HU082	580-111851-1	Water	03/23/22
10 / HU081 T9	580-111851-2	Water	03/23/22
11 2 HU096	580-111851-3	Water	03/23/22
12 1 HU095 TY7	580-111851-4	Water	03/23/22
131 MB 580-385389			
142 MB 980- 385816			

TARGET COMPOUND WORKSHEET

METHOD: VOA

WETHOD, VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA, Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD., isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanai
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC# 542300a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	 _of_	1
Reviewer:	F	Γ

C

METHOD: GC/MS VOA (EPA SW 846 Method 8260 \mathcal{D})

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N N/A

Were all %D within the validation criteria of ≤20 %D?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0% / 30%)	Associated Samples	Qualifications
BI	222	1cV - TACO 48	F	30.4	3 -77, 9,10,12	1+du /45/A
	1449		•		MB 580-385389	#5 Lo De+
	, ,					
<u></u>					· · · · · · · · · · · · · · · · · · ·	
	1 12					
32	3 302	104- TACO 48	4	22.7	1,2,8,1) MB 580-385816	11 du /43/20 (ND)
 	1628				MB 580-385816	
		1 throng				
-						
-						
-						
-						
-		CI.				
		1				
		i e				

LDC#: 54274c/a

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 1)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Y N N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

YN N/A

N	N/A	Were all %D and	d RRFs within the validation	on criteria of <	20 %D and >0 05 RRF ?	

Y(N/N/A) Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?							
#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
Bl	328 22	CCV-TACO 48	*	21.4		3-77 9,10 12	J-WJ/A (ND)
	1/35		·	· ·		MB 580- 385389	
		<u>a</u>					
		cw-140040					
		doning					
		4					
_					<u> </u>		
			* Methyl	isobutyl Ké	Tone		
			O	7			
نبا							

LDC#: 54234C	a
--------------	---

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1 /of
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260	D)
---	---	---

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y\N N/A Was a method blank associated with every sample in this SDG?

Y N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

YNN/A Was there contamination in the method blanks? If yes, please see the qualifications below. Blank analysis date: カカレン

(d)

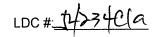
	Conc. units: <u>uall</u>	21/2/		A:	ssociated Sar	nples:	1,2,	8,11.		
	Compound	Blank ID					ample Identific	ation		
		MB 530-	_		11					
K	1	0.300 (13	.03)		-					
		0.274 (13			_					
	444		3.33)							
	[1]	0.348 (1	3.67)		0.34 (13	(66)				
	1,3,5-Trichlorobenzen	2 0.211	4.44)							
			<u> </u>							
								· · · · · · · · · · · · · · · · · · ·		
					-					
									 	
	·		_							

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

M Y Y B S		olanks identified to compounds of compounds	ed in this SDG detected in the le units:) 6? e field blanks	?	Resyll Lipson	RKSHEET	es:	(+)·	$\left(t \right)$	Page: <u>/</u> of <u>/</u> riewer: <u>FT</u>
ſ	Compound	Blank ID				s	Sample Identifica	ation			
	and the state of t	6		5							
	F	3.2		3.3/5.	рч						
		W		10'							
				,							
L											
-					<u> </u>				<u> </u>		
Ĕ	1-		1	ugl		<u> </u>					
S: Fi	lank units: Walv Asso ampling date: ウカュカ ield blank type: (circle one	pclated samp レンレ e) Field Blank	**		ner:T_6	Asso	ociated Sampl	es:	1	CND)
	Compound	Blank ID				s	ample Identifica	ation			
	a produkt vietnich für gestellt der Karrier in Die gestellt der der Schreibungspreicht der Son- dus	8									
	EE	0.082									

		<u> </u>									
H		i	1		1	1	Ī	1	1	1	1


CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

YN N/A Were targe	PA SW 846 Me blanks identifie et compounds c	ed in this SDG detected in the	? e field blanks?	ON FINDII <u>Field B</u>		KSHEET			Revi	Page:of iewer: <u>FT</u>
Blank units: wall Asso Sampling date: 3 23 Field blank type: (circle on	ociated sampl 」ュン ne) Field Blank	e units: <u> ५</u> / Rinsate / Tri	p Blank / Other	: TB	Asso	ciated Sampl	es:	9	(ND))
Compound	Blank ID				Sa	ample Identifica	ation			
	10									
V	0.031									
						: 				
					3					
Blank units: Ass Sampling date: Field blank type: (circle on	ne) Field Blank		—— p Blank / Other	••	Asso	ciated Sampl	es:			
Compound	Blank ID				Sa	ample Identifica	ation			
					-					

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Target Analyte and TIC

Page:	
Reviewer:	7

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
			All laboratory calibrated analytes reported as		Jdets/A (v)
			tentatively identified compounds (TIC)	,	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 14, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU090RE	580-111838-1RE	Water	03/23/22
HU080	580-111846-1	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU096	580-111851-3	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
HU090RE	All analytes	15	7	X (all non-detects)	Α

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/02/22	Bis(2-chloroisopropyl) ether	38.8	HU079 HU072 HU090 HU080 HU082 HU096	UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/03/22	2,4-Dinitrophenol	54.7	HU079 HU072 HU090 HU080 HU082 HU096	UJ (all non-detects)	Α

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 580-385692	03/30/22	Diethylphthalate	0.216 ug/L	HU079 HU072 HU090 HU080 HU082 HU096

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU079	Diethylphthalate	0.25 ug/L	0.29U ug/L
HU072	Diethylphthalate	0.58 ug/L	0.58J+ ug/L
HU080	Diethylphthalate	0.29 ug/L	0.29U ug/L
HU082	Diethylphthalate	0.22 ug/L	0.29U ug/L
HU096	Diethylphthalate	0.23 ug/L	0.29U ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
HU090	Phenol-d5	1 (10-120)	All acids	UJ (all non-detects)	Α

Although the surrogate %R was severely low (1%) for phenol-d5, due to the presence of matrix interference, using professional judgment (i.e.), the associated acid results were qualified as estimated (UJ) instead of recommended for exclusion (X).

Additionally, surrogate recoveries (%R) were not within QC limits for sample HU096. Using professional judgment, no data were qualified when one base or one acid surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-385692 (HU079 HU072 HU090 HU080 HU082 HU096)	2,4-Dinitrophenol	0 (23-143)	0 (23-143)	X (all non-detects)	Р
LCS/LCSD 580-385692 (HU079 HU072 HU090 HU080 HU082 HU096)	Hexachlorobutadiene Pentachlorophenol	21 (22-124) 33 (35-138)	19 (22-124) -	UJ (all non-detects) UJ (all non-detects)	Р

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-386673 (HU090RE)	Pentachlorophenol	-	29 (35-128)	UJ (all non-detects)	Р

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-385692 HU079 HU072 HU090 HU080 HU082 HU096)		24 (≤20)	NA	-
LCS/LCSD 580-386673 (HU090RE)	2,4-Dinitrophenol	28 (≤20)	NA	-
LCS/LCSD 580-386673 (HU090RE)	Hexachlorobutadiene	34 (≤20)	NA	-

X. Field Duplicates

Samples HU079 and HU080 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Analyte	HU079	HU080	RPD (Limits)
Diethylphthalate	0.25	0.29	15 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111830-1	All TICs	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were recommended for exclusion as follows:

Sample	Analyte	Reason	Flag	A or P
HU090RE	All analytes	Extracted outside holding time.	Х	А

Due to LCS/LCSD %R, data were qualified for recommended exclusion in six samples.

Due to continuing calibration %D, ending CCV %D, surrogate %R, LCS/LCSD %R, and TIC quantitation, data were qualified as estimated in six samples.

Due to laboratory blank contamination, data were qualified as not detected and/or estimated in five samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU079 HU072 HU090 HU080 HU082 HU096	Bis(2-chloroisopropyl) ether	UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU079 HU072 HU090 HU080 HU082 HU096	2,4-Dinitrophenol	UJ (all non-detects)	А	Continuing calibration (ending CCV %D) (c)
HU090	Phenol 2-Chlorophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol Pentachlorophenol 2,3,4,6-Tetrachlorophenol	UJ (all non-detects)	Α	Surrogates (%R) (s)
HU079 HU072 HU090 HU080 HU082 HU096	2,4-Dinitrophenol	X (all non-detects)	Р	Laboratory control samples (%R) (I)
HU079 HU072 HU090 HU080 HU082 HU096	Hexachlorobutadiene Pentachlorophenol	UJ (all non-detects) UJ (all non-detects)	Р	Laboratory control samples (%R) (I)
HU079 HU072 HU090 HU080 HU082 HU096	All TICs	NJ (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)
HU090RE	All analytes	Х	Α	Overall assessment of data (d)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU079	Diethylphthalate	0.29U ug/L	Α	b
HU072	Diethylphthalate	0.58J+ ug/L	Α	b
HU080	Diethylphthalate	0.29U ug/L	Α	b
HU082	Diethylphthalate	0.29U ug/L	Α	b
HU096	Diethylphthalate	0.29U ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

SDG#	DC #: 54234C2a VALIDATION COMPLETENESS WORKSHEET Date: 6/20 Stage 2B Page: 10f Reviewer: 2nd Rev					
The sa	OD: GC/MS Semivolatiles (EPA SW-846 + T)に amples listed below were reviewed for ear ion findings worksheets.		•	ation areas. Validation		_
	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	ليور ھ				
11.	GC/MS Instrument performance check	Δ				
111.	Initial calibration/ICV	4/1	0/0 PSD.	= 15 12	1cv = w	
IV.	Continuing calibration ending	SW		CW = 7	101 E W	
V.	Laboratory Blanks	500				
Vi.	Field blanks	2				
VII.	Surrogate spikes	5W_				
VIII.	Matrix spike/Matrix spike duplicates	2	OS			
iX.	Laboratory control samples	ىسى	1051Y			
X.	Field duplicates	SW	0=1.4	1		
XI.	Internal standards	Δ				
XII.	Target analyte quantitation	Ç _N				
XIII.	Target analyte identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	SW				
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sou OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1.	HU079 D			580-111830-1	Water	03/23/22
1	HU072			580-111834-1	Water	03/23/22
	10090			580-111838-1	Water	03/23/22
* .	HU080 Q			580-111846-1	Water	03/23/22
4.	1 U082			580-111851-1	Water	03/23/22
	10096			580-111851-3	Water	03/23/22
	1.1			- 111838-1RE	V	1
8	•					
9						
Votes:						
1 M	15 580-385692					
2 N	18 580-385677 118 580-386677					
					İ	

Acids

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD: GC/MS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C) 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK, Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O.2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU. 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q.,2,4-Dichlorophenol	SS. Hexachloroberizene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z.) 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA, 2-Chloronaphthalene	ССС. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#: 54234cla

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page:	/ _{of_} _/
Reviewer:	FT

		/846 METHOD	nnical holding tim s within validation 8270				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualit
1			323/22	4722	4/8/22	15	\-\x/
				111	11		NO
					· · · · · · · · · · · · · · · · · · ·		
							
	 						
	 						
<u></u>	1						
	<u> </u>						
	ļ				77		
	ļ						
	<u> </u>						
	-						
	1						_
				-			
	 						
				 			
	1						

TECHNICAL HOLDING TIME CRITERIA

Water:

Extracted within 7 days, analyzed within 40 days.

Soil:

Extracted within 14 days, analyzed within 40 days.

LDC#: 54234C2a

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	_/ _{of_} /
Reviewer:_	FT

METHOD: GC/MS SVOA(EPA Method 8270)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

YN NA Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF? Finding %D Finding RRF Standard ID Compound (Limit: ≤20.0%) (Limit: ≥0.05) Date **Associated Samples** Qualifications 4/2/22 cal 38.8 76, MMM MB 580-385692 cev-doma 4/2/22 HH ND

LDC	#:	542	34c	2a
-----	----	-----	-----	----

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_/ _{of}	<u>/</u>
viewer	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ©) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A									
Compound	Blank ID								
	MB 580-3	35692	1 ,	2,	4	5 .	. 6.		
LL	0.216		0.25/0.294	0.58/1	0.29/4	0.22/02	0.23/0.3	294	
	TX		0,98	0.95	0,765	0,997	0.90		
						6			
						0.294			
						•			
Blank extraction date: Blank analysis date: Conc. units: Associated Samples:									
Compound	Blank ID	·							
A Committee of the Comm									

LDC#: 54234 CZa

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	<u>/</u> of_/_
Reviewer:_	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ©)
Pleasa see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

MN N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Li	imits)	Qualific	ations
	3	PHL-05		(10-120)	1-/x/A	NP.
					all Acids	sur hot
			 	()		
				()		· · · · · · · · · · · · · · · · · · ·
				()		
	6	TBP	39	(43-140)	no qua	
				()	L	
				()		
				()		
				()		
				()	ļ	
	MB 500-385692	TBP	38	(43-140)	no qual	
				()	 	
				()		
				()		
	·			()		
				()		
				()		
				()		
				()		
				()		

(NBZ) = Nitrobenzene - d5

(FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol

(2CP) = 2-Chlorophenol - d4

LDC#: 54234C2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	of/
Reviewer:	FT

METHOD: GC/MS BNA (Method なかつし

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

/. R = 1

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
l	10010	НН	0 (23-143	0 (23-143)	()	176, MB 580-385692	1-1×/P ND
	980-3856	72 U	21 (22-124)	19 (22-124	()	MB 580- 385692	1-141/19
		TT	33 (35-138	, ()	()		J-141/P
		T	(')	24 (2())	24 (20)	J.	John 10
			()	()	()		/1.
<u></u>			()	()	()		
			()	()	()		
<u></u>			()	()	()		
<u> </u>				()	()		
			()	()	()		
<u> </u>			()	()	()		
			()	()	()		
_			()	()	()		
<u> </u>			()	()	()		
\vdash			()	()	()		
<u> </u> -			()	()	()		
<u> </u>			()	()	()		
 - -					(
			()	()	()		
_			()	()	()		
			()	()	()		
			()	()	()		
<u> </u>	_		()	()	()		
\vdash			()	()	()		
<u></u>				()			

LDC#: 54234 c2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	lof	
Reviewer:	FT	

METHOD: GC/MS BNA (Method & 270 E

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

% PPD wite: W

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

1/2 P - 1

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)		RPD (Limits)		Associated Samples	Qualificat	tions
	LCSID	44	()	()	28 (20) -	7,	Jett/P	all NB
	580-3866	73 U	()	()	34 (√)	MB 580-386673	7	1
		マて	()	29 (35	-128)	()	ν	J-/UJ/P	V
		K	()	()	()			
			()	()	()			
			()	()	()			
			()	()	()			
			()	()	(}		,	
<u>_</u>			())	_(4			
<u> </u>			()	()	(<u> </u>			
<u> </u>			()	()	()			_
			()	()	()			
			()	()	(<u>) </u>			
<u> </u>			()	()	()			
			())	()			
<u> </u>			()	()	(<u>) </u>			
			()	()	()			
<u>_</u>			())		4			
_			()	()	()			
			()	()	()			
			()	()	()			
			()	()	()			
			()	()	()			
			()	()	()			
			()			(

LDC #: 5423402a

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page:	_1_of_	_1_
Reviewer:	FT	

METHOD:	GC/MS	BNA	(EPA SW	846	Method	8270)
---------	-------	-----	---------	-----	--------	------	---

1	Y	N	N/A
	Y/	N	N/A

Were field duplicate pairs identified in this SDG? Were target compounds identified in the field duplicate pairs?

	Concentration	, 49 4		
Compound	١	J H	RPD (≤ GV %)	QUAL
LL	0.25 🛭	0.298	15	
	/\	,		
	T			

Compound	Concentration ()	RPD (≤ %)	QUAL

Community	Concentration ()	RPD	QUAL
Compound		(≤ %)	
1			
		,	

LDC #: 54234 Cla

VALIDATION FINDINGS WORKSHEET <u>Target Analyte Quantitation</u>

Page:	1	_of_	_1	
Reviewer:	F	Т		

METHOD: GCMS SVOA EPA SW 846 Method 8270 を

Please, see	e qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".	(V)
V NI KIZA	More the correct internal standard (IC) quantitation ion and relative response factor (DDC) used to grantitate the correct and	` '

Y N N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	TIC compounds	Qualifications
		All	All Tentatively Identified Compounds results (TICs)	NJ/A

Comments:	See sample calculation verification worksheet for recalculations		
			_

LDC#: 5/234 C2a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:1	of1
Reviewer:	FT
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y)N N/A Was the overall quality and usability of the data acceptable? Sample ID Compound **Finding** Qualifications All

OVR.wpd

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU090RE	580-111838-1RE	Water	03/23/22
HU080	580-111846-1	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU096	580-111851-3	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
HU090RE	All analytes	15	7	X (all non-detects)	А

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/05/22	Benzo(k)fluoranthene	20.4	HU079 HU072 HU090 HU080 HU082 HU096	UJ (all non-detects)	A

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU079 and HU080 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows:

Sample	Analyte	Reason	Flag	A or P
HU090RE	All analytes	Extracted outside holding time.	х	Α

Due to continuing calibration %D, data were qualified as estimated in six samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU079 HU072 HU090 HU080 HU082 HU096	Benzo(k)fluoranthene	UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU090RE	All analytes	х	A	Overall assessment of data (d)

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification
Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

SDG # _abora	t: 54234C2b VALIDATIO t: 580-111830-1 atory: Eurofins, Tacoma, WA IOD: GC/MS Polynuclear Aromatic Hydro	S	tage 2E	3				P	Date: 6/2 Page: lof ewer: Fewer:
	amples listed below were reviewed for ea tion findings worksheets.	ch of the fo	ollowing v	validati	ion areas. ∖	/alidatior	n fir	dings are note	ed in attached
	Validation Area					Comme	ents		
l.	Sample receipt/Technical holding times	A wu							
11.	GC/MS Instrument performance check	A	,						
III.	Initial calibration/ICV	AIA	0/0	psD	=15	12	~	1cl &	w
IV.	Continuing calibration / ending	300				CW	4		
V.	Laboratory Blanks	٨							
VI.	Field blanks	N							
VII.	Surrogate spikes	A							
VIII.	Matrix spike/Matrix spike duplicates	N	U>						
IX.	Laboratory control samples	Δ.	ICS	10					
X.	Field duplicates	NY	0=	1,4					
XI.	Internal standards	Δ		-11					
XII.	Target analyte quantitation	N							
XIII.	Target analyte identification	N							
XIV.	System performance	N							
XV.	Overall assessment of data	٥							
lote:	N = Not provided/applicable R = Rin	lo compounds nsate ield blank	s detected		D = Duplicat TB = Trip bla EB = Equipr	ank		SB=Source b OTHER:	lank
	Client ID				Lab ID		N	latrix	Date
	ниот9				580-111830-1		V	Vater	03/23/22
2 + 3	HU072				580-111834-1	<u></u>	V	Vater	03/23/22
† 3	HU090				580-111838-1 Water		Vater	03/23/22	
	HU080 17				580-111846-1 Water		03/23/22		
4 5	HU082				580-111851-1	1851-1 Water		03/23/22	
6	HU096						03/23/22		
7	#3RE				580- 1118	38-1RE		V	1
8									
lotes:			<u> </u>	1		1			
	18 580-385697			-					
1.0	10 550774677		I			1		i	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

ILTITOD. CONVICTOR				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyi-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 54234626

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	1 _{0f} 1
Reviewer:_	FŢ

AT\circled dates have exceeded the technical holding times.

			within validation	Critcha:			().
METHOD : GC/N	MA BNA SW T	/846 METHOD	8270 			-	(h)
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
7	W		3 23 22	47122	4/13/22	15	1-/x/A
				111		***	NÓ
	<u> </u>						
	-						
						-	
	<u> </u>	<u> </u>					
	 						

TECHNICAL HOLDING TIME CRITERIA

Water: Extracted within 7 days, analyzed within 40 days.

Soil: Extracted within 14 days, analyzed within 40 days.

LDC#: 54234 Cab

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_		1
Reviewer:	F	Γ

METHOD: GC/MS SVOA(EPA Method 8270 を) らい

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y N/N/N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	4/5/22	cev	HHH	20.4		1-76,	
	1348					MB 580-385 692	1+ du/us/A ND
	- 1						
			·				
					<u> </u>		
			 			 	
						 	
		* * * * * * * * * * * * * * * * * * * *					
						 	

LDC#: 54234 Cab

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	1	_of_	1
Reviewer:		_ F	T
2nd Reviewer:			

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ₺) > 1 M

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable? Finding Sample ID Compound Qualifications extracted outside AI

Comments:	:	

Laboratory Data Consultants, Inc. **Data Validation Report**

Red Hill Oily Waste Disposal Facility, CTO 18F0176 **Project/Site Name:**

July 21, 2022 **LDC Report Date:**

Parameters: Metals

Validation Level: Stage 2B

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU096	580-111851-3	Water	03/23/22
HU082MS	580-111851-1MS	Water	03/23/22
HU082MSD	580-111851-1MSD	Water	03/23/22
HU082DUP	580-111851-1DUP	Water	03/23/22
HU096MS	580-111851-3MS	Water	03/23/22
HU096MSD	580-111851-3MSD	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- P RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Calcium Manganese	0.0813 mg/L 0.00320 mg/L	All samples in SDG 580-111838-1
ICB/CCB	Magnesium	0.0753 mg/L	HU079 HU090 HU082 HU096
ICB/CCB	Magnesium	0.0706 mg/L	HU072
ICB/CCB	Potassium Sodium	0.173 mg/L 0.104 mg/L	HU082 HU096
ICB/CCB	Potassium Sodium	0.359 mg/L 0.180 mg/L	HU079 HU090
ICB/CCB	Potassium	0.504 mg/L	HU072

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU072	Manganese	2.7 ug/L	6.8Ų ug/L
HU082	Manganese	7.9 ug/L	7.9J+ ug/L
HŲ096	Manganese	13 ug/L	13J+ µg/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For HU082MS/MSD, no data were qualified for sodium percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to laboratory blank contamination, data were qualified as estimated or not detected in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU072	Manganese	6.8U ug/L	Α	b
HU082	Manganese	7.9J+ ug/L	Α	b
HU096	Manganese	13J+ ug/L	Α	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234C4b SDG #: 580-111830-1

Stage 2B

	Date:	7/20/22	,
	Page:_	<u></u>	
	Reviewer:	ATI	
2nd	Reviewer:		

Laboratory: Eurofins, Tacoma, WA

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
11.	Instrument Calibration	A	
111.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	(6,7):Na>4x, (9,10)
VII.	Duplicate sample analysis	A	8
VIII.	Serial Dilution	A	
IX.	Laboratory control samples	A	LOS/LOSD
X.	Field Duplicates	N	'
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	T		T	
	Client ID	Lab ID	Matrix	Date
1	ниот9 (2	580-111830-1	Water	03/23/22
2	HU072	580-111834-1	Water	03/23/22
3	ниоэо	580-111838-1	Water	03/23/22
4	HU082	580-111851-1	Water	03/23/22
5	HU096	580-111851-3	Water	03/23/22
6	HU082MS	580-111851-1MS	Water	03/23/22
7	HU082MSD	580-111851-1MSD	Water	03/23/22
8	HU082DUP	580-111851-1DUP	Water	03/23/22
9	HU096MS	580-111851-3MS	Water	03/23/22
10	HU096MSD	580-111851-3MSD	Water	03/23/22
11				
12				
13				
14				
15_				

Notes:

LDC #: 54234C4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: ATC

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
Sample ID	,	
1-)5	_W_	Al, Sb, As, Ba, Be, Cd, Ca Cr, Co, Cu, Fe, Pb, Mg Mn Hg, Ni K Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
QC		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
6-710	W	Al, Sb, As, Ba, Be, Cd,(Ca) Cr, Co, Cu, Fe, Pb,(Mg),(Mn) Hg, Ni,(K,)Se, Ag,(Na), Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

LDC #: 54234C4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page	:_	1	_of_	1
Reviewer:	Α	TL		

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

Soil preparation factor applied: NA

Associated Samples: all Sample Concentration units, unless otherwise noted: ug/L Code: b Analyte Maximum Maximum Maximum Action 2 4 5 PB^a PB^a ICB/CCB® Level (mg/Kg) (mg/L) (ug/L) 0.0813 406.5 Ca 0.00320 Mn 16 2.7/6.8 7.9J+ 13J+ Associated Samples: 1,3,4,5 Sample Concentration units, unless otherwise noted: ug/L Maximum Maximum Maximum Action Analyte PB^a PB^a ICB/CCB^a Level (mg/Kg) (mg/L) (mg/L) Mg 0.0753 376.5 Sample Concentration units, unless otherwise noted: ug/L Associated Samples: 2 Maximum Analyte Maximum Maximum **Action** PB^a PB^a ICB/CCB^a Level (mg/Kg) (mg/L)(mg/L) 0.0706 Mg 353 Associated Samples: 4,5 Sample Concentration units, unless otherwise noted: ug/L Maximun Maximum Analyte Maximum Action PB^a ICB/CCB^a PB^a Level (mg/Kg) (mg/L) (mg/L) 0.173 K 865

Na

0.104

520

LDC #: 54234C4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page: 1 of 1
Reviewer: ATL

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)
Sample Concentration units, unless otherwise noted: ug/L

Soil preparation factor applied: NA

Associated Samples: 1,3 Code: b

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB* (mg/L)	Action Level					
К			0.359	1795					
Na			0.180	900				-	

Sample (Concentration	on units, un	less otherw	ise noted:_	ug/L	Associated	Samples: 2	 	 	_	
Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)								
К			0.504	2520							

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 21, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU096	580-111851-3	Water	03/23/22
HU079MS	580-111830-1MS	Water	03/23/22
HU079MSD	580-111830-1MSD	Water	03/23/22
HU079DUP	580-111830-1DUP	Water	03/23/22
HU082MS	580-111851-1MS	Water	03/23/22
HU082MSD	580-111851-1MSD	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Dissolved Organic Carbon and Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant.
- The analysis with this flag should not be used because another more d technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits. 1
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
HU079	Nitrate as N	65.65 hours	48 hours	J- (all detects)	Р
HU072	Nitrate as N	64.78 hours	48 hours	J- (all detects)	Р
HU090	Nitrate as N	66.95 hours	48 hours	J- (all detects)	Р
HU082	Nitrate as N	58.62 hours	48 hours	J- (all detects)	Р
HU096	Nitrate as N	63.60 hours	48 hours	J- (all detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HU079MS/MSD (HU079)	Nitrate/Nitrite as N	39 (90-110)	37 (90-110)	UJ (all non-detects)	Α

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to technical holding time and MS/MSD %R, data were qualified as estimated in five samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU079 HU072 HU090 HU082 HU096	Nitrate as N	J- (all detects)	Р	Technical holding times (h)
HU079	Nitrate/Nitrite as N	UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R) (q)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234C6 Page: 1 of Stage 2B SDG #: 580-111830-1 Reviewer: ATL Laboratory: Eurofins, Tacoma, WA 2nd Reviewer:

METHOD: (Analyte) Alkalinity (SM2320B), Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0), DOC (EPA SW-846 Method 9060A), Nitrate/Nitrite-N (EPA Method 353.2), TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A ISW	
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	ŚW	(6,7), $(9,10)$
VII.	Duplicate sample analysis	A	8
VIII.	Laboratory control samples	A	LOSILOSD
IX.	Field duplicates	N	
X.	Target Analyte Quantitation	N	
XL	Overall assessment of data	A	L

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

R = Rinsate

ND = No compounds detected

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HU079	580-111830-1	Water	03/23/22
2	HU072	580-111834-1	Water	03/23/22
3	HU090	580-111838-1	Water	03/23/22
4	HU082	580-111851-1	Water	03/23/22
5	HU096	580-111851-3	Water	03/23/22
6	HU079MS	580-111830-1MS	Water	03/23/22
7	HU079MSD	580-111830-1MSD	Water	03/23/22
8	HU079DUP	580-111830-1DUP	Water	03/23/22
9	HU082MS	580-111851-1MS	Water	03/23/22
10	HU082MSD	580-111851-1MSD	Water	03/23/22
11				
12				
13				
14_				

Notes:

LDC #: 54234CG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: 411

All circled methods are applicable to each sample.

Sample ID	Parameter
1-)5	ph tds (C)(F)(NO2 NO2 (SQ4 O-PO4 (AIK)CN NH3 TKN (TOQ Cr6+ CIO4 (Br) (103/1N02-N) (DOC)
1-75	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
60	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	ph TDS (C)(F)(NO2 NO2 (SQ4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4(BT) (NO3/NO2-N)
8	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (102/N)
9,10	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 DOC
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4

Comments:_____

LDC #: 54234C6

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	<u>of</u>
Reviewer:	ATT

<u>Technical Holding Times</u>	F
All circled dates have exceeded the technical holding time.	
(Y) N N/A Were all samples preserved as applicable to each method?	
(Y)N N/A Were all samples preserved as applicable to each method? (Y)N N/A Were all cooler temperatures within validation criteria?	Code: h

Method:		N03-N	(EPA 300.0)				
Parameters):	water					
Technical holding time:		48hrs	· >				
Sample ID		Analysis Total Time		Qualifier	Analysis date	Total Time	Qualifier
	10:05-) 13:05	06:44 03/26/22 07:42 05/26/22 08:17 03/26/22 03/26/22 03/26/22	Q5.G5	JJUJ /P(det	ect)		
2	11:55 -) 4:55	03/26/22	64.78				
3	10:03-7 3:03 03 23 22 11:55 -7 4:55 10:20-7 3:20 03 23 22 18:17-7 21:17 03 23 22 13:30-7 6:30 05 23 22	03 26 22	66.95				
4	03 23 22	03/26/22	58.62				·
5	13/23/22	03/26/22	63.GO	<u> </u>			
			, , , , , , , , , , , , , , , , , , ,		·		
					,		
							
							
				·			
						1	
						· · · · · · · · · · · · · · · · · · ·	
	 _						

LDC #: 54234C6

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_1_
Reviewer:	AT	L

METHOD: Inorganics, EPA Method_	See cover
_	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a matrix spike analyzed for each matrix in this SDG?

Y(N)N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

 \overline{Y} N N/A Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples?

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications Code: q
	6/7	W	NO2/NO3-N	39 (90-110)	37 (90-110)		1	J-/UJ/A (non-detect)
-								
-								
L								
<u> </u>								
-								

Comments:		 	
			· · ·

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU071	580-111834-2	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU089	580-111838-2	Water	03/23/22
HU080	580-111846-1	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU081	580-111851-2	Water	03/23/22
HU096	580-111851-3	Water	03/23/22
HU095	580-111851-4	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration	Associated Samples
MB 580-386534	04/06/22	Gasoline range organics (C6-C12)	31.1 ug/L	HU071 HU090 HU089 HU080

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Samples HU087, HU091, and HU085A were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU079 and HU080 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

7

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234C7 SDG #: 580-111830-1 Stage 2B Laboratory: Eurofins, Tacoma, WA

Reviewer:

2nd Reviewer

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AΔ	
II.	GC/MS Instrument performance check		
111.	Initial calibration/ICV	AA	12 1eV = 20
IV.	Continuing calibration ending	Δ	CW = 20/20
V.	Laboratory Blanks	SW	
VI.	Field blanks	ND	TB= 3.5, 8, 10
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	2	0 <i>></i>
IX.	Laboratory control samples	Δ	10510
X.	Field duplicates	NY	D-1,6
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		L

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

Client ID	Lab ID	Matrix	Date
1 HU079 𝒜	580-111830-1	Water	03/23/22
ž ¹ HU072	580-111834-1	Water	03/23/22
3 3 HU071 TP	580-111834-2	Water	03/23/22
4-3 HU090	580-111838-1	Water	03/23/22
5 3 HU089 TB	580-111838-2	Water	03/23/22
б 3 ниово О	580-111846-1	Water	03/23/22
7 2 HU082	580-111851-1	Water	03/23/22
8 2 HU081 TB	580-111851-2	Water	03/23/22
9 2 Hy096	580-111851-3	Water	03/23/22
10 2 HU095 ГР	580-111851-4	Water	03/23/22
11			
12 MB 580- 386417			
132 - 386477			
143 - 386534			

LDC#: 542340	LDC	#:	5	42	3	4	C.	/
--------------	-----	----	---	----	---	---	----	---

VALIDATION FINDINGS WORKSHEET Blanks

Page: <u>1</u>	_of_1_	
Reviewer:	FT	

/								
METHOD: ✓ GC H	IPLC							
Please see qualifications belo	ow for all questions	s answered "N". Not	applicable questi	ons are identif	ied as "N/A".			
<u> </u>	associated with a	given method blank?	?					
YN N/A Was a method bla	ank performed for e	each matrix and whe	never a sample e	xtraction proc	edure was perfo	rmed?		
Y/N N/A Was a method bla								
<u>Y∕ N N/A</u> Were any contam	ninants found in the	method blanks? If	yes, please see fi	ndings below.				
Ľevel lٍV/Ď Only								
Y N N/A (Gasoline and arc	omatics only)Was a	a method blank analy	yzed with each 24	hour batch?				
Y N N/A Was a method bla						A 17	1 (un)	
Blank extraction date:	Blank and	alysis date: 46	122	Associated s	samples:	57	6 (ND)	
Conc. units: ug			<u> </u>					
Compound	Blank ID				Sample Identificati	on		
	MB 590- 3	66534						
gasoline Range	31.1							
Organics (C1-C12)					· · · · · · · · · · · · · · · · · · ·			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Blank extraction date:	Blank a	nalysis date:		Asso	ociated sample	es:		
Conc. units:	r							
Compound	Blank ID			S	Sample Identificati	on		
ALL CIPCLED DECLIETS WERE NOT								

All contaminants within five times the method blank concentration were qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: June 29, 2022

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU080	580-111846-1	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU096	580-111851-3	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-240079	04/01/22	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HyCDD Total PeCDF Total PCDD Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.000000784 ug/L 0.000000867 ug/L 0.000000801 ug/L 0.000000432 ug/L 0.00000100 ug/L 0.000000861 ug/L 0.000000617 ug/L 0.00000120 ug/L 0.00000353 ug/L 0.00000784 ug/L 0.00000784 ug/L 0.00000702 ug/L 0.00000242 ug/L 0.00000415 ug/L	All samples in SDG 580-111830-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU079	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000020 ug/L 0.00000049 ug/L 0.00000062 ug/L 0.00000036 ug/L 0.0000024 ug/L 0.0000011 ug/L 0.0000020 ug/L 0.0000036 ug/L 0.0000036 ug/L 0.0000034 ug/L 0.0000054 ug/L	0.0000020U ug/L 0.00000049U ug/L 0.00000062U ug/L 0.0000024U ug/L 0.0000024U ug/L 0.0000011J ug/L 0.0000020J ug/L 0.0000036J ug/L 0.0000081J ug/L 0.0000054J ug/L 0.0000054J ug/L
HU072	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-PeCDF CCDD Total HxCDD Total HxCDD Total HpCDD Total PeCDF Total PCDDF Total PCDDF Total PCDDF	0.0000019 ug/L 0.00000039 ug/L 0.00000092 ug/L 0.00000061 ug/L 0.000014 ug/L 0.0000050 ug/L 0.0000019 ug/L 0.0000019 ug/L 0.0000019 ug/L 0.0000050 ug/L 0.0000020 ug/L 0.0000029 ug/L	0.0000019U ug/L 0.00000039U ug/L 0.00000092U ug/L 0.00000061U ug/L 0.000014U ug/L 0.000019J ug/L 0.000019J ug/L 0.0000019J ug/L 0.0000019J ug/L 0.0000050J ug/L 0.000020J ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
нио90	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.0000020 ug/L 0.0000099 ug/L 0.0000090 ug/L 0.0000016 ug/L 0.0000013 ug/L 0.0000013 ug/L 0.0000058 ug/L 0.0000020 ug/L 0.000025 ug/L 0.000025 ug/L 0.000012 ug/L 0.000012 ug/L	0.0000020U ug/L 0.0000099U ug/L 0.0000099U ug/L 0.0000016U ug/L 0.0000023U ug/L 0.0000016U ug/L 0.0000013U ug/L 0.0000058J ug/L 0.0000025J ug/L 0.000025J ug/L 0.000012J ug/L 0.000012J ug/L
HU080	1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PCDF Total PCDDF Total PCDDF Total PCDDF Total PCDD Total PCDD	0.0000012 ug/L 0.0000099 ug/L 0.00000036 ug/L 0.0000015 ug/L 0.0000010 ug/L 0.0000024 ug/L 0.0000017 ug/L 0.0000035 ug/L 0.0000012 ug/L 0.0000014 ug/L 0.000014 ug/L 0.000014 ug/L 0.000014 ug/L 0.0000160 ug/L 0.0000068 ug/L	0.0000012U ug/L 0.00000099U ug/L 0.00000036U ug/L 0.0000015U ug/L 0.0000010U ug/L 0.0000044U ug/L 0.0000017J ug/L 0.0000035J ug/L 0.0000012J ug/L 0.000014J ug/L 0.000014J ug/L 0.0000060J ug/L 0.0000068J ug/L
HU082	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total PCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDF	0.0000014 ug/L 0.0000063 ug/L 0.00000065 ug/L 0.00000019 ug/L 0.0000070 ug/L 0.0000084 ug/L 0.0000084 ug/L 0.0000067 ug/L 0.0000031 ug/L 0.0000015 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000017 ug/L 0.0000071 ug/L	0.0000014U ug/L 0.00000063U ug/L 0.00000065U ug/L 0.0000019U ug/L 0.0000011U ug/L 0.0000070U ug/L 0.0000084U ug/L 0.0000067J ug/L 0.0000031J ug/L 0.000015J ug/L 0.000014J ug/L 0.0000071J ug/L
HU096	1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD/Total PCDD Total PCDD Total PCDD	0.0000011 ug/L 0.0000057 ug/L 0.0000051 ug/L 0.0000016 ug/L 0.0000043 ug/L 0.00000657 ug/L 0.0000011 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000031 ug/L	0.0000011U ug/L 0.0000057U ug/L 0.00000051U ug/L 0.0000016U ug/L 0.0000063J ug/L 0.00000657J ug/L 0.0000011J ug/L 0.000014J ug/L 0.0000064J ug/L 0.0000031J ug/L 0.0000033J ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples HU079 and HU080 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/L)	
Analyte	HU079	HU080	RPD (Limits)
1,2,3,4,6,7,8-HpCDD	0.0000020	0.0000012	50 (≤50)
1,2,3,4,6,7,8-HpCDF	0.000000027	0.000096U	200 (≤50)
1,2,3,4,7,8-HxCDD	0.0000045	0.00000060	29 (≤50)
1,2,3,4,7,8-HxCDF	0.0000049	0.000096U	181 (≤50)
1,2,3,4,7,8,9-HpCDF	0.000096U	0.0000089	166 (≤50)
1,2,3,6,7,8-HxCDD	0.0000051	0.0000073	35 (≤50)
1,2,3,6,7,8-HxCDF	0.000096U	0.0000099	163 (≤50)
1,2,3,7,8-PeCDD	0.000096U	0.0000065	175 (≤50)
1,2,3,7,8-PeCDF	0.000096U	0.0000010	162 (≤50)
1,2,3,7,8,9-HxCDD	0.000096U	0.0000036	186 (≤50)
1,2,3,7,8,9-HxCDF	0.000096U	0.0000015	146 (≤50)
2,3,4,6,7,8-HxCDF	0.00000062	0.0000010	47 (≤50)
2,3,4,7,8-PeCDF	0.0000036	0.0000044	20 (≤50)
OCDD	0.0000024	0.0000024	0 (≤50)

	Concentr	Concentration (ug/L)	
Analyte	HU079	HU080	RPD (Limits)
OCDF	0.00000029	0.0000097	108 (≤50)
Total HxCDD	0.0000096	0.000017	140 (≤50)
Total HxCDF	0.0000011	0.0000035	104 (≤50)
Total HpCDD	0.0000020	0.0000012	50 (≤50)
Total HpCDF	0.0000027	0.0000089	107 (≤50)
Total PeCDD	0.0000096U	0.0000065	175 (≤50)
Total PeCDF	0.0000036	0.0000014	118 (≤50)
Total PCDD/PCDF	0.000081	0.000014	53 (≤50)
Total PCDD	0.000054	0.0000060	11 (≤50)
Total PCDF	0.0000020	0.0000068	109 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111830-1	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

For sample HU090, 2,3,7,8-TCDF was not confirmed in the 2^{nd} column since the 1^{st} column result was less than the reporting limit.

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in six samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in six samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU079 HU072 HU090 HU080 HU082 HU096	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

Sample	Analyte	Modified Final Concentration	A or P	Code
Н∪079	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDF Total HpCDD Total PCDDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.0000020U ug/L 0.0000049U ug/L 0.00000062U ug/L 0.0000036U ug/L 0.0000024U ug/L 0.0000096J ug/L 0.0000011J ug/L 0.0000020J ug/L 0.0000081J ug/L 0.0000054J ug/L 0.0000054J ug/L	A	b
HU072	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDD Total PeCDF Total PCDDF Total PCDDF Total PCDDF	0.0000019U ug/L 0.0000039U ug/L 0.00000092U ug/L 0.00000061U ug/L 0.000014U ug/L 0.000014U ug/L 0.0000019J ug/L 0.0000019J ug/L 0.0000019J ug/L 0.0000019J ug/L 0.0000020J ug/L 0.0000029J ug/L	A	b
HU090	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-PeCDF Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.0000020U ug/L 0.0000099U ug/L 0.0000099U ug/L 0.0000016U ug/L 0.0000016U ug/L 0.0000016U ug/L 0.0000013U ug/L 0.0000025J ug/L 0.0000025J ug/L 0.000025J ug/L 0.000025J ug/L 0.000012J ug/L 0.000012J ug/L	Α	b

Sample	Analyte	Modified Final Concentration	A or P	Code
HU080	1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HyCDD Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD	0.000012U ug/L 0.0000099U ug/L 0.0000036U ug/L 0.000015U ug/L 0.000010U ug/L 0.000014U ug/L 0.0000024U ug/L 0.0000017J ug/L 0.0000012J ug/L 0.0000014J ug/L 0.000014J ug/L 0.000014J ug/L 0.000014J ug/L 0.000016J ug/L	A	b
HU082	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total PeCDF Total PCDDF Total PCDDF Total PCDD Total PCDD Total PCDD Total PCDD	0.0000014U ug/L 0.0000063U ug/L 0.0000065U ug/L 0.0000011U ug/L 0.0000070U ug/L 0.0000084U ug/L 0.0000067J ug/L 0.0000031J ug/L 0.0000015J ug/L 0.0000015J ug/L 0.000014J ug/L 0.0000071J ug/L 0.0000071J ug/L	A	b
HU096	1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.0000011U ug/L 0.0000057U ug/L 0.00000051U ug/L 0.0000016U ug/L 0.00000657J ug/L 0.000001J ug/L 0.000001J ug/L 0.0000014J ug/L 0.000004J ug/L 0.000003J ug/L	Α	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

DG #	#: <u>54234C21</u>		LETENESS tage 2B	S WORKSHEET		Date: 6/22 Page: _/_of/ Reviewer:
/ETH	IOD: HRGC/HRMS Polychlorinated Diox	ins/Dibenzo	ofurans (EPA	SW-846 Method 82		
	amples listed below were reviewed for ea tion findings worksheets.	ch of the fo	ollowing valida	tion areas. Validatio	on findings are	noted in attached
	Validation Area			Comm	ents	
I.	Sample receipt/Technical holding times	AA				
11.	HRGC/HRMS Instrument performance check		0			
III.	Initial calibration/ICV	4/1	% PSD	= 20/20	10V =	: 20/30
IV.	Continuing calibration	1	/	CU' = 20	1317	
V.	Laboratory Blanks	SW				
VI.	Field blanks	N				· · · · · · · · · · · · · · · · · · ·
VII.	Matrix spike/Matrix spike duplicates	٨	580-11	1790-3M>/V	7	
VIII.	Laboratory control samples	Las I	0		w	
IX.	Field duplicates	0=	1, 4			
X.	K. Labeled Compounds				···	
XI.	Target analyte quantitation	N				
XII.	Target analyte identification	N				
XIII.	System performance	N				
XIV.	Overall assessment of data					
lote:	N = Not provided/applicable R = Rir	lo compounds sate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER:	rce blank
	Client ID		···	Lab ID	Matrix	Date
1	нuo79 [2			580-111830-1	Water	03/23/22
2	HU072			580-111834-1	Water	03/23/22
3	HU090			580-111838-1	Water	03/23/22
4	HU080 <i>[</i> 7			580-111846-1	Water	03/23/22
5	HU082			580-111851-1	Water	03/23/22
6	HU096			580-111851-3	Water	03/23/22
7						
8						
9						
10 otes:						
T	12 11.0 2.100 761				TI	
10	1B 410-240079					
+					 	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:				
			-	

LDC #: 54234C21

VALIDATION FINDINGS WORKSHEET Blanks

Page:	<u>1_</u> of	<u>1_</u>
Reviewer:	FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Were all samples associated with a method blank?

(b)

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y Was the method blank contaminated?

Blank extraction date: 4/1/22 Blank analysis date: 4/1/22 Associated samples: All

Conc. units: ug/L____

Compound	Blank ID		 	Sam	ple Identificatio	n			
	MB 410 -240079	5x	1	2	3	4	5	6	
F	0.00000784	0.000003920	0.0000020U	0.0000019U	0.0000020U	0.0000012U	0.0000014U	0.0000011U	
K	0.00000867	0.000004335	0.00000049U	0.00000039U	0.00000099U		0.00000063U		
L	0.00000801	0.000004005			0.00000090U	0.00000099U	0.00000065U	0.00000057U	
E	0.00000432	0.000002160			0.0000016U	0.00000036U	0.00000019U		
N	0.0000100	0.000005000		0.00000092U	0.0000023U	0.0000015U	0.0000011U		
М	0.00000861	0.000004305	0.00000062U	0.00000061U	0.0000016U	0.0000010U	0.00000070U		
J	0.00000617	0.000003085	0.00000036U	0.00000050U	0.0000013U	0.00000044U	0.00000084U	0.00000051U	
G	0.0000120	0.000006000	 0.0000024U	0.000014U		0.0000024U	0.0000044U	0.0000016U	
Т	0.00000432	0.000002160	 0.00000096J	0.00000050J		0.00000017J	0.00000067J	0.00000043J	
х	0.0000353	0.000017650	 0.0000011J	0.0000019J	0.0000058J	0.0000035J	0.0000031J	0.00000657J	
U	0.00000784	0.000003920	 0.0000020J	0.0000019J	0.0000020J	0.0000012J		0.0000011J	
w	0.00000617	0.000003085	 0.00000036J	0.00000050J	0.0000025J	0.0000014J	0.0000015J	0.0000014J	
Total PCDD/PCDF	0.0000702	0.000035100	 0.0000081J	0.000020J	0.000025J	0.000014J	0.000014J	0.0000064J	
Total PCDD	0.00000242	0.000012100	 0.0000054J		0.000012J	0.0000060J	0.0000071J	0.0000031J	
Total PCDF	0.0000415	0.000020750	 0.0000020J	0.0000029J	0.000012J	0.0000068J	0.000007 % J	0.0000033J	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC#:_54234C21

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1	lof1_
Reviewer:	FT

METHOD: 8290A

	Concentrati	on (ug/L)	(≤50)
Compound	1	4	RPD
F	0.0000020	0.0000012	50
0	0.0000000027	0.000096U	200
С	0.0000045	0.00000060	29
к	0.0000049	0.0000096U	181
Р	0.0000096U	0.00000089	166
D	0.0000051	0.00000073	35
L	0.0000096U	0.0000099	163
В	0.0000096U	0.00000065	175
I	0.0000096U	0.0000010	162
Е	0.0000096U	0.00000036	186
N	0.0000096U	0.0000015	146
М	0.00000062	0.000010	47
J	0.0000036	0.00000044	20
G	0.0000024	0.0000024	0
Q	0.00000029	0.00000097	108
Т	0.000096	0.0000017	140
х	0.0000011	0.0000035	104
U	0.0000020	0.0000012	50
Υ	0.0000027	0.00000089	107
s	0.0000096U	0.00000065	175
w	0.00000036	0.0000014	118
Total PCDD/PCDF	0.0000081	0.000014	53
Total PCDD	0.000054	0.0000060	11
Total PCDF	0.0000020	0.0000068	109

LDC #: 54234C21	
-----------------	--

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	1_of1_
Reviewer:	FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?
 Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		3	H- no second column confirmation was performed. Result is < RL		text (v)
i					
ii.					

Comments: See sample calculation verification worksheet for recalculations

LDC #:54234C21

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: _	1	_of_	1	
Reviewer:		FT		

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?

Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		all	all analytes qualified I, EMPC (estimated maximum possible concentration)		J det/A (k)
ļ					
		1			
				100	

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Methane

Validation Level: Stage 2B

Laboratory: Energy Laboratories, Billings, MT

Sample Delivery Group (SDG): 580-111830-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU079	580-111830-1	Water	03/23/22
HU078	580-111830-2	Water	03/23/22
HU072	580-111834-1	Water	03/23/22
HU071	580-111834-2	Water	03/23/22
HU090	580-111838-1	Water	03/23/22
HU089	580-111838-2	Water	03/23/22
HU080	580-111846-1	Water	03/23/22
HU078	580-111846-2	Water	03/23/22
HU082	580-111851-1	Water	03/23/22
HU081	580-111851-2	Water	03/23/22
HU096	580-111851-3	Water	03/23/22
HU095	580-111851-4	Water	03/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

Where average calibration factors were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples HU078, HU071, HU089, HU078, HU081, and HU095 were identified as trip blanks. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

Samples HU079 and HU080 were identified as field duplicates. No results were detected in any of the samples.

IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Methane - Laboratory Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Methane - Field Blank Data Qualification Summary - SDG 580-111830-1

No Sample Data Qualified in this SDG

SDG _abor VIETI The s	#:54234C51VALIDATION #:_580-111830-1 ratory: Eurofins, Tacoma, WA HOD: GC Methane (Method RSK-175) samples listed below were reviewed for each	S	stage 2B		P Revi 2nd Revi	
	Validation Area			Commer	nts	
l.	Sample receipt/Technical holding times	A/A	<u> </u>			
II.	Initial calibration/ICV	414	90 000 =	20, 12	101 E	20
III.	Continuing calibration endury	Δ		CW 4	20/20	
IV.	Laboratory Blanks					
V.	Field blanks	NY	TB = 2	4 Le 8,	10,12	
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	7	45			
VIII.	Laboratory control samples	A	ICS IP)		
IX.		NO	D = 1.	7		
Х.	Target analyte quantitation	N	1			
XI.		N N				
XII	Overall assessment of data	A				
Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank						
	Client ID			Lab ID	Matrix	Date
1	ниот9			580-111830-1	Water	03/23/22
1 2 3	HU078 195			580-111830-2	Water	03/23/22
3	HU072			580-111834-1	Water	03/23/22

	Client ID		Lab ID	Matrix	Date
1	HU079	P	580-111830-1	Water	03/23/22
2	HU078	TB	580-111830-2	Water	03/23/22
13	HU072		580-111834-1	Water	03/23/22
4	HU071	TB	580-111834-2	Water	03/23/22
+ 5	HU090	•	580-111838-1	Water	03/23/22
6	HU089	TB	580-111838-2	Water	03/23/22
7	HU080	17	580-111846-1	Water	03/23/22
8	HU078	TP	580-111846-2	Water	03/23/22
9	HU082		580-111851-1	Water	03/23/22
1 0	HU081	T13	580-111851-2	Water	03/23/22
11	HU096		580-111851-3	Water	03/23/22
12	HU095	TB	580-111851-4	Water	03/23/22
13_					
14					
lotes	<u>:</u>				

MB 410-2396 HU MB 410-2396 50

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU097	580-111868-2	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU099	580-111868-4	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU101	580-111868-6	Water	03/24/22
HU104	580-111868-7	Water	03/24/22
HU103	580-111868-8	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/30/22	Chloromethane	22.7	All samples in SDG 580-111868-1	UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/04/22	Methyl isobutyl ketone	24.8	HU098 HU097 HU102 HU101 HU104 HU103	UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-385816	03/31/22	tert-Butylbenzene (13.03) sec-Butylbenzene (13.21) p-Isopropyltoluene (13.33) n-Butylbenzene (13.67)	0.300 ug/L 0.274 ug/L 0.298 ug/L 0.348 ug/L	HU100 HU099

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Samples HU097, HU099, HU101, and HU103 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU097	03/24/22	Ethylbenzene	0.080 ug/L	HU098
HU099	03/24/22	Ethylbenzene	0.079 ug/L	HU100
HU103	03/24/22	Ethylbenzene Methylene chloride	0.079 ug/L 1.4 ug/L	HU104

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU098	Ethylbenzene	0.080 ug/L	0.080J+ ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU100	Ethylbenzene	0.16 ug/L	0.16J+ ug/L
HU104	Ethylbenzene	0.082 ug/L	0.082J+ ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
HU097	1,2-Dichloroethane-d4	122 (81-118)	All analytes	J+ (all detects)	Р
HU102	1,2-Dichloroethane-d4 Dibromofluoromethane	120 (81-118) 120 (80-119)	All analytes except Chloromethane Chloroform	J+ (all detects)	А
HU102	Bromofluorobenzene	82 (85-114)	Chloromethane Chloroform	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	А
HU104	Dibromofluoromethane	127 (80-119)	All analytes except Chloroform	J+ (all detects)	Α
HU104	1,2-Dichloroethane-d4	119 (81-119)	Chloroform	J+ (all detects)	А

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
HU100 HU099	All laboratory calibrated analytes reported as TICs	J (all detects)	А
HU098 HU097 HU102 HU101 HU104 HU103	All TiCs	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, continuing calibration %D, surrogate %R, and TIC quantitation, data were qualified as estimated in eight samples.

Due to trip blank contamination, data were qualified as estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU098 HU097 HU100 HU099 HU102 HU101 HU104 HU103	Chloromethane	UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU098 HU097 HU102 HU101 HU104 HU103	Methyl isobutyl ketone	UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU097	All analytes	J+ (all detects)	Р	Surrogates (%R) (s)
HU102	All analytes except Chloromethane Chloroform	J+ (all detects)	А	Surrogates (%R) (s)
HU102	Chloromethane Chloroform	J- (all detects) UJ (all non-detects) J- (all detects) UJ (all non-detects)	А	Surrogates (%R) (s)
HU104	All analytes	J+ (all detects)	Α	Surrogates (%R) (s)
HU100 HU099	All laboratory calibrated analytes reported as TICs	J (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)
HU098 HU097 HU102 HU101 HU104 HU103	All TICs	NJ (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU098	Ethylbenzene	0.080J+ ug/L	Α	t
HU100	Ethylbenzene	0.16J+ ug/L	Α	t
HU104	Ethylbenzene	0.082J+ ug/L	А	t

SDG#	C#:54234D1a						Page:
метно	DD: GC/MS Volatiles (EPA SW-846 Met	hod 8260E	D)			Ziid	Noviono.
+ TIC The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.							
	Validation Area				Comme	nts	
l.	Sample receipt/Technical holding times	A /A					
II.	GC/MS Instrument performance check	A					
III.	Initial calibration/ICV	1 /yw	0/0 8	50	45.12	1W = 2	<u> </u>
IV.	Continuing calibration ending	16			cw	= 20	30
V.	Laboratory Blanks	SW			*		•
VI.	Field blanks	رجس	TB =	2,	4, 6, 8		
VII.	Surrogate spikes	5W			•		
VIII.	Matrix spike/Matrix spike duplicates	2	4>				
IX.	Laboratory control samples	4	les	V			
X.	Field duplicates	N					
XI.	Internal standards	Δ					
XII.	Target analyte quantitation	SW					
XIII.	Target analyte identification	N					
XIV.	System performance	N		-		<u> </u>	
XV.	Overall assessment of data	Δ					
Note:	A = Acceptable ND = Not N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blank	SB=So OTHER	nurce blank ੨:
	lient ID				Lab ID	Matrix	Date
1 ⁺ 2 H	U098 .				580-111868-1	Water	03/24/22
2 [†] 2 H	U097 TB				580-111868-2	Water	03/24/22
3 1 H	U100 ,				580-111868-3	Water	03/24/22
+ 1	U099 TB				580-111868-4	Water	03/24/22
0	35 A, K HU102				580-111868-5	Water	03/24/22
	HU101 78				580-111868-6	Water	03/24/22
	HU104 ,				580-111868-7	Water	03/24/22
+ 4	U103 TP				580-111868-8	Water	03/24/22
9 - #5 RE P) P) GAD-111868 3PE V							
lotes: 🕂					580 - 111 8667 P		¥
+1 M	5 580 - 38 5816						
2	- 38627	 -					

TARGET COMPOUND WORKSHEET

METHOD: VOA

WETHOD: VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Diffuoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachioroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Aliyi chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 542340/a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ${\cal O}$)

«Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0% / 30%)	Associated Samples	Qualifications
	3 30 22	1cv-tAc048	A	22.7	AI)	Jtdu (U)/A ND
	3 30 22					
		1				

LDC #:_	542340	a
---------	--------	---

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	<u></u> of
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\mathcal O$)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Y N N/A YN WA

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? (c) Were all %D and RRFs within the validation criteria of <20 %D and >0.05 RRF?

YN	<u>IN/A</u> W						
#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
92	4422	CON-TACO48	*	24.8		1.2.5-78.	Stat/us/A ND
	1450					MB 580-386271	1 /
						_	
					-		
		* Methy	isobuty!	Ketone			
-		9	.0				

LDC#: 54234Da

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". X/W N/A

Ŷ) N N/A

Were all surrogate %R within QC limits?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Sample ID	Surrogate	%Recover	ry (Limits)		Qualification	ie.	
	2	DCE	122	(81-118)	Statt 1P	(ND+ Det)	
				()				
	5	PCE	120	(81-118)	J+dut/A	quad All a	except A	*, K (NO)
		DFM	120	(80-119)	1	V		
				(')				
	স	BFB	82	(85-114)	7-/N7/V	grual A,	< only	(ND+ Dat
				()	·	<u> </u>	0	
	7	DFM	127	(80-119)	1+dw/A	qual all a	1 rept	K (ND+ D
				()		<u> </u>	1	
	7	PCE	119	(81-119)	1'dut/A	qual Ko	nly	(Det)
				()		V	<u> </u>	
				()				
				()	T			·
				()	·			
				()				
				()				
				()				
			<u> </u>	()				

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

LDC #: 542340)a

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_1_of_	
Reviewer:	FT	

	METHOD: GC/MS VOA (EPA SW 846 Method 8260 1/2)									
	Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".									
	Y N N/A Was a method blank associated with every sample in this SDG?									
- 1	Y N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?									
1	Y/N N/A Was there contam	nination in the m	ethod blanks?	'If yes, please	see the quali	fications belov	v.			
	Blank analysis date: 3 3	21/2/		_			۱. ۸	4.		
	Conc. units: ualL	\ 		Ass	ociated Sampl	es:	314	()	10)	
	Compound	Blank ID				Sa	mple Identificat	ion		
		MB 580-	385816							
16)I	0.300 (13.0	I							
	EEE	0.274 (13.	21)							
	999	0.298 (13	33)							
	111	0.348 (13.	67)	· · · · · · · · · · · · · · · · · · ·						
								· · · · · · · · · · · · · · · · · · ·		
	·									

Blank analysis date:_____
Conc. units:_____ Associated Samples:_

Compound	Blank ID	Sample Identification							
The second secon									
				! 					
									1

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #:	EPA SW 846 Me		TION FINDI Field E		KSHEET				Page:of iewer: <u>FT</u>
Y N N/A Were field Were target Blank units: 48 Ass	d blanks identifie get compounds o sociated samp	ed in this SDG? detected in the field blanks le units: <u>w</u>	?			(t))		
Field blank type: (circle o	ne) Field Blank	/ Rinsate / Trip Blank / Oth	ier: TB	Asso	ciated Sampl	es:			
Compound	Blank ID			s	ample Identifica	ation		1	
						1		1	
EE	0.080	0.080/5	<u> </u>				!		
		/							
						<u> </u>			
								<u> </u>	
Blank units: 49 As	oppisted comm	le unite: unite			<u> </u>	<u>L</u>			
Sampling date: 3 2	当22	ele units: va					_		
Field blank type: (circle o	ne) Field Blank	/ Rinsate / Trip Blank / Oth	er: <u> </u>	Asso	ciated Sampl	es:	<u>3</u>		
Compound	Blank ID			S	ample Identifica	ition			
meet of his and about the particular of the other of the his management and the particular of	4	3							
EE	0.079	0.16/3+		*****					
		/			,				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC#: 54234Pla	_
----------------	---

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:	of
Reviewer:	FT

			<u>Field E</u>	<u>Sianks</u>				Rev	iewer: <u>FT</u>
	d blanks identifie	ed in this SDG?				(+)			
Were target we let As	get compounds o	detected in the field blanks	?			(1)			
Slank units: walk Associated sample units: uglk sampling date: 3242									
Field blank type: (circle o	one) Field Blank	/ Rinsate / Trip Blank / Oth	ner:	Asso	ciated Sampl	es:			
Compound	Blank ID		T	S	ample Identifica	ation	 _	-	
Perfect to the property of the	8	7							
EE	0.079	0.082/5+							
E	1.4	-							
								_	
Blank units: As Sampling date:	ssociated samp	le units:							
Field blank type: (circle o	one) Field Blank	/ Rinsate / Trip Blank / Oth	er:	Asso	ciated Sampl	es:			<u></u>
Compound	Blank ID			S	ample Identifica	ition			
parado para a transfer e projetiva e e e e e e e e e e e e e e e e e e e									
					···· ··· ··· ···				
					!				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC #: \$4734010

VALIDATION FINDINGS WORKSHEET Target Analyte and TIC

Page:	(of
Reviewer:	_

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
		3,4	All laboratory calibrated analytes reported as		Jdets/A (v)
			tentatively identified compounds (TIC)		
		1,2,5-8	All tentatively identified compounds (TIC)		NJdets/A (v)
		'			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 14, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU104	580-111868-7	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/04/22	2,3,4,6-Tetrachlorophenol	39.9	All samples in SDG 580-111868-1	UJ (all non-detects)	Α

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-385811 (All samples in SDG 580-111868-1)	Hexachlorobenzene Hexachlorobutadiene	43 (53-125) 20 (22-124)	44 (53-125) 21 (22-124)	UJ (all non-detects) UJ (all non-detects)	Ъ

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-385811 (All samples in SDG 580-111868-1)	2,4-Dimethylphenol	23 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111868-1	All TICs	NJ (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D, LCS/LCSD %R, and TIC quantitation, data were qualified as estimated in four samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU098 HU100 HU102 HU104	2,3,4,6-Tetrachlorophenol	UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU098 HU100 HU102 HU104	Hexachlorobenzene Hexachlorobutadiene	UJ (all non-detects) UJ (all non-detects)	Р	Laboratory control samples (%R) (I)
HU098 HU100 HU102 HU104	All TICs	NJ (all detects)	Α	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

SDG#	: 54234D2a VALIDATIO t: 580-111868-1 atory: Eurofins, Tacoma, WA		LETEN tage 2E		WORKSHEET		Date: 6 21 22 Page: 1 of 1 Reviewer: 7 Reviewer: 7
The sa	OD: GC/MS Semivolatiles (EPA SW-846 + て\C amples listed below were reviewed for ea- ion findings worksheets.			⁄alida	tion areas. Validation	n findings are	noted in attached
	Validation Area				Comme	ents	
1.	Sample receipt/Technical holding times	AIA					
II.	GC/MS Instrument performance check	Δ	,				
III.	Initial calibration/ICV	Δ,Δ	1/0 12	SO	£ 5, 12	1cv =	~ W
IV.	Continuing calibration ending	SW	-		وں	V £ 20/5	\mathcal{O}
V.	Laboratory Blanks	Δ					
VI.	Field blanks	N					
VII.	Surrogate spikes	9W					
VIII.	Matrix spike/Matrix spike duplicates	2	S	>			
IX.	Laboratory control samples	52	یں یا	> IV)		
X.	Field duplicates	N					
XI.	Internal standards	\			•		
XII.	Target analyte quantitation						
XIII.	Target analyte identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data						
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected		D = Duplicate TB = Trip blank EB = Equipment blank	OTHER	urce blank :
	Client ID				Lab ID	Matrix	Date
	HU098				580-111868-1	Water	03/24/22
2 1	HU100				580-111868-3	Water	03/24/22
+ 3	HU102				580-111868-5	Water	03/24/22
+	HU104				580-111868-7	Water	03/24/22
5 June 1997							
6							
7							
8							
9							
lotes:							7
- N	10 580-3581			<u> </u>			
				<u> </u>			
- 1			- 1	l		1	I

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

VILITIOD. COMIC GVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chioroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachioroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachiorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW,Benzo(e)pyrene	YYYY, a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA, 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroanlline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#: 5423402a

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	of
Reviewer:	FT

SVOA

METHOD: GC/MS VOA (EPA SW 846 Method 8260) 8270E

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y/N/N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Ý	N	N/A	Were all %D and RRFs	within the validation	criteria of ≤20 %D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Qualifications
	4/4/22	ccl	*	39.9		All	J+21 /11/A (HD)
	1259						, , , ,
		* 2,3,4	6 - Tetrachlo	rophenol			

LDC #:	542	340	20
--------	-----	-----	----

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:	lof/
Reviewer:	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 C)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A

Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits	s)		Qualifications
	MB 580-385 & 1)	TBP	40	(43-140)	mo a	ual
				()		
				()		
				()		
				()		
L				()		
				()		
				()	1	
				()		
				()		
				()		
				()		
				()		
				()		
			ı	()		
				()		
				()		
				()		
				()		
				()		
				()		
				()		
)		
)		
)		

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl

(TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol

(2CP) = 2-Chlorophenol - d4

LDC#: 54234D2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	lof
Reviewer:	FT

METHOD: GC/MS BNA (Method €)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a LCS required?

YNN/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	%	LCS R (Limits)		%R	LCSD (Limits)		RPD (Limits)	Associa	ited Samples	Qualifications	
	LOSID	<u>\$</u> 5	43	(53-	125		(53-12	S	()	AII	(1)		uJ.
	580-38581	\ u	20	(22 -	124)	2	(22-17		()	1		1/1/	
		0		()	23	(20)	()	V	(w)	Jut 18	
				()		()	()			71	
				()		()	()				
				<u>(</u>)		()	()				
	<u> </u>			()		()	()				
				()		()	()				
_)					
				()		()	()		· 	 	
				()		()	()				
			<u> </u>	()		()	()				
				()		()	()				
				()		()	()				
)		()	()				
				()		()	()				
				()		()	()				
								بد	()				
				()		())	()				
				()		()	()				
				()		()	()				
				()		()	()				
				()		((()				
				()		()	()				
)	()				

LDC#: 54234 Dla

VALIDATION FINDINGS WORKSHEET <u>Target Analyte Quantitation</u>

Page:	1	_of_	_1_	_
Reviewer	F	T		

(V)

METHOD: GCMS SVOA EPA SW 846 Method 8270 €

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Y/N N/A Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	TIC compounds	Qualifications
		All	All Tentatively Identified	NJ/A
			Compounds results (TICs)	
	,			
_	i			
	· · · · · · · · · · · · · · · · · · ·			
omm	nents: <u>See s</u>	sample calculation verification work	sheet for recalculations	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU104	580-111868-7	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification
Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

SDG #	#: <u>54234D2b</u> VALIDATIO #: <u>580-111868-1</u> atory: <u>Eurofins, Tacoma, WA</u>		LETENES tage 2B	S WORKSHEET		Date: 1/2 Page: 1 of 1 eviewer: 5
The sa	IOD: GC/MS Polynuclear Aromatic Hydro amples listed below were reviewed for ea tion findings worksheets.					~
	Validation Area	T		Comme	ents	
	Sample receipt/Technical holding times	Δ / Λ				<u></u>
II.	GC/MS Instrument performance check	4				
III.	Initial calibration/ICV	A /A	0/0 /20	0 = 5, r2	10	V L W
IV.	Continuing calibration ending	A	70	CUV =	20/50	
	Laboratory Blanks	Δ				
VI.	Field blanks	N		· · · · · · · · · · · · · · · · · · ·		
VII.	Surrogate spikes	A				· · · · · · · · · · · · · · · · · · ·
VIII.	Matrix spike/Matrix spike duplicates	7	45			
IX.	Laboratory control samples	Α.	ICS W			
X.	Field duplicates	N				
XI.	Internal standards	1				
XII.	Target analyte quantitation	N				
XIII.	Target analyte identification	N				1112
XIV.		N				
XV.	System performance Overall assessment of data	\ \ \				
lote:	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc OTHER:	ce blank
	Client ID			Lab ID	Matrix	Date
17	HU098			580-111868-1	Water	03/24/22
2	HU100			580-111868-3	Water	03/24/22
3	HU102			580-111868-5	Water	03/24/22
4	HU104			580-111868-7	Water	03/24/22
5						
6						
7						
8						
9						
otes:						
	NB 530-385811					
		-				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 21, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU104	580-111868-7	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Magnesium Manganese	69.9 ug/L 2.40 ug/L	All samples in SDG 580-111838-1
ICB/CCB	Calcium Magnesium Manganese	0.0877 mg/L 0.149 mg/L 0.00540 mg/L	All samples in SDG 580-111838-1
ICB/CCB	Potassium Sodium	0.303 mg/L 0.323 mg/L	HU100 HU102 HU104
ICB/CCB	Potassium Sodium	0.262 mg/L 0.303 mg/L	HU098

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Sample Analyte		Modified Final Concentration	
HU098	Manganese	19 ug/L	19J+ ug/L	

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU102	Manganese	3.8 ug/L	6.8Ų ug/L
HU104	Manganese	6.2 ug/L	6.8U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to laboratory blank contamination, data were qualified as estimated or not detected in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU098	Manganese	19J+ ug/L	Α	р
HU102	Manganese	6.8U ug/L	А	b
HU104	Manganese	6.8U ug/L	Α	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

LDC #: 54234D4b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 580-111868-1 Laboratory: Eurofins, Tacoma, WA Page: of Page: of Page: All Page: Al

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l	Sample receipt/Technical holding times	AA	
. 11.	Instrument Calibration	A	
_111.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N.	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	LCSILCSD
X.	Field Duplicates	N	
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Labin	Matrix	Dete
	Client ID	Lab ID	Iviatrix	Date
1	HU098	580-111868-1	Water	03/24/22
2	HU100	580-111868-3	Water	03/24/22
3	HU102	580-111868-5	Water	03/24/22
4	HU104	580-111868-7	Water	03/24/22
5			ř	
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Notes:			

LDC #: 5423474b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: __of __ Reviewer: __ATV__

All circled elements are applicable to each sample.

	1	
Sample ID	Matrix	Target Analyte List (TAL)
1-)4	W	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb Mg Mn Hg, Ni K, Se, Ag, Na Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

LDC #: 54234D4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:	1_	_of_	1_
Reviewer:	ATL		

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L

Soil preparation factor applied: NA
Associated Samples: all

Onde:b

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (ug/L)	Maximum ICB/CCB ^a (mg/L)	Action Level	1	3	4					
Са			0.0877	438.5								
Mg			0.149	745								
Mn			0.00540	27	19J+	3.8/6.8	6.2/6.8					
Mg		69.9		349.5								
Mn		2.40		12								

Sample Concentration units, unless otherwise noted: ug/L Associated Samples: 2,3,4

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
К			0.303	1515	·				
Na			0.323	1615					

Sample Concentration units, unless otherwise noted: ug/L Associated Samples: 1

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
к			0.262	1310				1	
Na			0.303	1515					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 21, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU104	580-111868-7	Water	03/24/22
HU100MS	580-111868-3MS	Water	03/24/22
HU100MSD	580-111868-3MSD	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Dissolved Organic Carbon and Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. C
- The analysis with this flag should not be used because another more d technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits. 1
- m Result exceeded the calibration range.
- 0 Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
HU098	Nitrate as N	50.17 hours	48 hours	J- (all detects)	Р
HU100	Nitrate as N	50.78 hours	48 hours	J- (all detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to technical holding time, data were qualified as estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU098 HU100	Nitrate as N	J- (all detects)	Р	Technical holding times (h)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234D6 Stage 2B SDG #: 580-111868-1 Reviewer: -AT Laboratory: Eurofins, Tacoma, WA 2nd Reviewer: METHOD: (Analyte) Alkalinity (SM2320B), Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0), DOC (EPA SW-846 Method 9060A), Nitrate/Nitrite-N (EPA Method 353.2), TOC (EPA SW-846 Method 9060A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments A,SW Sample receipt/Technical holding times П Initial calibration Calibration verification IV Laboratory Blanks V Field blanks VI. Matrix Spike/Matrix Spike Duplicates VII. Duplicate sample analysis VIII. Laboratory control samples IX. Field duplicates **Target Analyte Quantitation** Overall assessment of data SB=Source blank Note: A = Acceptable ND = No compounds detected D = Duplicate N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank **Client ID** Lab ID Matrix Date 580-111868-1 HU098 Water 03/24/22 HU100 580-111868-3 Water 03/24/22 2 3 HU102 580-111868-5 Water 03/24/22 HU104 580-111868-7 Water 03/24/22 5 HU100MS Water 580-111868-3MS 03/24/22 6 HU100MSD 580-111868-3MSD Water 03/24/22 8 10 11

12 13 LDC #: 54234D6

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: #TV

All circled methods are applicable to each sample.

Sample ID	Parameter
1-)4	ph tds (c)(F)(NO) NO, 60) O-PO, (AIK)CN NH, TKN (OC)Cr6+ CIO, (Br) (NO3/N1)2-N) (DOC)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
QC	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
5,6	ph TDS $(C)(F)(NO)_3$ NO $_2$ $(SO)_4$ O-PO $_4$ AIK CN NH $_3$ TKN TOC Cr6+ CIO $_4$ (Br)
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4

Comments:___

LDC #: 54 234DG

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: 1 of 1
Reviewer: ATC

All circled dates have exceeded the technical holding time.

N N/A

Were all samples preserved as applicable N N/A Were all samples preserved as applicable to each method?

N N/A Were all cooler temperatures within validation criteria? Ode: h

Method:		NO3-N (EPA 300.0)				
Parameters) :	water	, 				
Technical h	olding time:	48 hrs	•				
Sample ID		Analysis date	Total Time (WS)	Qualifier	Analysis date	Total Time	Qualifier
	10:50-)13:50	3/26/22	50.17	JUJIP (deta)		
2	3/24/22 10:36-) 13:36 3/24/22 13:33-) 16:33 3/24/22 14:00-) 17:00 3/24/22	3/26/22	50.78	1			
3	13:33-) 16:33	3/26/22	48.62	no qual			
4	3/24/22	3/26/22	48.62 48.55	<u> </u>			
						<u> </u>	
						7.1	
						·	·

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU097	580-111868-2	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU099	580-111868-4	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU101	580-111868-6	Water	03/24/22
HU104	580-111868-7	Water	03/24/22
HU103	580-111868-8	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples HU097, HU099, HU101, and HU103 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Gasoline Range Organics - Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

SDG	#: <u>54234D7</u> VALIDATIO #: <u>580-111868-1</u> ratory: <u>Eurofins, Tacoma, WA</u>		PLETENE Stage 2B	SS WORKSHEE	т		Date: 621 Page: _of_ eviewer:
The s	HOD: GC/MS Gasoline Range Organics (amples listed below were reviewed for eation findings worksheets.					hod)	
	Validation Area			Com	ments	3	
1.	Sample receipt/Technical holding times	4.4					
11.	GC/MS Instrument performance check	A					
III.	Initial calibration/ICV	4.4	()	10V = 20)		
IV.	Continuing calibration ending			CW 4 20/20)		
V.							
VI.	110 = 5 - 1 - 1						
VII.	Surrogate spikes	A		1 1			
VIII.							
IX.	Laboratory control samples	Δ	les 1	0			
X.	Field duplicates	NP					
XI.	Internal standards	<u>\(\(\) \)</u>					
XII.	Target analyte quantitation	N					
XIII.	Target analyte identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data						
Note:	N = Not provided/applicable R = Rir	No compounds nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	ank	SB=Source OTHER:	e blank
	Client ID			Lab ID	N	latrix	Date
	HU098			580-111868-1	\ v	Vater	03/24/22
7 2	HU097 T P			580-111868-2	v	Vater	03/24/22
	HU100			580-111868-3	_ \ v	Vater	03/24/22
4	ниоээ тъ			580-111868-4	v	Vater	03/24/22
5	HU102			580-111868-5	v	Vater	03/24/22
6	HU101 て プ				v	Vater	03/24/22
7	HU104 ,	580-111868-7	v	Vater	03/24/22		
8	HU103 T 13			580-111868-8	_ \ v	Vater	03/24/22
9							
Notes:	-2					T	
N	NB 980 - 386477						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 28, 2022

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU104	580-111868-7	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- Presumed contamination from FB or ER. f
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- i Internal standard performance was unsatisfactory.
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits. ı
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-240079	04/01/22	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD	0.000000784 ug/L 0.000000867 ug/L 0.000000801 ug/L 0.000000432 ug/L 0.00000100 ug/L 0.00000661 ug/L 0.00000120 ug/L 0.00000120 ug/L 0.00000353 ug/L 0.00000784 ug/L 0.00000784 ug/L 0.00000702 ug/L 0.00000702 ug/L 0.00000415 ug/L	All samples in SDG 580-111868-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU098	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDD Total HxCDF Total PeCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000012 ug/L 0.0000013 ug/L 0.00000038 ug/L 0.0000027 ug/L 0.0000012 ug/L 0.00000038 ug/L 0.0000052 ug/L 0.0000021 ug/L 0.000022 ug/L 0.000011 ug/L 0.0000093 ug/L	0.0000012U ug/L 0.0000013U ug/L 0.0000038U ug/L 0.0000027U ug/L 0.0000012U ug/L 0.0000052J ug/L 0.0000052J ug/L 0.000021J ug/L 0.000021J ug/L 0.000011J ug/L 0.0000093J ug/L
HU100	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-PeCDF Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD/PCDF	0.0000035 ug/L 0.0000014 ug/L 0.00000059 ug/L 0.0000013 ug/L 0.0000012 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000035 ug/L 0.0000015 ug/L 0.0000031 ug/L 0.0000013 ug/L	0.0000035U ug/L 0.0000014U ug/L 0.00000059U ug/L 0.0000013U ug/L 0.0000012U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000044J ug/L 0.0000035J ug/L 0.0000015J ug/L 0.0000013J ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU102	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF OCDD Total HxCDD Total HxCDF Total HpCDD Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000017 ug/L 0.00000042 ug/L 0.00000070 ug/L 0.00000072 ug/L 0.0000039 ug/L 0.0000015 ug/L 0.0000018 ug/L 0.0000017 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000036 ug/L	0.0000017U ug/L 0.00000042U ug/L 0.00000070U ug/L 0.00000072U ug/L 0.0000039U ug/L 0.0000015J ug/L 0.0000018J ug/L 0.0000017J ug/L 0.0000064J ug/L 0.0000013J ug/L 0.0000071J ug/L 0.0000071J ug/L
HU104	1,2,3,4,6,7,8-HpCDD 1,2,3,7,8,9-HxCDD OCDD Total HxCDD Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDF	0.0000016 ug/L 0.0000022 ug/L 0.000012 ug/L 0.0000075 ug/L 0.0000016 ug/L 0.00000057 ug/L 0.000017 ug/L 0.0000023 ug/L	0.0000016U ug/L 0.0000022U ug/L 0.000012U ug/L 0.0000075J ug/L 0.0000016J ug/L 0.00000057J ug/L 0.000017J ug/L 0.0000023J ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111868-1	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in four samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU098 HU100 HU102 HU104	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU098	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDD Total HxCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000012U ug/L 0.0000013U ug/L 0.00000038U ug/L 0.0000027U ug/L 0.0000012U ug/L 0.0000052J ug/L 0.0000021J ug/L 0.000022J ug/L 0.000011J ug/L 0.000011J ug/L	А	b
HU100	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDF Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDF	0.0000035U ug/L 0.0000014U ug/L 0.00000059U ug/L 0.0000013U ug/L 0.0000012U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000044J ug/L 0.0000035J ug/L 0.0000015J ug/L 0.0000013J ug/L	A	b
HU102	1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF OCDD Total HxCDD Total HxCDD Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.0000017U ug/L 0.00000042U ug/L 0.00000070U ug/L 0.00000041U ug/L 0.0000039U ug/L 0.0000015J ug/L 0.0000018J ug/L 0.0000017J ug/L 0.0000064J ug/L 0.000013J ug/L 0.000071J ug/L	A	b

Sample	Analyte	Modified Final Concentration	A or P	Code
HU104	1,2,3,4,6,7,8-HpCDD 1,2,3,7,8,9-HxCDD OCDD Total HxCDD Total HpCDD Total PeCDF Total PCDD/PCDF Total PCDF	0.0000016U ug/L 0.00000022U ug/L 0.000012U ug/L 0.0000075J ug/L 0.0000016J ug/L 0.00000057J ug/L 0.000017J ug/L 0.0000023J ug/L	Α	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

SDG # Labora	t: 580-111868-1 atory: Eurofins, Tacoma, WA		tage 2B	SW 946 Mathad 920	2nd R	Page: /of / eviewer: eviewer:
The sa	OD: HRGC/HRMS Polychlorinated Dioxi amples listed below were reviewed for ea ion findings worksheets.					noted in attached
	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	AIA				
11.	HRGC/HRMS Instrument performance check	Δ				
III.	Initial calibration/ICV	AIA	3/0 P	0 = 20/20	164	4 20/30
IV.	Continuing calibration		· · · · · · · · · · · · · · · · · · ·		V 4 30	1312
V.	Laboratory Blanks	5~				
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	Δ	580.	-111780-31	45 IP	
VIII.	Laboratory control samples	A	Les 10		·	
IX.	Field duplicates	N				
X.	Labeled Compounds	1				
XI.	Target analyte quantitation	N				
XII.	Target analyte identification	N				
XIII.	System performance	N				
XIV.	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc OTHER:	ce blank
- 4	Client ID			Lab ID	Matrix	Date
1 1				580-111868-1	Water	03/24/22
2 1	HU100			580-111868-3	Water	03/24/22
3 1	1 U102			580-111868-5	Water	03/24/22
3 H	HU104			580-111868-7	Water	03/24/22
5						
6						
7						
8						
9					·	
10						
Notes:			- T- T		<u> </u>	 1
 	18 410-240079					
-						
-					- 	

VALIDATION COMPLETENESS WORKSHEET

LDC #: 54234D21

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:	

LDC #: 54234D21

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of_	_1_
Reviewer:_		FT	

(b)

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N".	Not applicable questions are identified as "N/A".
---	---

Y Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y Was the method blank contaminated?

Blank extraction date:	4/1/22	Blank analysis date:	4/1/22	Associated samples:	All
Conc. units: ug/L				•	

Compound	Blank ID		Sample Identification						
	MB 410 -240079	5x	· ·	1	2	3	4		
F	0.00000784	0.000003920			0.0000035U	0.0000017U	0.0000016U		
κ	0.00000867	0.000004335		0.0000012U	0.0000014U	0.00000042U			
L	0.000000801	0.000004005		0.0000013U	0.00000059U	0.00000070U			
E	0.00000432	0.000002160		0.00000038U	0.0000013U	0.00000041U	0.00000022U		
N	0.0000100	0.000005000			0.0000012U				
М	0.000000861	0.000004305		0.0000027U	0.0000012U	0.00000072U			
J	0.000000617	0.000003085	·	0.0000012U	0.0000011U				
G	0.00000120	0.000006000		i		0.0000039U	0.000012U		
Т	0.000000432	0.000002160		0.00000038J		0.0000015J	0.00000075J		
x	0.0000353	0.000017650		0.0000052J	0.0000044J	0.0000018J			
U	0.000000784	0.000003920	·		0.0000035J	0.0000017J	0.0000016J		
w	0.00000617	0.000003085		0.0000021J	0.0000015J	0.00000064J	0.000000057J		
Total PCDD/PCDF	0.0000702	0.000035100		0.000022J	0.000031J	0.000013J	0.000017J		
Total PCDD	0.00000242	0.000012100		0.000011J		0.0000071J			
Total PCDF	0.00000415	0.000020750		0.0000093J	0.000013J	0.0000036J	0.0000023J		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #:54234D21

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	_1	_of_	_1_
Reviewer:		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?

N/A Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		all	all analytes qualified I, EMPC (estimated maximum possible concentration)		J det/A (k)

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Methane

Validation Level: Stage 2B

Laboratory: Energy Laboratories, Billings, MT

Sample Delivery Group (SDG): 580-111868-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU098	580-111868-1	Water	03/24/22
HU097	580-111868-2	Water	03/24/22
HU100	580-111868-3	Water	03/24/22
HU099	580-111868-4	Water	03/24/22
HU102	580-111868-5	Water	03/24/22
HU101	580-111868-6	Water	03/24/22
HU104	580-111868-7	Water	03/24/22
HU103	580-111868-8	Water	03/24/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- g MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples HU097, HU099, HU101, and HU103 were identified as trip blanks. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Methane - Laboratory Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Methane - Field Blank Data Qualification Summary - SDG 580-111868-1

No Sample Data Qualified in this SDG

SDG #3 _abora METH(The sa	tory: <u>580-111868-1</u> tory: <u>Eurofins, Tacoma, WA</u> DD: GC Methane (Method RSK-1	75)	LETENESS WORKSHEET tage 2B ollowing validation areas. Validation fine	Date: 6/2/22 Page: 1 of Reviewer: 2nd Reviewer: dings are noted in attached
 	Validation Area		Comments	
	Samula receipt/Technical holding times	ا ۸ / ۸ ا		

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II	Initial calibration/ICV	AIA	% PSD/1CV = 20
111.	Continuing calibration endure		$\frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}
IV.	Laboratory Blanks	Y	
V.	Field blanks	ND	TB=2,4,6,8
VI.	Surrogate spikes	7	, ,
VII.	Matrix spike/Matrix spike duplicates	N	⇔
VIII.	Laboratory control samples	<u>\</u>	LCD ID
IX.	Field duplicates	N	
X.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
XII	Overall assessment of data	4	

Note: A = Acceptable

ND = No compounds detected

D = Duplicate TB = Trip blank SB=Source blank OTHER:

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

Field blank EB = Equipment blank

Client ID Lab ID Matrix Date HU098 580-111868-1 03/24/22 Water 2 TB HU097 580-111868-2 Water 03/24/22 3 HU100 Water 03/24/22 580-111868-3 TB HU099 580-111868-4 Water 03/24/22 5 HU102 580-111868-5 Water 03/24/22 6 TB Water HU101 03/24/22 580-111868-6 7 HU104 580-111868-7 Water 03/24/22 8 HU103 TB 580-111868-8 Water 03/24/22 9 10 11

NOTES.							
	MB 410-2396						
	MB 410-24 118	5					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

July 5, 2022

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111967-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1	Water	03/28/22
HU093	580-111967-2	Water	03/28/22
HU105	580-111967-3	Water	03/28/22
HU105	580-111967-4	Water	03/28/22
HU106	580-111967-5	Water	03/28/22
HU106	580-111967-6	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- Presumed contamination from FB or ER. f
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- ı LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- S Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/30/22	Chloromethane	22.7	All samples in SDG 580-111967-1	UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-386409	04/05/22	1,3,5-Trimethylbenzene (12.78) tert-Butylbenzene (13.03) 1,2,4-Trimethylbenzene (13.09) sec-Butylbenzene (13.20) p-Isopropyltoluene (13.33) 1,3,5-Trichlorobenzene (14.44)	0.229 ug/L 0.301 ug/L 0.262 ug/L 0.276 ug/L 0.299 ug/L 0.210 ug/L	HU094 HU093 HU105 HU106
MB 580-386570	04/06/22	Acetone	3.35 ug/L	HU105 HU106

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Samples HU094, HU105 (580-111967-4), and HU106 (580-111967-6) were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU105 (580-111967-4)	03/28/22	Methylene chloride	1.6 ug/L	HU105 (580-111967-3)
HU106 (580-111967-6)	03/28/22	Methylene chloride	1.3 ug/L	HU106 (580-111967-5)

Sample HU106 (580-111967-5) was identified as an equipment rinsate. No contaminants were found.

Sample HU105 (580-111967-3) was identified as a field blank. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
HU093	1,2-Dichloroethane-d4	124 (81-118)	All analytes	NA	-
HU105 (580-111967-3)	1,2-Dichloroethane-d4 Dibromofluoromethane	121 (81-118) 124 (80-119)	All analytes	NA	-
HU105 (580-111967-4)	Dibromofluoromethane	120 (80-119)	All analytes except Methylene chloride	NA	-
HU106 (580-111967-5)	1,2-Dichloroethane-d4 Dibromofluoromethane	124 (81-118) 121 (80-119)	All analytes	NA	-
HU106 (580-111967-6)	Dibromofluoromethane	122 (80-119)	All analytes except Methylene chloride	NA	-

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111967-1	All laboratory calibrated analytes reported as TICs	J (all detects)	А
All samples in SDG 580-111967-1	All TICs	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D and TIC quantitation, data were qualified as estimated in six samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-111967-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU094 HU093 HU105 (580-111967-3) HU105 (580-111967-4) HU106 (580-111967-5) HU106 (580-111967-6)	Chloromethane	UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU094 HU093 HU105 (580-111967-3) HU105 (580-111967-4) HU106 (580-111967-5) HU106 (580-111967-6)		J (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)
HU094 HU093 HU105 (580-111967-3) HU105 (580-111967-4) HU106 (580-111967-5) HU106 (580-111967-6)	All TICs	NJ (all detects)	Α	Tentatively Identified Compounds (TIC) quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

SDG #Labora METH The sa	:54234E1a	S hod 8260D	tage 2B	S WORKSHEET tion areas. Validation	2nd i	Date: 6/21/22 Page: 101/Reviewer: 77 Reviewer: 70 noted in attached
	Validation Area			Comm	ents	
l.	Sample receipt/Technical holding times	A/A				
11.	GC/MS Instrument performance check	А				
III.	Initial calibration/ICV	A 19W	% psD	=15. (2	1012	= 20
IV.	Continuing calibration enting	٨		' cu	1 620/50	
	Laboratory Blanks	سي	*		*	Y
VI.	Field blanks	SW	TB= 1,	4,6	-B-3 t	2
VI).	Surrogate spikes	5W		l	ER= 5'	
VIII.	Matrix spike/Matrix spike duplicates	N				
IX.	Laboratory control samples	4	LCS 10			
X	Field duplicates	N				
XI.	Internal standards	Δ.				
XII.	Target analyte quantitation	501				
XIII.	Target analyte identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data					
Note:	N = Not provided/applicable R = Rins	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
111	1U094			580-111967-1	Water	03/28/22
211	HUY93 TB			580-111967-2	Water	03/28/22
3 1 1	HU105 13:25 FB			580-111967-3	Water	03/28/22
211	3: E 1U105 13:15 TB			580-111967-4	Water	03/28/22
				580-111967-5	Water	03/28/22
51 1	HU106 (C:0D TB			580-111967-6	Water	03/28/22
7						
8						
Notes:	a can all shall					
	B 580-386409				 	
2	- 386570 - 386749					

TARGET COMPOUND WORKSHEET

METHOD: VOA

METHOD: VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-isopropyitoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	lil. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1, 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1: 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. tsopropytbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Нехапопе	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#: 94274E/a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	101/
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 \mathcal{D})

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

	- 4 and description and description of the approache description and identified at 1477.	
X NJN/A	Was an initial calibration verification standard analyzed after each ICAL for each instrument?	\bigcirc
Y N N/A	Were all %D within the validation criteria of ≤20 %D?	(८)

"	Date	Standard ID	Compound	Fip ding %D (Limit! <20.0%/30%)	Associated Samples	Qualifications
	3 30 22	ICV-TACO48	4	22.7	All	Jtdu /UJ/A (ND)
	3 30 22					
<u></u>						
<u></u>						
<u> </u>						
 			-			
 						
 						
 						
 						
-		***				
-						
1						
╟						
<u> </u>						
<u></u>						

LDC#: 54274 Ela

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1 _{of} 7
Reviewer:	FT

	METHOD: GC/MS VOA (EP/	A SW 846 Metho	od 8260 \mathcal{D})	·							
	Please see qualifications below N N/A Was a method bla	ow for all questic ank associated v	ons answered vith every sam	"N". Not appli ple in this SD	cable questior G?	ns are identifie	ed as "N/A".				
	Y N/A Was a method bla	ank analyzed at	least once eve	ry 12 hours fo	or each matrix						
	Y/N N/A Was there contant Blank analysis date: 4 5		ethou bianks (·		N.	_	(QN)	1	
	Conc. units: uall		·	Asso	ociated Sampl	es:	1-7	ク , り	(44)		
	Compound	Blank ID				Sa	mple Identificat	ion			
		MB 580-3	26409								
710	AAA	0.229(12)	a)								
	cec	0.301 (13	03						ļ		
	DDD	0.262 (13	.09)								
	EEE	0.776 (13	,20)								
	644	0.299 (13	.33)								
	1,3,5- Trichlandens	ene 0.210 (14.44)								
	Blank analysis date: 4 6 2 Conc. units: 4 1 2	,v		Asso	ciated Samples:		4,6	الم ا	·)		
	Compound	Blank ID				Sai	nple Identificat	ion	7		
		MB 530-	386570								
	F	3.75									

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC#: 54234E \a METHOD: GC/MS VOA (EF		-thad 8260 {	^	rion Findir <u>Field B</u>		KSHEET			Re [,]	Page:of eviewer: <u>FT</u>
Y N N/A Were field by Were target Blank units: WA ASSO Sampling date: 12 2 2	olanks identifie t compounds o ociated sampl	ed in this SDG detected in the le units: ug	3? ne field blanks?					(t)		
Field blank type: (circlelone	e) Field Blank T	/ Rinsate / Tri	ip Blank / Oth	ner: TB	***	ciated Sample	les:	2 (N) (av	
Compound	Blank ID		T		Sa	ample Identifica	ition	T	1	
E	1.6							T		
	•									
		<u> </u>				<u> </u>				
		 '				·	-			
				1		i	-			
Blank units: 48 Ass Sampling date: 728 Field blank type: (circle one	pciated samp 22 / e) Field Blank	l e units:<u>μα</u> (. / Rinsate / Τι	rip Blank / Oth	ner: TB	Asso	ciated Sample	les:	5(1	(QN	
Compound	Blank ID				Sa	ample Identifica	ation			
	6									
E	1.3	<u> </u>		1		<u> </u>		<u>'</u>		
	-	<u> </u>	<u> </u>	 					<u> </u>	
				 						
	 	 								
		1 ,	•	• 1	1	•	•	•	•	•

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC#: 54234 Ela

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:	
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 0)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Were all surrogate %R within QC limits?

MN/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#_	Sample ID	Surrogate	%Recov	very (Limits)		Qualifications	
	2	DCE	124	(81-118)	J+du IP	NV	
				()	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	3	DCE	121,	(81-118)	1 dw/P	ND	
ļ		DFM	124	(80-119)	↓		
	.,	0514		()	141/		
-		DFM	120	(80-119)	174m/A	qual All except E / N	D
		N-5	15.1	(())	Jaw/P	V	
	5	DCE DFM	124	(81-118)	12m/1	ND	
 		- 1 1111		()	 		=
-	Lo	DFM	122	(80-119)	Haw/A	gual all except E (110
		<u> </u>		()	3 /	, ap. 2	1
				()		:	
	MB 5B0-38640	9 PFM	128	(80-119)	1+du /p		
				()	/		
				()			
				()			

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

LDC #: (\$234E/a

VALIDATION FINDINGS WORKSHEET Target Analyte and TIC

Page:	lof	
Reviewer:	7	

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
		fee	All laboratory calibrated analytes reported as		Jdets/A (v)
			tentatively identified compounds (TIC)		
		Au	All tentatively identified compounds (TIC)		NJdets/A (v)
لــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 14, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111967-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1	Water	03/28/22
HU094RE	580-111967-1RE	Water	03/28/22
HU105	580-111967-3	Water	03/28/22
HU105RE	580-111967-3RE	Water	03/28/22
HU106	580-111967-5	Water	03/28/22
HU106RE	580-111967-5RE	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor Hi FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- (Estimated, Low Bias): The analyte was analyzed for and positively identified by Jthe laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- (Non-detected estimated): The analyte was not detected and the associated UJ numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory.
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits.
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
HU094RE	All analytes	25	7	X (all non-detects)	Α
HU105RE	All analytes	18	7	X (all non-detects)	А
HU106RE	All analytes	17	7	X (all non-detects)	Α

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/23/22	4-Chloroaniline	22.3	HU094RE	UJ (all non-detects)	Α
04/05/22	Bis(2-chloroisopropyl) ether Diethylphthalate	46.5	HU094 HU105 HU106	J+ (all detects) UJ (all non-detects)	Α

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
04/24/22	4-Chloroaniline	83.8	HU094RE	UJ (all non-detects)	Α

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 580-386197	04/04/22	Diethylphthalate	0.246 ug/L	HU094 HU105 HU106

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU094	Diethylphthalate	0.43 ug/L	0.43J+ ug/L
HU105	Diethylphthalate	0.30 ug/L	0.30U ug/L
HU106	Diethylphthalate	0.17 ug/L	0.29U ug/L

VI. Field Blanks

Samples HU106 and HU106RE were identified as equipment rinsate. No contaminants were found.

Samples HU105 and HU105RE were identified as field blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample HU106. Using professional judgment, no data were qualified when one base or one acid surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-386197 (HU094 HU105 HU106)	Pentachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol Phenol	32 (35-138) - - - - -	50 (53-123) 47 (50-125) 43 (47-121) 10 (13-120)	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-386197 (HU094 HU105 HU106)	2,4-Dimethylphenol 2-Chlorophenol 3,3'-Dichlorobenzidine 4-Chloroaniline Bis(2-chloroethyl) ether Hexachloroethane Phenol	147 (≤20) 45 (≤20) 149 (≤20) 32 (≤20) 23 (≤20) 22 (≤20) 106 (≤20)	NA	-
LCS/LCSD 580-387570 (HU105RE)	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Hexachloroethane	22 (≤20) 27 (≤20) 23 (≤20) 28 (≤20)	NA	-

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD (HU094RE)	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,6-Trichlorophenol 2,4-Dichlorophenol Hexachlorobutadiene Hexachloroethane Phenol	34 (≤20) 35 (≤20) 36 (≤20) 40 (≤20) 22 (≤20) 25 (≤20) 42 (≤20) 42 (≤20) 33 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111967-1	All TICs	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were recommended for exclusion as follows:

Sample	Analyte	Reason	Flag	A or P
HU094RE HU105RE HU106RE	All analytes	Extracted outside holding time.	х	A

Due to continuing calibration %D, LCS/LCSD %R, and TIC quantitation, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected and/or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-111967-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU094 HU105 HU106	Bis(2-chloroisopropyl) ether Diethylphthalate	J+ (all detects) UJ (all non-detects)	A	Continuing calibration (%D) (c)
HU094 HU105 HU106	Pentachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol Phenol	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Р	Laboratory control samples (%R) (I)
HU094 HU105 HU106	All TICs	NJ (all detects)	А	Tentatively Identified Compounds (TIC) quantitation (v)
HU094RE HU105RE HU106RE	All analytes	Х	А	Overall assessment of data (d)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-111967-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU094	Diethylphthalate	0.43J+ ug/L	Α	b
HU105	Diethylphthalate	0.30U ug/L	Α	b
HU106	Diethylphthalate	0.29U ug/L	Α	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

LDC #: 54234E2a						
	t: <u>580-111967-1</u> atory: <u>Eurofins, Tacoma, WA</u>	3	tage∠⊳			′age: <u> /</u> ot <u> /</u> ewer: / ⁄
		5 5 4 : U ₂ = d 0			2nd Revi	
METH	OD: GC/MS Semivolatiles (EPA SW-846 † T1 C) Method 8.	270 ⊨)		•	
	amples listed below were reviewed for eaction findings worksheets.	ch of the fo	ollowing valida	ation areas. Validation	findings are note	ed in attached
	Validation Area			Comme	nts	
1	Sample receipt/Technical holding times	15M				
II	GC/MS Instrument performance check	Δ				
111.	Initial calibration/ICV	4/1	1/0 Pros		101 = 20	1
IV.	Continuing calibration ending	SW	,	' CW	= 20/50	
V.	Laboratory Blanks	550				
VI.	Field blanks	NO	FB=	3,4 E	R = 5,6	·
VII.	Surrogate spikes	SW			<u> </u>	
VIII.	Matrix spike/Matrix spike duplicates	N	0>			
IX.	Laboratory control samples	54	LCS	ID		
X.	Field duplicates	2			,	
XI.	Internal standards	٨				
XII.	Target analyte quantitation	Su				
XIII.	Target analyte identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	SW				
Note:	N = Not provided/applicable R = Rins	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source bl OTHER:	lank
	Client ID			Lab ID	Matrix .	Date
	HU094			580-111967-1	Water	03/28/22
2 4 ⊦	HU094RE			580-111967-1RE	Water	03/28/22
31 +	HU105 FB			580-111967-3	Water	03/28/22
73 F	HU105RE			580-111967-3RE	Water	03/28/22
	HU106 ER			580-111967-5	Water	03/28/22
	HU106RE ER			580-111967-5RE	Water	03/28/22
7						
8						
9						
Notes:						
IM	13 580-386197					
2	- 387446					
3	- 3875717		1 1	}		

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachiorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachiorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachiorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#: 5423452a

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:_	/ _{of} _/	•
Reviewer:_	FT	_

METHOD : GC	MA BNA SW	/846 METHOD	8270				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualit
2	3		3/28/22	422 22	4/23/22	25	5-141
					-		Ń
							<u>'</u>
			1 . 1 1				
4	W		3/24/27	4 15/22	4/18/22	18	7-/x/
			1 1	1	'		'NY
							,
				14			
6			3/1/22	4/1/22	4/15/22	17	7-/x
			, ,	`			N)
	1						<u> </u>
	 						
	_						
	_						
	<u> </u>					ļ	
	<u> </u>						
	 						
	 -						
							
	 -						

TECHNICAL HOLDING TIME CRITERIA

Water:

Extracted within 7 days, analyzed within 40 days. Extracted within 14 days, analyzed within 40 days.

Soil:

LDC#: 54234 EZa

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	
Reviewer:	FT

SVOA

METHOD: GC/MS VOA (EPA SW 846 Method 8260

)8270E

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\sqrt{\frac{\dot{Y}}{N}}$ N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

YN N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y N N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

		1
((し	J

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	4/23/22	cev	T	22.3		2,	1-/11/V (ND)
	اله عا					MB 580-388212	• • • • • • • • • • • • • • • • • • • •
						•	
	424 22	cev-closing	T	83.8		1	7-M7/7 (M)
<u> </u>	02.07						/
	452	eal	MMM	46.5		1,3,5	1+du A/W/Tub+L
	0049		LL			MB 580-386197	7
<u> </u>							
<u> </u>							
<u> </u>							
-							
<u> </u>							
	†						

LDC#: 54234 EZa

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	/ _{of}	_
Reviewer:	FT	

METHOD: GC/MS BNA (METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)								
Ptease see qualifications	below for all que	stions answered	d "N". Not applic	able questions	are identified a	s "N/A".			
Y N N/A Was a method blank analyzed for each matrix?									
YNN/A Wasam									
Y/N N/A Was a m	ethod blank asso	ciated with ever	ry sample?				(b)		
<u>Y N N/A</u> Was the l	blank contamina	ted? If yes, plea	se see qualifica	ation below.			` /		
Y N N/A Was the Blank extraction date: ⁴	14 12 Blank a	nalysis date:	4/5/22				-		
Conc. units: val			Associa	ted Samples:_		1,3,5			
	D								
Compound	Blank ID								
	MB 580-34	6197	1	3	5				
4 4	0.246		0.42/1+	0.30 U	0.17/n.2	911			
			1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			·	
				 					
			<u> </u>						
			 	 	<u> </u>				
	<u> </u>	1		<u> </u>	<u></u>	<u> </u>			
Blank extraction date:	Rlank ar	nalysis date:		•					
Conc. units:	Blalik al	ialysis date	Associa	ted Samples:					
	Diamin ID								
Compound	Blank ID		r	 		7			
Section 1 section 2 sectio									
								· · ·	
				L					
		_							

LDC #: 94234EZa

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	/_ _{of_}	/
Reviewer:_	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)
Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)		Qualifications
	5	TBP	42	(43-140)	no	qual
				<u>(</u>	-	
	MB 580- 387446	TBP	35	(43-144)	no	apu d
				()		
ļ				()		
ļ)		
		_)		
)		
)		
)		
			()		
<u> </u>						
	4					
			()		
			()		
			()		
		****	<u> </u>			
			(/ /		

(NBZ) = Nitrobenzene - d5

(FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

LDC #: 54234EZa

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	_l_of
Reviewer:	FT

METHOD: GC/MS BNA (Method & 270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

% R= 1 % RPD = W

#	LCS/LCSD ID	Compound	%	LCS R (Limits)		%F	LCSD R (Limits)	RPD	(Limits)	Associated Samples	Qualification	ons
$oldsymbol{\perp}$	us 10		32	(35-	138		()		()	1,3,5,	1-/41/1	all
	580-386197	Z		()	50	(53-123		()	MB 580-38619	1 1	
		Y		()	47	(90-125)		()			
		. Q		()	43	(47-121)		()			
		ଫ		()		()	147	(20)		Jan /	
		<u>ر</u>		()		()	45	(20)			
I		BBB		()		()	149	(20)			
		T		()		()	149	(20)			
		В)		()	23				
		K		()		()	22	()			
		A		()		()	106	(V)		. ↓	
		A		()	10	(13-120)		()	↓ .	1-/11/19	
				()		()		()		1	
				()		()		()			
ı	ICDID	f_		()		()	22	(20)	니,	Jut 1P	ND
	580-387570	Ø		()		()	27	(20)	MB 580-38757U		
T		E		()		()	23	(()			
\perp		K		(()	21/	()			
Т				()		()		()			
				()		()		()			
1				()		()		()			
T				()		()		()			
1				()		()		()			
1				()		()		()			
\top					,		(()			

LDC#: 54234 E2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	/of/
Reviewer:	FT

METHOD: GC/MS BNA (Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y) N\N/A Was a LCS required?

Y N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

(W
1	•

		- Andrews Control of the Control of	T T	The state of the s			
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	icolp	R	()	()	34 (20)	2,	Jours ND
	580-38821	Y F	()	(35 ()	2, MB 530-388242	
		D	()	()	36 ()	•	
	-	E	()	()	40 ()		
		YY	()	()	22 ()		·
		R	()	()	75 ()		
		u	()	()	42 ()		
		K	()	()	42 ()		
			()	()_	33 (V)	V	V
			()	()	()		
			()	()	()		<u> </u>
			()	()	()		
			()	()	()		
			()	()	()		
	<u></u>		()	()	()		
			()	()	()		
		·	()	()	()		
					()_		
			()	()	()		
	·		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()		()		

LDC #: 54234 E 2a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	1_of_1_
Reviewer:	FT
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Sample ID	Compound	Finding	Qualifications	
	2, 4, 6	All	ex tracted outside H.T	X/A	
	1 1		H.T		
 					
-					
	·				
	,				
	:				
-				18	

Comments:		

LDC #: 54234 E2a

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation

Page:	<u> </u> of_	_1_
Reviewer:	FT	

(V)

METHOD: GCMS SVOA EPA SW 846 Method 8270 它

Please see qualifications be	low for all questions answered	"N". Not applicable questions are identified as "N/A".	

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

COMOLIA	TIC	For	apcom	Oily	8270	WOO

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111967-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1	Water	03/28/22
HU105	580-111967-3	Water	03/28/22
HU106	580-111967-5	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g 'ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample HU106 was identified as an equipment rinsate. No contaminants were found.

Sample HU105 was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-386197 (All samples in SDG 580-111967-1)	Acenaphthylene Anthracene	26 (≤20) 31 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification
Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

SDG#	:_ <u>54234E2b</u> VALIDATIC #:_ <u>580-111967-1</u> atory: <u>Eurofins, Tacoma, WA</u>		LETENESS tage 2B	S WORKSHEET		Date: 6 2 Page: 1 of
	IOD: GC/MS Polynuclear Aromatic Hydr	rocarbons (E	EPA SW-846	Method 8270E-SIM)		Reviewer:
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	ation areas. Validation	n findings are	noted in attached
	Validation Area			Comme	ents	
1.	Sample receipt/Technical holding times	AA				
11.	GC/MS Instrument performance check	<u> </u>				
III.	Initial calibration/ICV	4.4	0/0 PS() 415, 1 ²	101 = 2	20
IV.	Continuing calibration / ending	Δ		ر در۸	£ 20 50	
V.	Laboratory Blanks	N.				
VI.	Field blanks	QU	FB-7	ER.	- 3	
VII.	VII. Surrogate spikes					
VIII.	Matrix spike/Matrix spike duplicates	7	U)			
IX.	Laboratory control samples	SW	10s 17			
X.	Field duplicates	N				
XI.	Internal standards	Δ				
XII.	Target analyte quantitation	N				
XIII.	Target analyte identification	N				
XIV.	System performance	N	****			
XV.	Overall assessment of data	4				
Note:	A = Acceptable ND = N = Not provided/applicable R = Ri	No compounds linsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1 1	HU094			580-111967-1	Water	03/28/22
2 1	HU105 FB			580-111967-3	Water	03/28/22
	HU106 EPC			580-111967-5	Water	03/28/22
4						
5						
6						
7						
8						
9						
Notes:						
	NB 580-386197					

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD: OCHNO OVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
i. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadieпе	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#: 54234 E26

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	<u>/</u> of_	_/
Reviewer:	FT	

METHOD: GC/MS BNA (Method を27のモ ら)M

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y N/N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	LCS 10	HH DD	()	()	26 (20)	(w) (1A	Jan/P ND
	100 10 580-38619	17 11	()	()	3 (20)		J J
			()	()	()		V
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
<u> </u>			()	()	()		
			()	()	()		
			()	()	()		
نـــــإ			()	()	(
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 21, 2022

Wet Chemistry Parameters:

Validation Level: Stage 2B

Eurofins, Tacoma, WA/EMAX Laboratories, Inc., Laboratory:

Torrance, CA

Sample Delivery Group (SDG): 580-111967-1/22C352

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1/C352-01	Water	03/28/22
HU094MS	580-111967-1/C352-01MS	Water	03/28/22
HU094MSD	580-111967-1/C352-01MSD	Water	03/28/22
HU094DUP	580-111967-1/C352-01DUP	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

Dissolved Organic Carbon and Total Organic Carbon by EPA SW 846 Method 9060A Ferrous Iron by Standard Method 3500-Fe B

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Silica and Dissolved Silica by Standard Method 4500-SiO2 C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- P RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
HU094	Nitrate as N	69.88 hours	48 hours	UJ (all non-detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to technical holding time, data were qualified as estimated in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-111967-1/22C352

Sample	Analyte	Flag	A or P	Reason (Code)
HU094	Nitrate as N	UJ (all non-detects)	Р	Technical holding times (h)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-111967-1/22C352

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Field Blank Data Qualification Wet Chemistry Summary -SDG 580-111967-1/22C352

No Sample Data Qualified in this SDG

SDG #	#: 54234E6 VALIDATI #: 580-111967-1/22C352 atory: Eurofins, Tacoma, WA aboratory: EMAX Laboratories, Inc.,	Si	LETENESS tage 2B	WORKSHEET	2nd	Date: 7 [9] Page: 1 of 1 Reviewer: ATV Reviewer:
DOC (HOD: (Analyte) Alkalinity (SM2320B), E (EPA SW-846 Method 9060A), Ferrous 500-SIO2 C), TOC (EPA SW-846 Me	<u> Iron (SM3500-</u>	ride, Fluoride -FEB), Nitrate	, Nitrate-N, Sulfate (/Nitrite-N (EPA Meth	EPA Method : lod 353.2), Silic	300.0), ca, Dissolved Silica
	amples listed below were reviewed for tion findings worksheets.	each of the fo	llowing valida	tion areas. Validatio	on findings are	noted in attached
	Validation Area			Comm	ents	
l I.	Sample receipt/Technical holding times	ASW				
11	Initial calibration	A				
III.	Calibration verification	A				
IV	Laboratory Blanks	A				
V	Field blanks	\mathcal{N}				
VI.	Matrix Spike/Matrix Spike Duplicates	A	(2,3)			
VII.	Duplicate sample analysis	A	4			
VIII.	Laboratory control samples	A	LOSILOSD	1		
IX.	Field duplicates	N				
X.	Target Analyte Quantitation	N				
x	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1	HU094	C3	52-01 /	580-111967-1	Water	03/28/22
2	HU094MS		1-01MS1	580-111967-1MS	Water	03/28/22
3	HU094MSD		-OIMSDI	580-111967-1MSD	Water	03/28/22
4	HU094DUP	•	V-OIDUP	580-111967-1DUP	Water	03/28/22
5						
6						
7						
8						
9						
10_				L		
11						
12						

Notes:

LDC #: 54234AG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

	D
Sample ID	Parameter (2) (2) (3) (3) (3) (3)
	ph TDS(C)(F)(NO) NO, (SO), O-PO, (AIR) CN NH, TKN (TO) C16+ C10, (Br) (DOC) (Fe2) (S1()2) (DiS S1()2)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC/	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
2,3	ph tos (CI)(F)(NO) NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (BY) (FEL) (DIS SIDZ)
4	pH TDS CI F NO3 NO2 SO4 O-PO4 (AIR) CN NH3 TKN TOC Cr6+ CIO4 (Fe2) (DS SiV2)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
, T	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
a.	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

(Comments:	 	

LDC #: 54234E6

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: __of___ Reviewer:__ATV__

All circled dates have exceeded the technical holding time.

N N/A

Were all samples preserved as applicable Were all samples preserved as applicable to each method? code: h Y)N N/A Were all cooler temperatures within validation criteria? NO3-N (EPA 300.0) Method: water Parameters: 48 hrs Technical holding time: **Analysis** Sampling **Total Time Analysis Total Time** Sample ID date date Qualifier date Qualifier 12:01 11:08->14:08 69.88 hrs JUJIP(ND) 03/28/22 03/3/122

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 6, 2024

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111967-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1	Water	03/28/22
HU093	580-111967-2	Water	03/28/22
HU105	580-111967-3	Water	03/28/22
HU105	580-111967-4	Water	03/28/22
HU106	580-111967-5	Water	03/28/22
HU106	580-111967-6	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration	Associated Samples
MB 580-386534	04/06/22	Gasoline range organics (C6-C12)	31.1 ug/L	All samples in SDG 580-111967-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Samples HU093, HU105 (580-111967-4), and HU106 (580-111967-6) were identified as trip blanks. No contaminants were found.

Sample HU106 (580-111967-5) was identified as an equipment rinsate. No contaminants were found.

Sample HU105 (580-111967-3) was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

SDG # Labora	t: 580-111967-1 atory: <u>Eurofins, Tacoma,</u> WA	S	tage 2B	S WORKSHEET	2nd l	Date: 421 Page: 1 of 1 Reviewer: 7 Reviewer: 7	
The sa	OD: GC/MS Gasoline Range Organics (I amples listed below were reviewed for eaction findings worksheets.					noted in attached	
	Validation Area			Comme	nts		
1.	Sample receipt/Technical holding times	A/A					
II.	GC/MS Instrument performance check	Δ					
111.	Initial calibration/ICV	AA	(2	1cV =	20		
IV.	Continuing calibration endury	A		cW	± 20/20	7	
V.	Laboratory Blanks	5W					
VI.	Field blanks	NO	TB = 2	.4.6 FT	ラニ ろ	ER=5	
VII.	Surrogate spikes	۵		11			
VIII.	Matrix spike/Matrix spike duplicates	N	٥>				
IX.	Laboratory control samples	Δ	10510				
X.	Field duplicates	N	''''-				
XI.	Internal standards	A					
XII.	Target analyte quantitation	N					
XIII.	Target analyte identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data	Λ.			•		
Note:							
	Client ID			Lab ID	Matrix	Date	
	HU094 ,			580-111967-1	Water	03/28/22	
-	U193 7 73			580-111967-2	Water	03/28/22	
3 F	HU105 13:25 FB			580-111967-3	Water	03/28/22	
_ 1	1U105 13:15 FB TB	580-111967-4	Water	03/28/22			
5 H	HU106 IS: OU EPO ER	580-111967-5	Water	03/28/22			
6 H	HU106 IS.00 TB			580-111967-6	Water	03/28/22	
7							
8		-					
g							
Notes:							
N	NB 530-386534						
							
<u> </u>					<u> </u>		

LDC#: 5423467

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of1_	_
Reviewer:		FT	

METHOD:GC HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A Were all samples associated with a given method blank? N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed? N N/A Was a method blank performed with each extraction batch? Y N N/A Were any contaminants found in the method blanks? If yes, please see findings below. Level IV/D Only Y N N/A (Gasoline and aromatics only) Was a method blank analyzed with each 24 hour batch? Y N N/A Was a method blank analyzed for each analytical / extraction batch of ≤20 samples? Blank extraction date: Blank analysis date: + V N N/A Associated samples: A N N/A CND Conc. units: Blank analysis date: + V N N/A Associated samples: A N N/A CND N N/A Was a method blank analysis date: + V N N/A Associated samples: A N N/A CND N N/A Was a method blank analysis date: + V N N/A Associated samples: A N N/A CND N N/A Was a method blank analysis date: + V N N/A Associated samples: A N N/A CND N N/A Was a method blank analysis date: + V N N/A Associated samples: A N N/A CND N N/A Was a method blank analysis date: + V N N/A Was a method blank analysis date: + V N N/A Associated samples: A N N/A WAS Associated samples A N N/A WAS								
Compound	Blank ID		····		Sample Identification	on		
	MB 530-	386534						
gasoline Range	31.)							
Organics ((1-(12)								
1 10 17								
Blank extraction date: Conc. units:	tion date: Blank analysis date: Associated samples:							
Compound	Blank ID	Blank ID Sample Identification						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: July 5, 2022

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA/

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 580-111967-1/22C352/22C355/22C356

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1/22C352-01	Water	03/28/22
HU105	580-111967-3/22C335-01	Water	03/28/22
HU106	580-111967-5/22C356-01	Water	03/28/22
HU094(SGCU)	580-111967-1/22C352-01(SGCU)	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample HU106 was identified as an equipment rinsate. No contaminants were found.

Sample HU105 was identified as a field blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 580-111967-1/22C352/22C355/22C356

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data

Qualification Summary - SDG 580-111967-1/22C352/22C355/22C356

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification
Summary - SDG 580-111967-1/22C352/22C355/22C356

No Sample Data Qualified in this SDG

SDG Labo Sub-l	#:54234E8aVALIDATION #:580-111967-1/22C352/22C355/22C ratory: Eurofins, Tacoma, WA _aboratory: EMAX Laboratories, Inc., Topon Hode: GC TPH as Extractables (EPA SW	356 S orrance, CA	tage 2B	S WORKSHEET	2nd	Date: 6/2/ Page: 1 of 1 Reviewer: 7 Reviewer: 7
	samples listed below were reviewed for eation findings worksheets.	each of the fo	ollowing valid	ation areas. Validation	findings are	e noted in attached
	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	AA	1			
11.	Initial calibration/ICV	AA	0/0	PSO /101 = 20 CW = 3	7	
.	Continuing calibration	4	,	CW =	ev .	
IV.	Laboratory Blanks	Δ				
V.	Field blanks	NO	FB-	= 2 ER	= 3	
VI.	Surrogate spikes	Δ			100	
VII.	Matrix spike/Matrix spike duplicates	2	0>			
VIII.		Δ			***	
IX.	Field duplicates	N			<u></u>	
X.	Target analyte quantitation	N		-		
XI.	Target analyte identification	N				
XII	Overall assessment of data					
Note: Sampl	N = Not provided/applicable R = R	No compounds Rinsate Field blank Clean Up	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHER	urce blank ?:
	Client ID			Lab ID	Matrix	Date
1	HU094 2	20352-	01	580-111967-1	Water	03/28/22
2	HU105 FB 2	20355-	01	580-111967-3	Water	03/28/22
3	HU106 ER 2	2 0356-	01	580-111967-5	Water	03/28/22
4	HU094(SGCU) 2	20352-	01(59cu	580-111967-1(SGCU)	Water	03/28/22
5						
6		- 1000				
7						
8						
9						
10						
11						
12						
13						
Votes:						
	MBIKIW					
	MBLKIW (SG CU)					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

June 29, 2022

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111967-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU094	580-111967-1	Water	03/28/22
HU105	580-111967-3	Water	03/28/22
HU106	580-111967-5	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-241269	04/05/22	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HpCDF Total PeCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.000000405 ug/L 0.000000699 ug/L 0.000000911 ug/L 0.00000388 ug/L 0.00000117 ug/L 0.00000117 ug/L 0.00000153 ug/L 0.00000153 ug/L 0.00000150 ug/L 0.00000150 ug/L 0.00000312 ug/L 0.00000869 ug/L 0.00000326 ug/L 0.00000326 ug/L	All samples in SDG 580-111967-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU094	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF OCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD	0.00000050 ug/L 0.00000035 ug/L 0.0000012 ug/L 0.0000085 ug/L 0.0000044 ug/L 0.0000027 ug/L 0.0000017 ug/L	0.00000050U ug/L 0.00000035U ug/L 0.0000012U ug/L 0.00000085J ug/L 0.0000044J ug/L 0.0000027J ug/L 0.0000017J ug/L
HU105	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDF Total HpCDF Total PCDDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.00000035 ug/L 0.00000018 ug/L 0.00000032 ug/L 0.00000049 ug/L 0.0000012 ug/L 0.00000060 ug/L 0.00000092 ug/L 0.00000032 ug/L 0.0000049 ug/L 0.0000049 ug/L 0.0000018 ug/L 0.0000022 ug/L	0.0000035U ug/L 0.0000018U ug/L 0.0000032U ug/L 0.0000049U ug/L 0.0000012U ug/L 0.0000060J ug/L 0.0000092J ug/L 0.0000049J ug/L 0.0000049J ug/L 0.0000049J ug/L 0.0000018J ug/L 0.0000022J ug/L
HU106	1,2,3,4,6,7,8-HpCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF OCDD Total HpCDF Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD	0.00000017 ug/L 0.00000044 ug/L 0.00000033 ug/L 0.0000011 ug/L 0.00000017 ug/L 0.00000077 ug/L 0.0000020 ug/L 0.0000011 ug/L 0.0000094 ug/L	0.00000017U ug/L 0.00000044U ug/L 0.00000033U ug/L 0.0000011U ug/L 0.00000017J ug/L 0.00000077J ug/L 0.0000020J ug/L 0.0000011J ug/L 0.00000094J ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-111967-1	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-111967-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU094 HU105 HU106	Results flagged "I" were reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-111967-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU094	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF OCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000050U ug/L 0.0000035U ug/L 0.0000012U ug/L 0.00000085J ug/L 0.0000044J ug/L 0.0000027J ug/L 0.0000017J ug/L	А	b
HU105	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDF Total HpCDF Total PCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000035U ug/L 0.0000018U ug/L 0.0000032U ug/L 0.0000049U ug/L 0.0000012U ug/L 0.0000060J ug/L 0.0000092J ug/L 0.0000032J ug/L 0.0000049J ug/L 0.0000040J ug/L 0.000018J ug/L 0.0000018J ug/L	А	b
HU106	1,2,3,4,6,7,8-HpCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF OCDD Total HpCDF Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD	0.00000017U ug/L 0.00000044U ug/L 0.00000033U ug/L 0.0000011U ug/L 0.00000017J ug/L 0.00000077J ug/L 0.0000020J ug/L 0.0000011J ug/L 0.00000094J ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54234E21 Stage 2B SDG #: 580-111967-1

Laboratory: Eurofins, Tacoma, WA

Date:	6	23	122
Page:_	of_	<u> </u>	
Reviewer:	1	17	
2nd Reviewer:		\mathcal{C}	

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA SW-846 Method 8290A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	4/4	
II.	HRGC/HRMS Instrument performance check	Δ_	
III.	Initial calibration/ICV	Δ/Δ	1/0 ps0 = 20/20 101 ± 20/30
IV.	Continuing calibration	Δ	$\frac{1}{6} = \frac{100}{100} = \frac{100 \pm 20}{30}$
V.	Laboratory Blanks	<u>5</u> w	,
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	N	·
VIII.	Laboratory control samples	<u>\</u>	Les 10
IX.	Field duplicates	l V	
X.	Labeled Compounds	4	
XI.	Target analyte quantitation	N	
XII.	Target analyte identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	Δ	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HU094	580-111967-1	Water	03/28/22
2	HU105	580-111967-3	Water	03/28/22
3	HU106	580-111967-5	Water	03/28/22
4				
5				
6				
7				
8				
9				
10.				

	MB 410-24120	را د				
			<u></u>			
II					İ	

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:	 		 	

LDC #: 54234E21

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of	<u> 1 </u>
Reviewer:_		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y</u> Y Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

(b)

Was the method blank contaminated?

Blank extraction date: 4/5/22 Blank analysis date: 4/6/22 Associated samples:____ Conc. units: ug/L

Compound	Blank ID	Sample Identification							
	MB 410 -241269	5x		1	2	3			
0	0.00000405	0.000002025				0.00000017U			
С	0.00000699	0.000003495			0.00000035U				
К	0.00000911	0.000004555			0.0000018U				
Р	0.00000398	0.000001990			0.00000032U				
D	0.00000805								
L	0.0000117								
I	0.00000483	0.000002415		0.00000050U		0.00000044U			
м	0.0000153	0.000007650							
J	0.00000537	0.000002685		0.00000035U	0.00000049U	0.00000033U			
G	0.0000176	0.000008800		0.0000012U	0.0000012U	0.0000011U			
Т	0.0000150	0.000007500			0.00000060J				
х	0.0000361	0.000018050			0.00000092J				
Υ	0.00000803	0.000004015			0.00000032J	0.00000017J			
w	0.0000102	0.000005100		0.00000085J	0.00000049J	0.00000077J			
Total PCDD/PCDF	0.0000869	0.000043450		0.0000044J	0.0000040J	0.0000020J			
Total PCDD	0.00000326	0.000016300		0.0000027J	0.0000018J	0.0000011J			
Total PCDF	0.0000543	0.000027150		0.0000017J	0.0000022J	0.00000094J	-		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #:<u>54234E21</u>

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	<u>_1</u> _of_	1_
Reviewer:	FT_	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?

N/A Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications
		all	all analytes qualified I, EMPC (estimated maximum possible concentration)		J det/A (k)
ļ					
<u> </u>					

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 6, 2024

Parameters:

Methane

Validation Level:

Stage 2B

Laboratory:

Energy Laboratories, Billings, MT

Sample Delivery Group (SDG): 580-111967-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU094	580-111967-1	Water	03/28/22
HU093	580-111967-2	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample HU093 was identified as a trip blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-111967-1

No Sample Data Qualified in this SDG

SDG Labo MET The s	#:54234E51VALIDATIO #:_580-111967-1 ratory: Eurofins, Tacoma, WA HOD: GC Methane (Method RSK-175) samples listed below were reviewed for eation findings worksheets.	S	tage 2B	S WORKSHEET ation areas. Validati	2nd	Date: 6/2//22 Page: for Page: For Pa
	Validation Area			Comr	nents	
1.	Sample receipt/Technical holding times	A /A				
11.	Initial calibration/ICV	414	0/0 8.	SD/101 =	20	
111.	Continuing calibration / ending,	Δ		/ '	20/20	
IV.	Laboratory Blanks	N				
V.	Field blanks	NO	TB=	2		
VI.	Surrogate spikes	Δ				
VII.	Matrix spike/Matrix spike duplicates	N	05			
VIII.	Laboratory control samples	A	les 11	2		
IX.	Field duplicates	N				
X.	Target analyte quantitation	· N				
XI.	Target analyte identification	N				
اللا	Overall assessment of data					
Note:	N = Not provided/applicable R = Rir	lo compounds nsate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
+	HU094			580-111967-1	Water	03/28/22
2	ни193 ТВ			580-111967-2	Water	03/28/22
3						
4						
5						
6						
7						
8						
9						
10						
11						
12 Notes:						
	MB 410-241185					