

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AECOM October 20, 2022

1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fractions listed below. These SDGs were received on July 13, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #54719:

<u>SDG #</u>	<u>Fraction</u>
580-111967-2, 580-115066-1, 580-115115-1, 580-115123-1, 580-115161-1, 580-115163-1, 580-115197-1	Metals, Wet Chemistry, Volatiles, Semivolatiles, Polynuclear Aromatic Hydrocarbons, Gasoline Range Organics, Polychlorinated Dioxins/Dibenzofurans, Methane

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco

Operations Manager/Senior Chemist

scuenco@lab-data.com

Attachment 1 251 pages-ADV LDC# 54719 (AECOM - Honolulu, HI / Red Hill Oily Waste, CTO 18F0176) 90/10 2B/4 EDD (3) **PAHs** GRO Br,CI,F NO₃/ (8270E DATE VOA **SVOA** Methane DATE Metals (8260/ Dioxins Alk. SO₄ NO₃-N NO₂-N DOC TOC LDC SDG# REC'D DUE (8260D) (8270E) -SIM) (6010D) LUFT) (8290A) (2320B) (300.0)(300.0)(9060A) (9060A) (175)(353.2)W W W S W Matrix: Water/Soil S W S W W S S W S W S W S W S W S W S W S S 07/13/22 08/03/22 580-111967-2 В 580-115066-1 07/13/22 08/03/22 0 1 0 С 3 3 580-115115-1 07/13/22 08/03/22 0 2 2 2 3 580-115123-1 0 0 0 0 0 0 0 0 0 D 07/13/22 08/03/22 4 0 0 0 0 D 580-115123-1 07/13/22 08/03/22 0 0 0 0 0 0 Ε 3 0 3 0 3 6 0 3 0 6 0 3 3 580-115161-1 07/13/22 08/03/22 6 0 0 3 0 0 3 0 0 580-115163-1 07/13/22 08/03/22 0 4 0 2 0 G 580-115197-1 07/13/22 08/03/22 0 10 5 T/SC 11 0 0 11 0 6 0 0 0 11 0 11 0 0 98 Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-111967-2

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU094	580-111967-1	Water	03/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Calcium Magnesium Manganese Potassium Sodium	0.0840 ug/L 0.0788 ug/L 0.00440 ug/L 0.405 ug/L 0.211 ug/L	All samples in SDG 580-111967-1

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-111967-2

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Metals - Laboratory Blank Data Qualification Summary - SDG 580-111967-2

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Metals - Field Blank Data Qualification Summary - SDG 580-111967-2

No Sample Data Qualified in this SDG

LDC #: 54719A4b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 580-111967-2 Laboratory: Eurofins, Tacoma, WA

Reviewer:_ 2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	·
H.	Instrument Calibration	A	
III.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N	·
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S.
VII.	Duplicate sample analysis	N_	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	LCS/LCSD
X.	Field Duplicates	N	
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank

OTHER:

Client ID	Lab ID	Matrix	Date
HU094	580-111967-1	Water	03/28/22
2			
3			
1			
5			
6			
7			
3			
)			
10			
11			
2			
13			
4			1
5			

Notes:	 		
· · · · · · · · · · · · · · · · · · ·		-	

LDC #: 54719A4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: of L Reviewer: ATL

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1	W	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb Mg Mn Hg, Ni K, Se, Ag Na Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments:	Mercury by CVAA if performed			

LDC #: 54719A4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:	1	_of_	1	
Reviewer:	ATL			

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>ug/L</u>____

Soil preparation factor applied: NA
Associated Samples: all

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
Са			0.0840	420					
Mg			0.0788	394					
Mn			0.00440	22					
κ			0.405	2025					
Na			0.211	1055					
			!						

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115066-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
			06/20/22	
HU115	580-115066-1	Water	06/20	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-115066-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115066-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115066-1

No Sample Data Qualified in this SDG

SDG Labo MET	#: 54719B6 VALIDAT #: 580-115066-1 pratory: Eurofins, Tacoma, WA HOD: (Analyte) Bromide, Chloride, Flucture	Joride, Nitrate	etage 2B e-N, Sulfate (E		2nd F	Date: 9 27 22 Page:
	Validation Area			Comme	nte	
1.	Sample receipt/Technical holding times	AA				
11	Initial calibration	A				
III.	Calibration verification	A				
IV	Laboratory Blanks	A				
V	Field blanks	N				
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S			
VII.	Duplicate sample analysis	N				
VIII.	. Laboratory control samples	A	LCSILCST	0		
IX.	Field duplicates	N				
X.	Target Analyte Quantitation	N				
XI	Overall assessment of data	<u> </u>				
Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank						
	Client ID			Lab ID	Matrix	Date
1	HU115			580-115066-1	Water	06/20/22
2						

	Client ID	Lab ID	Matrix	Date
1_	HU115	580-115066-1	Water	06/20/22
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
Vote	s:			

LDC #: 54719BG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter	
1	pH TDS (C)(F)(NO) NO, (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (BY)	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4	
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4	
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4	
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4	
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄	
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4	
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄	
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4	

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115115-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115115-1	Water	06/21/22
HU128	580-115115-2	Water	06/21/22
HU133	580-115115-3	Water	06/21/22
HU133MS	580-115115-3MS	Water	06/21/22
HU133MSD	580-115115-3MSD	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Data Qualification Summary - SDG 580-115115-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115115-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115115-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54719C6 SDG #: 580-115115-1 Stage 2B Laboratory: Eurofins, Tacoma, WA Reviewer: 2nd Reviewer: METHOD: (Analyte) Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0). The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times П Initial calibration III. Calibration verification IV Laboratory Blanks Field blanks V VI. Matrix Spike/Matrix Spike Duplicates VII. Duplicate sample analysis VIII. Laboratory control samples IX. Field duplicates X. Target Analyte Quantitation Overall assessment of data A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank Note: N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	HU141	580-115115-1	Water	06/21/22
2	HU128	580-115115-2	Water	06/21/22
3	HU133	580-115115-3	Water	06/21/22
4	HU133MS	580-115115-3MS	Water	06/21/22
5	HU133MSD_	580-115115-3MSD	Water	06/21/22
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Notes:

LDC #: 54719CG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: #

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2,3	pH TDS (CI(F)NO) NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (BV)
, ,	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ AIk CN NH $_3$ TKN TOC Cr6+ CIO $_4$
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
4,5	ph TDS (CI)(F)(NO), NO2 (SO), O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (BY)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4

Comments:_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Volatiles

Validation Level:

Stage 2B & 4

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU114	580-115123-2	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU124	580-115123-4	Water	06/20/22
HU122	580-115123-5	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115MSD	580-115123-1MSD	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated, High Bias): The analyte was analyzed for and positively identified by J+ the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory. i
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits. ı
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits.
- Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- W LCS/LCSD RPD was high.
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/22/22	Bromomethane	22.4	All samples in SDG 580-115123-1	UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/28/22 (12:36)	Bromomethane Chloroethane Acetone	69.4 31.3 42.2	HU123** HU124	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Α

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/28/22 (20:05)	Bromomethane	61.8	HU123** HU124	UJ (all non-detects)	Α

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-394756	06/23/22	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane Ethylbenzene Hexachlorobutadiene Naphthalene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54) 1,3,5-Trichlorobenzene (14.65) 1,2,3-Trichlorobenzene (15.53)	0.211 ug/L 0.172 ug/L 0.0815 ug/L 0.113 ug/L 0.431 ug/L 0.212 ug/L 0.205 ug/L 0.205 ug/L 0.264 ug/L 0.154 ug/L 0.162 ug/L 0.0713 ug/L 0.226 ug/L	HU115 HU114 HU123**
MB 580-395245	06/28/22	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Styrene Xylenes, total o-Xylene (12.21) 1,3,5-Trimethylbenzene (12.99) p-Isopropyttoluene (13.54) 1,2,3-Trichlorobenzene (15.53)	0.214 ug/L 0.185 ug/L 0.0588 ug/L 0.0818 ug/L 0.109 ug/L 0.213 ug/L 0.204 ug/L 0.204 ug/L 0.153 ug/L 0.162 ug/L 0.253 ug/L	HU124 HU122
MB 580-395868	07/04/22	Naphthalene	0.359 ug/L	HU124 HU122

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
HU115	Ethylbenzene	0.077 ug/L	0.077J+ ug/L
	Styrene	0.21 ug/L	0.50U ug/L
	Isopropylbenzene (12.51)	0.26 ug/L	0.26U ug/L
HU114	Ethylbenzene Naphthalene Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.078 ug/L 0.36 ug/L 0.26 ug/L 0.15 ug/L 0.16 ug/L	0.078J+ ug/L 0.50U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L
HU123**	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane Ethylbenzene Hexachlorobutadiene Naphthalene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,2,3-Trichlorobenzene (15.53)	0.31 ug/L 0.28 ug/L 0.085 ug/L 0.26 ug/L 0.56 ug/L 0.22 ug/L 0.21 ug/L 0.21 ug/L 0.27 ug/L 0.47 ug/L	0.35U ug/L 1.0U ug/L 0.085J+ ug/L 0.26J+ ug/L 0.56J+ ug/L 0.50U ug/L 0.35U ug/L 0.21U ug/L 0.27U ug/L 0.47U ug/L
HU124	1,2,4-Trichlorobenzene Dibromochloromethane Ethylbenzene Styrene Xylenes, total o-Xylene (12.21) 1,3,5-Trimethylbenzen (12.99) p-Isopropyltoluene (13.54) Naphthalene	0.18 ug/L 0.059 ug/L 0.083 ug/L 0.21 ug/L 0.21 ug/L 0.21 ug/L 0.15 ug/L 0.16 ug/L 0.28 ug/L	0.35U ug/L 0.15U ug/L 0.083J+ ug/L 0.50U ug/L 0.35U ug/L 0.21U ug/L 0.15U ug/L 0.16U ug/L 0.50U ug/L
HU122	Ethylbenzene	0.079 ug/L	0.079J+ ug/L
	Xylenes, total	0.20 ug/L	0.35U ug/L
	o-Xylene (12.21)	0.20 ug/L	0.20U ug/L
	1,3,5-Trimethylbenzen (12.99)	0.15 ug/L	0.15U ug/L
	p-Isopropyltoluene (13.54)	0.16 ug/L	0.16U ug/L
	Naphthalene	0.27 ug/L	0.50U ug/L

VI. Field Blanks

Samples HU114 and HU122 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU114	06/20/22	Ethylbenzene Naphthalene	0.078 ug/L 0.36 ug/L	HU115
HU122	06/20/22	Ethylbenzene Xylenes, total Naphthalene	0.079 ug/L 0.20 ug/L 0.27 ug/L	HU123** HU124

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU115	Ethylbenzene	0.077 ug/L	0.077J+ ug/L
HU123**	Ethylbenzene	0.085 ug/L	0.085J+ ug/L
	Xylenes, total	0.21 ug/L	0.35U ug/L
	Naphthalene	0.56 ug/L	0.56J+ ug/L
HU124	Ethylbenzene	0.083 ug/L	0.083J+ ug/L
	Xylenes, total	0.21 ug/L	0.35U ug/L
	Naphthalene	0.28 ug/L	0.50U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HU115MS/MSD (HU115)	Bromomethane	146 (53-141)	•	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-395868 (HU124 HU122)	Methylene chloride	125 (74-124)	-	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU123** and HU124 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concent		
Analyte	HU123**	HU124	RPD (Limits)
1,2,4-Trichlorobenzene	0.31	0.18	53 (≤50)
1,2-Dibromo-3-chloropropane	0.28	1.0U	112 (≤50)
1,2-Dichlorobenzene	0.053	0.15U	96 (≤50)
Ethylbenzene	0.085	0.083	2 (≤50)
Hexachlorobutadiene	0.26	0.15U	54 (≤50)
Naphthalene	0.56	0.28	67 (≤50)
Styrene	0.22	0.21	5 (≤50)
Xylenes, total	0.21	0.21	0 (≤50)
Dibromochloromethane	0.15U	0.059	87 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All target analyte quantitations met validation criteria.

All tentatively identified compound (TICs) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-115123-1	All laboratory calibrated analytes reported as Tentatively Identified Compounds (TICs).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, continuing calibration %D and ending CCV %D, and analytes reported as TICs, data were qualified as estimated in five samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in five samples.

Due to trip blank contamination, data were qualified as not detected or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-115123-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU115 HU114 HU123** HU124 HU122	Bromomethane	UJ (all non-detects)	Α	Initial calibration verification (%D) (c)
HU123** HU124	Bromomethane Chloroethane Acetone	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU123** HU124	Bromomethane	UJ (all non-detects)	Α	Continuing calibration (ending CCV %D) (c)
HU115 HU114 HU123** HU124 HU122	All laboratory calibrated analytes reported as Tentatively Identified Compounds (TICs).	J (all detects)	А	Target analyte quantitation (TICs) (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

Sample	Analyte TIC (RT in minutes)	Modified Final Concentration	A or P	Code
HU115	Ethylbenzene Styrene Isopropylbenzene (12.51)	0.077J+ ug/L 0.50U ug/L 0.26U ug/L	А	b
HU114	Ethylbenzene Naphthalene Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.078J+ ug/L 0.50U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L	А	b
HU123**	1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane Ethylbenzene Hexachlorobutadiene Naphthalene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,2,3-Trichlorobenzene (15.53)	0.35U ug/L 1.0U ug/L 0.085J+ ug/L 0.26J+ ug/L 0.56J+ ug/L 0.50U ug/L 0.35U ug/L 0.21U ug/L 0.27U ug/L 0.47U ug/L	A	b

Sample	Analyte TIC (RT in minutes)	Modified Final Concentration	A or P	Code
HU124	1,2,4-Trichlorobenzene Dibromochloromethane Ethylbenzene Styrene Xylenes, total o-Xylene (12.21) 1,3,5-Trimethylbenzen (12.99) p-Isopropyltoluene (13.54) Naphthalene	0.35U ug/L 0.15U ug/L 0.083J+ ug/L 0.50U ug/L 0.35U ug/L 0.21U ug/L 0.15U ug/L 0.16U ug/L 0.50U ug/L	U ug/L A U ug/L J+ ug/L U ug/L U ug/L U ug/L U ug/L U ug/L U ug/L	
HU122	Ethylbenzene Xylenes, total o-Xylene (12.21) 1,3,5-Trimethylbenzen (12.99) p-Isopropyltoluene (13.54) Naphthalene	0.079J+ ug/L 0.35U ug/L 0.20U ug/L 0.15U ug/L 0.16U ug/L 0.50U ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-115123-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU115	Ethylbenzene	0.077J+ ug/L	Α	t
HU123**	Ethylbenzene Xylenes, total Naphthalene	0.085J+ ug/L 0.35U ug/L 0.56J+ ug/L	Α	t
HU124	Ethylbenzene Xylenes, total Naphthalene	0.083J+ ug/L 0.35U ug/L 0.50U ug/L	А	t

_	54719D1a VALIDATIO 580-115123-1		LETENESS age 2B/4	WORKSHEET		Date: <u>4</u> 19	
	tory: <u>Eurofins, Tacoma,</u> WA	٠.			F	Reviewer:	
	DD: GC/MS Volatiles (EPA SW-846 Met	4 TICS hod 8260[D)		2nd F	Reviewer:	
	mples listed below were reviewed for ea on findings worksheets.	ch of the fo	ollowing valida	tion areas. Validatior	n findings are	noted in attache	
	Validation Area			Comme	ents		
ı.	Sample receipt/Technical holding times	AIN					
	GC/MS Instrument performance check	Δ	,				
	Initial calibration/ICV	415W	0/0 12	>D = 15. (2 101	=20	
IV.	Continuing calibration ewing	500			N = 20/1	±W_ N	
V.	Laboratory Blanks	5W					
VI.	Field blanks	SW	TB= 2	15			
VII.	Surrogate spikes	4					
VIII.	Matrix spike/Matrix spike duplicates	5W					
IX.	Laboratory control samples	رسي	Les ID				
X.	Field duplicates	SW	D=3,4				
XI.	Internal standards	\triangle					
XII.	Target analyte quantitation / + C	ASW.	Not reviewed for	Stage 2B validation.			
XIII.	Target analyte identification	Δ	Not reviewed for Stage 2B validation. MI				
XIV.	System performance	Δ_	Not reviewed for Stage 2B validation.				
XV.	Overall assessment of data	Δ					
lote: * Indicate	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sour OTHER;		
CI	lient ID			Lab ID	Matrix	Date	
1 HI	U115			580-115123-1	Water	06/20/22	
2 HI	U114 TP			580-115123-2	Water	06/20/22	
	U123** D			580-115123-3**	Water	06/20/22	
4 / 1 HI	υ124 3 ρ			580-115123-4	Water	06/20/22	
5 2 HI	U122 3 TB			580-115123-5	Water	06/20/22	
	U115MS			580-115123-1MS	Water	06/20/22	
7 H	U115MSD			580-115123-1MSD	Water	06/20/22	
8							
9							
otes:							

	MB 530 - 39479			
2	MP 580 - 395 245			
	MB 580- 395868	BB, E, MMM		

LDC #: 9471 901 VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: FT

Method: Volatiles (EPA SW 846 Method 8260 17)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	\			
Were all samples analyzed within the 12 hour clock criteria?	/			
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤ 15% and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?	/			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20% ?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% in the ending CCV?		/		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	_			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.	/			
VI. Field blanks				
Were field blanks were identified in this SDG?	/			
Were target analytes detected in the field blanks?	/			
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		

LDC#: 54719Pla

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	_			
Was an LCS analyzed per analytical batch?	_			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?	/			
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			·
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	/			
Were manual integrations reviewed and found acceptable?	<u></u>			
Did the laboratory provide before and after integration printouts?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropáne	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#: 5479012

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	of	1
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?
YN N/A Were all %D within the validation criteria of ≤20 %D?

#		Standard ID	Compound	Finding %D (Limit: <20.0% / 30%)	Associated Samples	Qualifications
	6/22/22	IW-TAC113	В	22.4	All	J+ /UJ/A HP
	6 22 22					
					·	
ii.						
			<u> </u>			
			<u> </u>			

LDC#: 54719pla

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u></u> lof	_]
Reviewer:	FT _	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

MN N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Y/N N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

YA	<u>N/A</u> v	Vere all %D and RRFs	within the validation of	riteria of ≤20 %D and	≥0.05 RRF ?	TIA TOT AII COO'S AITU SECOS	
#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
(2)	623/22	CW - 580-394791	2 11				
	1325						
			P				
122	6 282	CCV. 580-39524	5 B	69.4		3,4	It was all NY.
	1236		P	31.3		MB 580-395245	1/LU/+L
<u> </u>			<u> </u>				1 / LN /+ C
	6/28/22	cer-closing	В	61.8			7+/11/2
<u></u>	2005						
				1			

LDC#: 547/9D/A	_
----------------	---

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	of	1
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a method blank associated with every sample in this SDG?

Y N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

YN N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

(b)

Blank analysis date: しっっ 127 Conc. units: ムット

Associated Samples:_____

Compound	Blank ID				Sa	mple Identificati	on		
	MB 980 - 39	14756	1	2	3				
KKK	0.211				0.31 0.35	И			
MM	0.172				0.28 /1.01	1			
EE	0.0815		0.077]+	0.0781	0.085]+				
LLL	0.113				0.26 1+				
иим	0.431			0.36/0.91	ال مهره				
FF	0.212		0.21/0.50	1 1	0.22 0.50	u			
99	0.205				0.2 10.3	SU			

Blank analysis date:

Conc. units:

Associated Samples:

Compound	Blank ID		Sample Identification						
			2	3					
599	0.205 (12.21)			0.2 1 (12.2	1)				
11	0.264 (12.5)	11 1 -	(12.51) ما 0.2 (0.27 (12-5	1)				
1,3,5- Trimethy benzen	0.154/2.99		0.15 (12.99)	· ·					
940	0.162 (13.54)	Li i	0.16 (13.54)						
1,3,5-Trichlowbenzene	0.0713/141	5)							
אאט	0.226 (15.57			0.47 (15.5	<u>, </u>				

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC	#:	54	7	19	D	la

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	/ _{of}	_/
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 //	/OA (EPA SW 846 Method 8260 /2
--	--------------------------------

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>YN N/A</u> Was a method blank associated with every sample in this SDG?

Y N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

YN N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

(d)

Blank analysis date: 6 28 2

Conc. units: 49/L	120 -7	Associated Samples: 4,5						
Compound	Blank ID		Sample Identification					
	MB 580-	395245 4	5					
NNN KKK	0.214	0.18 0.35 1	-					
ММ	0.189		-					
T	0.0588	0.059/0.15 4	-					
ĒĒ	0.0818	0.083 1+	0.0791					
LLL	0.109							
FF	0.213	0.21 0.504	-					
99	0.204	0.21/0.754	0.20 0.35 U					

Blank analysis date
Conc. units:

Associated Samples:

4

5

Compound	Blank ID		Sample Identification						
	V	4	5						
555	0.204 (2.2)	0.21 (12.2)	0.20 (12.2))					
1,3,5 - Trime thy Ibenzer	e 0.153/12.	9) 0.15(12,99	0.15 (12.99)					
966	0.162 (13.		0.16 (13.54)					
NNN	0.253 (S.	53) -							

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC#: <u>547/90/a</u>

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	/of/	
Reviewer:_	FT	

METHOD: GC/MS VOA (EPAP) Please see qualifications below Now N/A Was a method black Now N/A Was there contained black analysis date: 1 4	ow for all questic ank associated w ank analyzed at l pination in the m	ons answered "N". No rith every sample in t east once every 12 h	his SDG? nours for each matrix	and concentra	ation?		Ь		
Conc. units: Na	+ P P		Associated Samp	oles:	4, 1	<u> </u>			
Compound	Blank ID		Sample Identification						
	MB 580-3	15868 4		5					
MMM	0.359	0.28	1050 4	0.27 /0.50	И				

NO TIC Blank analysis date:____

Conc. units:_

Associated Samples:_

Compound	Blank ID	Sample Identification							

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #:	54	7/	90	/a
--------	----	----	----	----

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	_/of_	1
Reviewer:_F	=T	

METHOD: GO	C/MS VOA (EPA SW 846 Method 8260	
Y N N/A	Were field blanks identified in this SDG?	
Y/N N/A	Were target compounds detected in the field blanks?	
Blank units:	ug / Associated sample units: ug /	
• " •		

(f)

Sampling date: U 6 20 27

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: TB Associated Samples:

Compound	Blank ID	Sample Identification				
	V					
53	0.078	0.0774				
МиМ	0.36					

Blank units: Associated sample units: VS Sampling date: 6 20 2 2

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: 19 Associated Samples: 3, 4

Compound	Blank ID	Sample Identification
	45	3 4
EE	0.019	0.085)+ 0.083)+
44	0.20	0.21 0.354 0.21 0.3\$4
MMM	0.77	0.561+ 0.28/0.504

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

.LDC#: 547190b

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	<u>1</u> _of_	_1_
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	6+7	\$	144 (53-14)	()	()	(e)	Jtau/A NO
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		· · · · · · · · · · · · · · · · · · ·	()	()	()		
			()	()	()		
			. (()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC#: 547/90/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	of	_
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 \mathcal{D})

₱lease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y N/A

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

# LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
10S10 580 -	(5)	125 (74-124)	()	()	4.6	1+ du /P (ND)
395868		()	()	()	4,5 MB 580-395868	
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		
		()	()	()		

LDC#: 54719 Dla

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

	1)
Page:	of
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D)

Y N N/A Y N N/A

Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

	Concentra	Concentration (ug V)		
Compound	3	4	(≤ G ^{RPD} %)	QUAL
KKK	0.31	0.18	53	
мм	0.28	1.04	112	
777	0.053	0.194	96	
Ee	0.085	0.083	2	
LLL	0.26	0.151	<u>अ</u>	

	Concentra	ation (ug L)		
Compound	3	0,1	(≤ 5 ³ %)	QUAL /
MMM	0.56	0.28	67	
FF	0.56	0.21	5	
49	0.21	0.21	0	
T	0.1511	0.059	87	/

Compound	Concentration () RPD (≤ %)	QUAL

Compound	Concentration	n ()	RPD (≤ %)	QUAL

LDC #: 54790K

VALIDATION FINDINGS WORKSHEET Target Analyte and TIC

Page:	lof_
Reviewer:	F

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
			All laboratory calibrated analytes reported as		Jdets/A (v)
	-		tentatively identified compounds (TIC)		
	:				

LDC #: 54719D1a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _	_1_	_ of _	_1	
Review	er: _		FT_	

2

METHOD: GCMS 8260D

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

Ax = Area of compound

average RRF = sum of the RRFs/number of standards

Cx = Concentration of compound S = Standard deviation of the RRFs

%RSD = 100 * (S/X)

X = Mean of the RRFs

Ais = Area of associated internal standard Cis = Concentration of internal Standard

		***************************************		Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
ll .	Į Į	Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF 5ug/L std)	(RRF 5ug/Lstd)	(Initial)	(Initial)		
	ICAL	6/22/2022	Α	0.4917	0.4917	0.4786	0.4786	14.1	14.1
	TAC 113		cc	1.6414	1.6414	1.5432	1.5432	5.5	5.5
			JJJ	1.7421	1.7421	1.5218	1.5218	7.9	7.9

LDC #: 547/90/a

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1	_of_	_1_
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

A_x = Area of target analyte

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of target analyte C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	ecy	1325	A cc JJ)	0.4786 1.5432 1.5218	0.4368 1.633 1.521	0.4368	8.7 5.8 0.0	\$.7 5.8 0.0
2								
3								
4								

LDC	#:_	54	7/	190	p
-----	-----	----	----	-----	---

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1_	_of_	1_	_
Reviewer:	FT			

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	10.0	10.7	107	107	0
1,2-Dichloroethane-d4		105	105	105	
Toluene-d8		9.84	98	98	
Bromofluorobenzene	Į į	9.95	99	99	

Comments:		

LDC #: 547/90/a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_1 of 1 Reviewer:___ FT

METHOD: GC/MS VOA (EPA Method 8260 \mathcal{D})

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SC = Sample concentration

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

SA = Spike added

MSDC = Matrix spike duplicate concentration

MS/MSD sample: ____ 6 + 7

Compound	Sp Add	ded .	Sample Concentration	Conce	I Sample entration g		c Spike Recovery		e Duplicate Recovery		/MSD
	MS.	MSD	<u>0,</u>	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	5.0	5.0	NΩ	6.24	5.96	125	125	119	119	4	4
Trichloroethene				5.30	5.4)	106	106	108	108	2	2
Benzene				5.58	5.64	112	112	113	113)	1
Toluene				5.54	5.75	11)	n1	115	115	4	4
Chlorobenzene	1	1	J	5.34	5.45	१०४	108	109	109	1	1

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 547/90/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:_	1	of	1
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration

LCSDC = Laboratory control sample duplicate concentration

LCS ID: LCS ID 580-39 4756

	Spike Added		Spiked Sample Concentration			cs		LCSD		LCS/LCSD	
Compound	(ug	レー	(no	11/)	Percent	Recovery	Percent	Recovery	R	PD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.	
1,1-Dichloroethene	5.0	5.0	5.29	5.23	106	106	105	105)		
Trichloroethene			5.05	4.92	10)	101	98	98	3)	3	
Benzene			5.23	5.10	105	102	102	102	3	3	
Toluene			5.24	5.14	105	105	103	103	2	2	
Chlorobenzene	<u> </u>		5.05	5.09	101	jo)	101	101	0	Ũ	

Comments:			

LDC#: 547/90/ou

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	of_	1
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260/)

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

Conce	ntratio	on = $\frac{(A_s)(I_s)(DF)}{(A_{is})(RRF)(V_o)(\%S)}$	Example:	• .
A_{x}	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. # 3 ,	777
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	Conc. = (6340)	(10.0)
Is	=	Amount of internal standard added in nanograms (ng)	(780913) (1.5218)
RRF	=	Relative response factor of the calibration standard.		
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	0.0533	ug/L
Df	=	Dilution factor.		0,
%S	=	Percent solids, applicable to soils and solid matrices only.		

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	#3	77.7	0.053	0.0533	-

Laboratory Data Consultants, Inc. **Data Validation Report**

Red Hill Oily Waste Disposal Facility, CTO 18F0176 **Project/Site Name:**

LDC Report Date: August 23, 2022

Semivolatiles Parameters:

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU124	580-115123-4	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115MSD	580-115123-1MSD	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- ı LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the ٧ problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/24/22	4-Chloroaniline 3,3'-Dichlorobenzidine	25.0 42.8	All samples in SDG 580-115123-1	UJ (all non-detects) UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 580-394839	06/24/22	Diethylphthalate	0.189 ug/L	All samples in SDG 580-115123-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
HU115MS/MSD (HU115)	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4-Dimethylphenol 3,3'-Dichlorobenzidine 4-Chloroaniline Hexachlorobutadiene Nitrobenzene Pentachlorophenol	21 (≤20) 21 (≤20) 22 (≤20) 23 (≤20) 25 (≤20) 52 (≤20) 35 (≤20) 31 (≤20) 22 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-394839 (All samples in SDG 580-115123-1)	Pentachlorophenol	22 (≤20)	NA	-

X. Field Duplicates

Samples HU123** and HU124 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation.

All tentatively identified compound quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in,SDG 580-115123-1	All tentatively identified compounds (TIC)	NJ (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D, data were qualified as estimated in three samples.

Due to TICs, data were qualified as presumptive and estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-115123-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU115 HU123** HU124	4-Chloroaniline 3,3'-Dichlorobenzidine	UJ (all non-detects) UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU115 HU123** HU124	All tentatively identified compounds (TIC)	NJ (all detects)	А	Target analyte quantitation (TICs) (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

				S WORKSHEET		Date: 8 Page 1 of 1	
SDG #:580-115123-1 Stage 2B/4 Page:c Laboratory: <u>Eurofins, Tacoma, WA</u> Reviewer:							
2nd Reviewer:							
METHOD: GC/MS Semivolatiles (EPA'SW-846 Method 8270E)							
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.							
	Validation Area			Comments			
I.	Sample receipt/Technical holding times	A /A					
11.	GC/MS Instrument performance check	Δ	1				
III.	Initial calibration/ICV	AIR	0/0 ps	D = 15.12	10/2	W	
IV.	Continuing calibration ender of	500		_ cw	£20 SV		
V.	Laboratory Blanks	5W			•		
VI.	Field blanks	N					
VII.	Surrogate spikes	A					
VIII.	Matrix spike/Matrix spike duplicates	500					
IX.	Laboratory control samples	كترح	ves 10				
Χ.	Field duplicates	NA	P= 23			-	
XI.	Internal standards	Λ'					
XII.	Target analyte quantitation / † 1 Not reviewed for Stage			Stage 2B validation.			
XIII.	,			or Stage 2B validation.			
XIV.	System performance A Not rev			ewed for Stage 2B validation.			
XV.	Overall assessment of data	Δ					
Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank * Indicates sample underwent Stage 4 validation							
	Client ID			Lab ID	Matrix	Date	
	HU115			580-115123-1	Water	06/20/22	
2 1	IU123** <i>(</i>)			580-115123-3**	Water	06/20/22	
3 I	IU124 O			580-115123-4	Water	06/20/22	
4 I	HU115MS			580-115123-1MS	Water	06/20/22	
5 H	HU115MSD			580-115123-1MSD	Water	06/20/22	
6							
7							
8							
9							
Notes:							
N	MB GBO-394839						
_							

LDC#: 54719Da

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2 Reviewer: FT

Method: Semivolatiles (EPA SW 846 Method 8270)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/	_		
Were all samples analyzed within the 12 hour clock criteria?			_	
Illa. Initial calibration	·			
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤ 15% and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification	,-			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?		_		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	_			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.				
VI. Field blanks				
Were field blanks were identified in this SDG?		/		
Were target analytes detected in the field blanks?			/	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			/	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R?				
VIII. Matrix spike/Matrix spike duplicates	·			
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				

LDC #: 9471 902a

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

		=		
Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
IX. Laboratory control samples	, ———			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates	, ——			
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?	·			
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Target analyte quantitation	r			pa
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
Were manual integrations reviewed and found acceptable?				
Did the laboratory provide before and after integration printouts?				
XIV. System performance		··-		
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 547/9D Za

Y (N/ N/A

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u></u>	/
Reviewer:	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Were all %D and RRFs within the validation criteria of ≤20%D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	2210	cer	Т	×.0		All	(14 A) LU /-C
	2210		BBB	25.0 42.8		1	
			32 12 1,2			V	
						· · · · · · · · · · · · · · · · · · ·	
\vdash							
				-			
ļ							
-							
\vdash		-					
			_				
				,			

LDC #: 54719 DZa

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	_/ of	_
Reviewer:	FT	

IETHOD: GC/MS BNA (EPA SW 846 Method 8270 E) Ilease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". IN N/A Was a method blank analyzed for each matrix? IN N/A Was a method blank analyzed for each concentration preparation level? IN N/A Was a method blank associated with every sample? IN N/A Was the blank contaminated? If yes, please see qualification below. Islank extraction date:												
Compound	Blank ID	<u> </u>	7	T = ==================================	T							
	MB 580-39	4839										
LL	0.189											
	•							 				
Blank extraction date:_ Conc. units:	Blank ar	nalysis date:	 Associa	ited Samples:_								
Compound	Blank ID											
							-					

LDC#: 547/902a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	_/of_	1
Reviewer:	FT	

(0)

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

YX	Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?												
#	MS/MSD ID	Compound	MS %R (Limits)		MSD %R (Limits)		RPD (Limits)		Associated Samples	Qualifica	tions		
	4,5	R	()	()		21 (20)		21 (20)		All	Jett /A	all NP
		F	()	()		21 ()					
		E	()	()		22						
		7	()	()	_	ン ろ ()					
		8	()	()		25 ()					
		BBB.	()	()		52 ()	·				
		T	()	()	<u> </u>	35 ()					
		И	()	()		31 ()					
		L	()	()		22 ()					
		TT	()	()	$oldsymbol{\perp}$	22 (√)	<u> </u>	V			
			()	()		()					
			()	()		()					
			()	()		()					
			()	()	<u> </u>)					
			()	()		()					
			()	()		(_)					
			()	()		()					
			()	()		()					
			()	()		()					
			()	()	T	()					
			()	()		()					

LDC#: 54719P2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	/ _{of_}	_/
Reviewer:	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 む)

Æl€ase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u> Y N N/A</u> Wa

Was a LCS required?

Y N /N/A

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)		RPD (Limits)	Associated Samples		Qualification	าร
	Les 10 580-	TT	()	()	w (20)	AI	(w)	Jour 1P	ND
	394839		()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			. ()	()	()				
			()	()	()				
			())	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	(لد	(_)				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				
			()	()	()				

LDC #: _54719D2a

Validation Findings Worksheet Initial Calibration Calculation Verification

Method: 8270E

Calibration				(Y)	(X)	(X^2)
Date	Instrument/Column	Compound	Standard	Response	Conc.	Conc.
5/27/2022	GCMS	BBB	1	0.007	0.2	0.04
	TACO51		2	0.098	0.4	0.16
			3	0.297	1	1
			4	0.675	2	4
			5	1.383	4	16
			6	3.546	10	100
			7	6.510	20	400
			8	15.308	40_	1600
			9	40.520	100	10000
			10	74.720	200	40000

Regression Output	Calcı	ulated	Reported		
Constant	С	-0.4630	С	-7.7350	
Std Err of Y Est					
R Squared		0.9992441		0.9980000	
Degrees of Freedom					
	a	b	a	b	
X Coefficient(s)	4.22775E-01	-2.2920E-04	3.84200E-01	0.0000E+00	
Std Err of Coef.					
Correlation Coefficient		0.999622			
Coefficient of Determination (r^2)		0.999244			

LDC #: 54719D2a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:1_	_ of1
Reviewer:	FT

METHOD: GCMS 8270E

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

Ax = Area of compound

average RRF = sum of the RRFs/number of standards

Cx = Concentration of compound S = Standard deviation of the RRFs

%RSD = 100 * (S/X)

X = Mean of the RRFs

Ais = Area of associated internal standard Cis = Concentration of internal Standard

		Calibration		Reported	Recalculated	Reported AverageRRF	Recalculated Average RRF	Reported %RSD	Recalculated %RSD
#	Standard ID		Compound	(RRF 500 std)	(RRF500 std)	(Initial)	(Initial)	701100	701100
	ICAL	5/27/2022	Α	1.0619	1.0619	1.0091	1.0091	10.9	10.9
	TACO51		U	0.1627	0.1627	0.1661	0.1661	8.7	8.7
			LL	1.3406	1.3406	1.3324	1.3324	11.6	11.6
ll			SS	0.2798	0.2798	0.2585	0.2585	12.8	12.8
			BBB	see curve					

LDC #: 54719020

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1	of_	1	
Reviewer:	FT	•		

METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of target analyte

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of target analyte

C_{is} = Concentration of internal standard

	·				Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	cer	2210	△ (1st IS)	1.0091	0.8746	0.8746	13.3	13.3
ļ		,,,	N (2 nd IS)	0.1661	0.1477	0.1477	11.)	11-)
			LV (3 rd IS)	1.3324	1.227	1,227	7.91	7.9
			SS (4 th IS)	0.2885	0.2402	0.2402	7.)	7.1
			BBB (5 th IS)					
L_			(6 th IS)					
2			(1st IS)					
			(2 nd IS)					
	ļ		(3 rd IS)	ļ				
			(4 th IS)					
			(5 th IS)					
			(6 th IS)					
3	l l		(1st IS)					
	1		(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
<u></u>	<u> </u>		(6 th IS)		L			

Comments:	Refer to 0	Continuing (<u>Calibration fi</u>	<u>ndings worl</u>	<u>ksheet for</u>	list of q	<u>ualifications</u>	and a	ssociated:	<u>samples</u>	when reporte	ed results	<u>do not ac</u>	gree within	<u>10.0% of</u>
the recalcula	ated result	S													

LDC#: 5471902a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_1	lof <u>1_</u>
Reviewer:_	<u>FT</u>

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 T)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	1000.0	730.0	73	13	U
2-Fluorobiphenyl		ط. (لا يخ	88	88	
Terphenyl-d14		999.3	100	100	
Phenol-d5		७०७.1	30	30	
2-Fluorophenol		501.5	SV	50	
2,4,6-Tribromophenol		851.9	85	88	

Sample ID:

Sumple 151	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

LDC#: 54719 D2a

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	1	_of_	1_
eviewer.	E.	Т	

METHOD: GC/MS BNA (EPA SW 846 Method 8270

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the target analytes identified below using the following calculation:

SSC = (Ax)(Cis)(Fv)(Df)

Where: A_x= Area of the target analyte

Ws= Initial weight of the sample

(Ais)(RRF)(Vs or Ws)(%S/100)

A_{is} = Area for the specific internal standard

%S= Percent Solid

%Recovery = (SSC/SA)*100

Cis = Concentration of internal standard Fv =Final volume of extract

SSC = Spiked sample concentration

SA= Spike added

Df= Dilution factor

MS= Matrix spike

RRF= Average relative response factor of the target analyte MSD= Matrix spike duplicate

Vs= Initial volume of the sample

MS/MSD samples: Spike Spiked Sample Matrix Spike Matrix Spike Duplicate Sample MS/MSD Added Concentration Concentration uall (nally Compound **Percent Recovery Percent Recovery RPD** MSD Reported MS MSD MS Recalc Reported Recalc Reported Recalc. 0.553 ND 33 1.91 1.91 0.636 291 33 Phenol N-Nitroso-di-n-propylamine 4-Chloro-3-methylphenol Acenaphthene 5 22 3.82 2.42 63 3.81 ND 1.95 5 Pentachlorophenol Pyrene

LDC#: 94719 D2a

VALIDATION FINDINGS WORKSHEET

aboratory Control Sam	ple/Laboratory Control San	nple Duplicates Results Verification	n

Page:_	1	_of_	_1_
Poviowor.	E	т:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

 $SSC = \frac{(Ax)(C_{IS})(Fv)(Df)}{(A_{IS})(RRF)(Vs \text{ or } Ws)(\%S/100)}$

%Recovery = (SSC/SA)*100

Where: A_x= Area of the target analyte

A_{is}= Area for the specific internal standard

C_{is} = Concentration of internal standard

Fv =Final volume of extract

Df= Dilution factor

Ws= Initial weight of the sample

%S= Percent Solid

SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

		pike		ike	4	cs		SD	LCS/LCSD	
Compound	f1 .	dded (a)		ntration メル)	Percent	Recovery	Percent Recovery		RPD	
general service de la production de la company Reservice de la company de	LCS	1 CSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol	2.0		0.799	0.773	40	40	39	39	3	3
N-Nitroso-di-n-propylamine							,	,		
4-Chloro-3-methylphenol	ļ		<u> </u>						<u> </u>	ļ
Acenaphthene	<u> </u>	<u> </u>								
Pentachlorophenol	4.0		1.62	2.02	4)	41	5	2)	22	22
Pyrene										

LDC# 5471902a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	_1	_of_	1_
Reviewer:	FT	-	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	ntratio	$n = \frac{(A_{\circ})(I_{\circ})(V_{\circ})(DF)(2.0)}{(A_{\circ})(RRF)(V_{\circ})(V_{\circ})(\%S)}$	Example:	
A_{x}	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. Le?	580-39 4839 A
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard		(10017) (1007)
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. =	(100476) (1000.0) (100)(2)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).		(27169) (1.0091) (1000)
V_{i}	=	Volume of extract injected in microliters (ul)	=	0.7941 11
V _t	=	Volume of the concentrated extract in microliters (ul)		0.79 % ugll
Df	=	Dilution Factor.		·
%S	=	Percent solids, applicable to soil and solid matrices only.		
2.0	=	Factor of 2 to account for GPC cleanup 2 / 1000		

#	Sample ID	Target Analyte	Reported Concentration (ug)	Calculated Concentration (પહુર 💛)	Qualification
	105	Δ	0.799	0.7986	
<u> </u>			ļ		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: August 23, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Stage 2B & 4 Validation Level:

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU124	580-115123-4	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115MSD	580-115123-1MSD	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory.
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits. ı
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). p
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the ٧ problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples in the full scan analysis as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU123** and HU124 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-115123-1

No Sample Data Qualified in this SDG

SDG : abor METH The s	#: 54719D2b VALIDATIO #: 580-115123-1 atory: Eurofins, Tacoma, WA HOD: GC/MS Polynuclear Aromatic Hydro amples listed below were reviewed for eation findings worksheets.	St ocarbons (l	age 2B/4 EPA SW-8	4 846 N			Date:	
	Validation Area				Comme	ents		
l.	Sample receipt/Technical holding times	44						
II.	GC/MS Instrument performance check	A	,					
III.	Initial calibration/ICV	Δ / Δ	0/0		PSD =15, (2	ICY = ?	W	
IV.	Continuing calibration ending	Δ			PSD = 18, 12 CW =	20/50		
٧.	Laboratory Blanks	Δ						
VI.	Field blanks	N						
VII.	Surrogate spikes	A						
VIII.	Matrix spike/Matrix spike duplicates	Δ						
IX.	Laboratory control samples	4	ics	N				
X.	Field duplicates	NV	100 D = 2	12)			
XI.	Internal standards	4						
XII.								
XIII.	Target analyte identification	Δ			Stage 2B validation.	MI		
XIV.	System performance	A			Stage 2B validation.			
XV.	Overall assessment of data	F						
lote:	A = Acceptable ND = Non N = Not provided/applicable R = Rin	o compounds	s detected		D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source OTHER:	blank	
	Client ID				Lab ID	Matrix	Date	
1-	HU115				580-115123-1	Water	06/20/22	
2'	HU123** //				580-115123-3**	Water	06/20/22	
_	HU124 P				580-115123-4	Water	06/20/22	
	HU115MS				580-115123-1MS	Water	06/20/22	
	HU115MSD				580-115123-1MSD	Water	06/20/22	
6								
7								
8								
9								
otes:								
	MB 580-394839							
\perp								
- 1	i 1		, ,		j	ı		

LDC#: 5471902b

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: FT

Method: Semivolatiles (EPA SW 846 Method 8270 F)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check	,			
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤ 15% and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	~			
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/		
VI. Field blanks				
Were field blanks were identified in this SDG?				
Were target analytes detected in the field blanks?			-	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			_	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R?				
VIII. Matrix spike/Matrix spike duplicates				
More metric enite (MS) and metric enite duplicate (MSD) and metric SDC3				

LDC #: 5471902b

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	_			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?				
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
Were manual integrations reviewed and found acceptable?	/			
Did the laboratory provide before and after integration printouts?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WETTOD. GONIG STOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

Method: 8270E SIM

Calibration				(Y)	(X)	(X^2)
Date	Instrument/Column	Compound	Standard	Response	Conc.	Conc.
3/24/2022	SEA101	DDD	1	0.016	0.01	0.0001
			2	0.034	0.02	0.0004
			3	0.068	0.05	0.0025
			4	0.151	0.1	0.01
			5	0.311	0.2	0.04
			6	0.750	0.5	0.25
			7	1.533	1	1
			8	2.995	2	4
			9	6.952	5	25
			10	13.807	10	100
			11	27.760	20	400
		ELWIN	12	65.375	50	2500
			13	118.050	100	10000

Regression Output	Calcu	ılated	Reported		
Constant	С	0.0037	С	0.2105	
Std Err of Y Est					
R Squared		0.9999906		0.9970000	
Degrees of Freedom					
	а	b	а	b	
X Coefficient(s)	1.43267E+00	-2.5210E-03	1.47230E+00	-3.1000E-05	
Std Err of Coef.					
Correlation Coefficient		0.999995			
Coefficient of Determination (r^2)		0.999991			

LDC #:54719D2b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _	_1_	_ of	_1
Review	er:	F	Γ

METHOD: GCMS 8270E SIM

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

Where:

Ax = Area of compound

average RRF = sum of the RRFs/number of standards

Cx = Concentration of compound

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs

X = Mean of the RRFs

Ais = Area of associated internal standard Cis = Concentration of internal Standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF 200ug/Lstd)	(RRF200ug/L std)	(Initial)	(Initial)		
	ICAL	3/24/2022	s	1.0542	1.0542	1.0388	1.0388	6.0	6.0
	SEA101		GG	1.3018	1.3018	1.2744	1.2744	3.0	3.0
			υυ	1.2134	1.2134	1.1719	1.1719	6.2	6.2
			DDD	see curve					
			III	1.1332	1.1332	1.0795	1.0795	10.9	10.9
		_							

LDC #: 54719 p2b

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	1	of_	1_
Reviewer:_	FT		

METHOD: GC/MS BNA (EPA SW 846 Method 8270 5)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

A_x = Area of target analyte $C_x =$ Concentration of target analyte A_{is} = Area of associated internal standard

 C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	cer	3/24/22	ر (1st IS)	1.0384	1.027	1.027	1.)	1.)
	SEA 10	, .	44 (2 nd IS)	1.2744	1.312	1.312	2.9	29
			NN (3 rd IS)	1.179	1.111	j.11)	5.2	5.2
			DOD (A) (4th IS)	900	20)	901	0.1	0.7
			[1] (5 th IS)	1.0795	1.078	1.078	0.)	0 -
			(6 th IS)					<u>'</u>
2			(1st_IS)		t 			
			(2 nd IS)					
1			(3 rd IS)					
ļ .			(4 th IS)			· · · · · · · · · · · · · · · · · · ·		
			(5 th IS)					
			(6 th IS)					
3			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
$\ $			(4 th IS)					
			(5 th IS)					
<u> </u>	<u>L</u>		(6 th IS)				<u> </u>	

Comments:	Refer to Continuing C	Calibration findings	worksheet for lis	st of qualification:	<u>s and associated</u>	<u>l samples whe</u> l	n reported resu	<u>ults do not a</u>	gree within	<u>10.0% of</u>
the recalcula	nted results.									

LDC #:	547	90	2/
--------	-----	----	----

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u>	of_	1_
Reviewer:	FT	

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 🖃

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: # 1

		Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-do	W-dIU	0001	698.7	70	10	6
2-Fluorobiphenyl	47-910	1	895.	90	90	1
Terphenyl-d14	HYT	V	1006.8	10)	101	
Pheno/-d5						
2-Flyorophenol						
2,4,6-Tribromopheno	ol				·	

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

LDC #: 54719 pab

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	1	_of_	1_
Reviewer:	F.	Т	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 F)

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the target analytes identified below using the following calculation:

SSC = (Ax)(Cis)(Fv)(Df)

Where: A_x= Area of the target analyte

Ws= Initial weight of the sample %S= Percent Solid

(Ais)(RRF)(Vs or Ws)(%S/100)

A_{is} = Area for the specific internal standard Cis = Concentration of internal standard

SSC = Spiked sample concentration

%Recovery = (SSC/SA)*100

Fv =Final volume of extract

SA= Spike added

Df= Dilution factor

MS= Matrix spike

RRF= Average relative response factor of the target analyte MSD= Matrix spike duplicate

Vs= Initial volume of the sample

Compound	Ac	oike Ided)	Sample Concentration (ua /)	ration Concentration				MSD PD			
	MS	MSD	<u> </u>	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
Phenol											
N-Nitroso-di-n-propylamine											
4-Chloro-3-methylphenol											
Acenaphthene	1.91	1.91	ND	1.52	1.5	80	80	19	19	U	0
Pentachlorophenol									,		
Pyrene	1.91	1.91	NO	1.69	1.74	809	89	9)	91	3	3
						•	,		,		

LDC #: 547 19 p2b

VALIDATION FINDINGS WORKSHEET

borator	Control Sam	ple/Laboratory	Control Samp	le Duplicates Result	s Verification

Page:	1	of	<u>1_</u>
Reviewer:	FT		

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

 $SSC = \frac{(Ax)(Cis)(Fv)(Df)}{(A_{is})(RRF)(Vs \text{ or } Ws)(\%S/100)}$

%Recovery = (SSC/SA)*100

Where: A_x= Area of the target analyte

A_{IS}= Area for the specific internal standard

C_{is} = Concentration of internal standard Fv =Final volume of extract

Df= Dilution factor

Ws= Initial weight of the sample

%S= Percent Solid

SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

	Spike Added (vez / V)		Spike Concentration (US)		1	CS		SD	ıcs	/LCSD
Compound					Percent Recovery		Percent Recovery		RPD	
	ıcs (I CSD	rcs	U LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol							 		<u> </u>	ļ
Acenaphthene	2.00	2.60	1.69	1:77	84	84	88	88	4	
Pentachlorophenol	<u> </u>	 							<u> </u>	+ 1
Pyrene	<u> </u>		1.88	1.95	94	194	98	98	4	1 7
	<u> </u>						ļ		 	
										`
				1					II.	

LDC #: 54719D2b

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	_of	1_
Reviewer:	FT	•	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 $\widehat{\mathfrak{F}}$)

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	entratio	$n = \frac{(A_x)(I_s)(V_t)(DF)(2.0)}{(A_{is})(RRF)(V_o)(V_t)(%S)}$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. <u>Los 580-394839</u> GG
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	(7) (1) (1) (1)
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (564964) (10,000) (2)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(525 39) (1,2744) (1NO)
V_{i}	=	Volume of extract injected in microliters (ul)	=
V_{t}	=	Volume of the concentrated extract in microliters (ul)	1.6876 ug/V
Df	=	Dilution Factor.	V
%S	=	Percent solids, applicable to soil and solid matrices only.	
20	=	Factor of 2 to account for GPC cleanup 2/10 m	

#	Sample ID	Target Analyte	Reported Concentration	Calculated Concentration (UG)	Qualification
	les	५७	1.69	1.6876	
			1		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: October 11, 2022

Parameters: Metals

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115MSD	580-115123-1MSD	Water	06/20/22
HU115DUP	580-115123-1DUP	Water	06/20/22
HU123MS	580-115123-3MS	Water	06/20/22
HU123MSD	580-115123-3MSD	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Analyte Concentration			
ICB/CCB	Sodium	0.146 ug/L	All samples in SDG 580-115123-1		

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Serial Dilution

Serial dilution analysis was performed on an associated project sample. Percent differences (%D) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

All target analyte quantitation met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Metals - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126
Metals - Field Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

LDC #:_ 54719D4b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

SDG #: 580-115123-1 Laboratory: Eurofins, Tacoma, WA

Reviewer:

2nd Reviewer

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
11.	Instrument Calibration	A	·
111.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	LN_	
VI.	Matrix Spike/Matrix Spike Duplicates	A	(3,4), (6,7)
VII.	Duplicate sample analysis	A	5
VIII.	Serial Dilution	A	
IX.	Laboratory control samples	A	LCSILCSD
X.	Field Duplicates	N_	1
XI.	Target Analyte Quantitation	A	Not reviewed for Stage 2B validation.
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
	HU115	580-115123-1	Water	06/20/22
	HU123**	580-115123-3**	Water	06/20/22
	HU115MS	580-115123-1MS	Water	06/20/22
	HU115MSD	580-115123-1MSD	Water	06/20/22
	HU115DUP	580-115123-1DUP	Water	06/20/22
	HU123MS	580-115123-3MS	Water	06/20/22
	HU123MSD	580-115123-3MSD	Water	06/20/22
		<u>.</u>		
)				
1				
2				
3				
4				
5				

Notes:					

METHOD: Trace Metals (EPA SW 846 Methods	s 6010	/6020	/7000))						
Validation Area	Yes	No	NA	Comments						
I. Technical holding times										
Were all technical holding times met?	V									
Were all water samples preserved to a pH of	1									
<2.	Ľ									
II. ICP-MS Tune										
Were mass resolutions within 0.1 amu for all		Ī								
isotopes in the tuning solution?										
Were %RSDs of isoptoes in the tuning										
solution ≤5%?			•							
III. Calibration										
Were all instruments calibrated daily?	V									
Were the proper standards used?	V									
Were all initial and continuing calibration										
verifications within the 90-110% (80-120% for	V									
mercury) QC limits?										
Were the low level standard checks within 70-										
130%? 80-120%										
Were all initial calibration correlation	1									
coefficients within limits as specifed by the										
method?										
IV. Blanks										
Was a method blank associated with every	V									
sample in this SDG?										
Was there contamination in the method		1								
blanks?		V								
Was there contamination in the initial and	V									
continuing calibration blanks?										
V. Interference Check Sample										
Were the interference check samples	1									
performed daily?	V									
Were the AB solution recoveries within 80-										
120%?	<u> </u>	<u> </u>								
VI. Matrix Spike/Matrix Spike Duplicates/Lab	orato	ry Du	plicate	S						
Were MS/MSD recoveries within the QC										
limits? (If the sample concentration exceeded	V									
the spike concentration by a factor of 4, no										
action was taken.)	<u> </u>									
Were the MS/MSD or laboratory duplicate										
relative percent differences (RPDs) within the	\checkmark									
QC limits?	<u> </u>	<u> </u>								
VII. Laboratory Control Samples	/-	,	·							
SDG?	$oxed{\checkmark}$	<u></u>								

Were the LCS recoveries and RPDs (if	V									
applicable) within QC limits?	L	<u> </u>	<u> </u>							
METHOD: Trace Metals (EPA SW 846 Methods	Y									
Validation Area	Yes	No	NA	Comments						
VIII. Internal Standards										
Were all percent recoveries within the 30- 120% (60-125% for EPA Method 200.8) QC limits?				*						
		<u> </u>								
If the recoveries were outside the limits, was a reanalysis performed?			V							
IX. Serial Dilution										
Were all percent differences <10%?	V									
Was there evidence of negative interference?		./								
If yes, professional judgement will be used to		"								
qualify the data.	<u> </u>									
X. Target Analyte Quantitation										
Were all reporting limits adjusted to reflect										
sample dilutions?										
Were all soil samples dry weight corrected?			V							
XI. Overall Assessment of Data										
Was the overall assessment of the data found	/									
to be acceptable?		l								
XII. Field Duplicates		·····								
Were field duplicates identifed in this SDG?		<u> </u>								
Were target analytes detected in the field										
duplicates?			<u> </u>							
XIII. Field Blanks										
Were field blanks identified in this SDG?		V								
Were target analytes detected in the field blanks?			✓							

LDC #: 54719D4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: ATV

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1,2	W	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
QC		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
3->7	14/	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K) Se, Ag, (Na), Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
·		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

LDC #: 54719D4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:_	1	of_	1	
Reviewer: A	١T٤			

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>ug/L</u>

Soil preparation factor applied: NA
Associated Samples: all

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
Na			0.146	730					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 $%R = Found \times 100$ True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

Standard ID	Type of Analysis	Element	mg L Found (ug/L)	mg L True (ug/L)	Recalculated %R	Reported %R	Acceptable (Y/N)
ICVL	ICP (Low Level calibration)	Mn	0.0200	0.0200	100	100	У
	ICP/MS (Low Level calibration)						
IW	ICP (Initial calibration)	Mg	39.31	40.000	98	98	У
	ICP/MS (Initial calibration)						
	CVAA (Initial calibration)						
ccv	ICP (Continuing calibration)	Na	95.97	100.000	96	96	У
	ICP/MS (Continuing calibration)						
	CVAA (Continuing calibration)						

ICP-MS TUNE	Calculation	Mass	Actual (Mean Counts / Axis)	Required (Counts / Axis)	Recalculated %RSD	Acceptable (Y/N)
	Mass Axis		·	± 0.1 AMU	NA NA	:
	%RSD			≤ 5% RSD		·

Comments:	,		
		•	

LDC #: 54719D

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ (S+D)/2

Where, S = Original sample concentration

D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = |I-SDR| \times 100$

Where, I = Initial Sample Result (mg/L)

SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

			Mall	ugll	Recalculated	Reported	
Sample ID	Type of Analysis	Element		True / D / SDR (units)	%R / RPD / %D	%R/RPD/%D	Acceptable (Y/N)
ICSAB	ICP interference check	Cov	488.1 mg/L	500.00 mg/L	98	98	У
LCS	Laboratory control sample	Mn	969.8	1000.000	97	97	Y
Ģ	Matrix spike	K	(SSR-SR) 21578	20010	108	108	Y
917	Duplicate	K	24850	24640		T	Y
上	Post digestion spike	May	20450	20000	102	102	У
1	ICP serial dilution	Nov	35620	35010	1.7	1.7	Y

Comments:	

LDC #: 54719 D4b

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	ATV

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

N N	N/A N/A	Have results Are results v	s been reported	l and calculated correct ated range of the instri	ot applicable questions and tly? uments and within the lin		
Detec equati		te results for ₋		COV	were recalcu	ulated and verified	using the following
RD FV In. Vol. Dil	etration = = = = =	(RD)(FV)(Dil) (In. Vol.) Raw data conce Final volume (n Initial volume (n Dilution factor		Recalculat	ion: (1000 = 278	70	
#	Sa	mple ID		Analyte	Reported Concentration (HG/L)	Calculated Concentration (MG/L)	Acceptable (Y/N)
		2	Ca		28600	27870	Y
ote:							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: September 30, 2022

Parameters: Wet Chemistry

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115DUP	580-115123-1DUP	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B
Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0
Dissolved Organic Carbon by EPA SW 846 Method 9060A
Nitrate/Nitrite as Nitrogen by EPA Method 353.2
Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitation met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

SDG Labor	#:580-115123-1 ratory:_Eurofins, Tacoma, WA	Sta	tage 2B/4	S WORKSHEET	F Revi 2nd Revi	
ME II	HOD: (Analyte) Alkalinity (SM2320B), Bro (EPA SW-846 Method 9060A), Nitrate/Ni	itrite-N (EP	oride, Fluoriae, 'A Method 353	, Nitrate-N, Surrate (ב .2), TOC (EPA SW-84	PA Method 300. 46 Method 9060/	<u>0),</u> A)
	samples listed below were reviewed for ea ation findings worksheets.	ach of the fo	ollowing valida	ition areas. Validation	findings are note	ed in attached
	Validation Area	T		Comme	nts	
I.	Sample receipt/Technical holding times	AA				
- 11	Initial calibration	IA_				
111.	Calibration verification	A				
IV	Laboratory Blanks	A				
V	Field blanks	$\prod N$				
VI.	Matrix Spike/Matrix Spike Duplicates	A	3			
VII.		TA	4	-		
VIII.		TA	icsius	D		
IX.	Field duplicates	T N_				
X.	Target Analyte Quantitation	A	Not reviewed for	Stage 2B validation.		
ΧI	Overall assessment of data	IA				
Note:	N = Not provided/applicable R = Rir	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1	HU115			580-115123-1	Water	06/20/22
2	HU123**			580-115123-3**	Water	06/20/22
	HU115MS			580-115123-1MS	Water	06/20/22
	HU115DUP			580-115123-1DUP	Water	06/20/22
5					1	
6						
7						
8						
9						
10			-			
11						
12						
					 	

Notes:

Page 1 of 2 Reviewer: ATL

METHOD: Inorganics Validation Area Yes No NA Comments I. Technical holding times Were all technical holding times met? II. Calibration Were all instruments calibrated at the required frequency? Were the proper number of standards Were all initial and continuing calibration \checkmark verifications within the QC limits? Were all initial calibration correlation coefficients within limits as specifed by the **V** method? Were balance checks performed as required? III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method \checkmark blanks? Was there contamination in the initial and continuing calibration blanks? IV. Matrix Spike/Matrix Spike Duplicates/Laboratory Duplicates Were MS/MSD recoveries within the QC limits? (If the sample concentration $\sqrt{}$ exceeded the spike concentration by a factor of 4, no action was taken.) Were the MS/MSD or laboratory duplicate relative percent differences (RPDs) within the QC limits? V. Laboratory Control Samples Was a LCS analyzed for each batch in the \checkmark SDG? Were the LCS recoveries and RPDs (if applicable) within QC limits? X. Target Analyte Quantitation Were all reporting limits adjusted to reflect sample dilutions? Were all soil samples dry weight corrected? XI. Overall Assessment of Data Was the overall assessment of the data found to be acceptable?

Reviewer: ATL

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates				
Were field duplicates identifed in this SDG?		V		
Were target analytes detected in the field duplicates?			V	
XIII. Field Blanks				
Were field blanks identified in this SDG?		V		
Were target analytes detected in the field blanks?			V	

LDC #: 54719D6

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter
1.2	ph TDS CI F NO3 NO2 SO4 O-PO4 (AIR) CN NH3 TKN (FOC) Cr6+ CIO4 (ND3/11/102-N) (DOC)
0	ph TDS (CI)(F)(NO) NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (B1-)
-	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
$\Delta \Delta$	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄ (NB/ND2-N)
1 '' 1	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4

Comments:_____

LDC #: 54719DG

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:	_ of	1
Reviewer:	A	T

Method : Inorganics, Method	1 see cover	
The correlation coefficient (r) for t	the calibration of	N02-N was recalculated.Calibration date: 6/29/22
An initial or continuing calibration	n verification percent r	ecovery (%R) was recalculated for each type of analysis using the following formula:
%R = <u>Found X 100</u>	Where,	Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution
True		True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Response	r or r ²	r orr ²	(Y/N)
Initial calibration		s1	0	2450.4			
		s2	0.1	25240.9	0.99687	0.99687	
	N03/N02-N	s3	0.2	55346.4			\ /
	1005/1000	s4	0.5	129173.5			У
		s5	1	239578.5			,
		s6	3	771103			
		s7	4	939960.9			
CCV (6) 27 C16:14) Calibration verification	TOC	FOUND 24.238	TRUE 25.000		97	97	У
CCV (C 22 C 8:18) Calibration verification	304	52.066	50.000		104	105	Y
CCV (C 27 c 19:24) Calibration verification	DOC	24.489	25.000		98	98	Y

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 54719DC

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page:_	1_of_	
Reviewer:	-ATT	,

Percent recoveries (%	R) for a labora	atory control samp	ole and a matrix spike sample were recalculated using the following formula:
%R = <u>Found</u> x 100 True	Where,	Found =	concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation Found = SSR (spiked sample result) - SR (sample result).
		Irue = cond	centration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$

Where,

METHOD: Inorganics, Method <u>See cover</u>

S =

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Føund / S (units)	MOIL True/D (units)	Recalculated %R / RPD	Reported %R / RPD	Acceptable (Y/N)
LCS	Laboratory control sample	Alkalinity	99330	100000	99	99	Y
3	Matrix spike sample	N03/N02-N	(SSR-SR) 960,281	0001	96	95	У
4	Duplicate sample	N03/N02-N	258.495	275,217	Ģ	Ģ	Y

Comments:			

LDC #: 54719

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:	of	
Reviewer:_	ATT	

METHOD:	norganics,	Method	See	cover	

DI	0000 000	qualifications	holow for a	Launctions	ancworod "	'NI" NIGH A	annliachta c	wastians ar	identified a	- "N1/A"
ы	ease see	quanneanons	S Delow Ioi a	i questions	alisweled	IN . INOL O	applicable c	juestions are	e identined a	5 IWA.

Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

Compound (analyte) results for reported with a positive detect were recalculated and verified using the following equation:

Concentration =

Recalculation: #2

 $\frac{1.347 - 0.03494}{2.790} \times 1000 = 470.272$

#	Sample ID	Analyte	Reported Concentration (MGL)	Calculated Concentration (Mg/L)	Acceptable (Y/N)
	2	NO3-N	200	210	V
	2	NO31NO2-N	190	189.614	
	2	TOC	400	396.437	V
	2	Alkalinity	94000	94380	ý
	2	DOC	470	470.272	_ >
			, ,		/
				-	
				<u> </u>	

Note:	 		
	 		

Laboratory Data Consultants, Inc. Data Validation Report

Red Hill Oily Waste Disposal Facility, CTO 18F0176 **Project/Site Name:**

LDC Report Date: August 23, 2022

Gasoline Range Organics Parameters:

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU114	580-115123-2	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU124	580-115123-4	Water	06/20/22
HU122	580-115123-5	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115MSD	580-115123-1MSD	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the V problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples HU114 and HU122 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU123** and HU124 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

LDC #: 54719D7	VALIDATION COMPLETENESS WORKSHEET	
SDG #: 580-115123-1	Stage 2B/4	Pa
Laboratory: Eurofins, Tacoma,	WA	Revie

Date: 8 9	vY
Page: <u> </u> of <u> </u>	_
Reviewer:	_
2nd Reviewer:	-

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	·
11.	GC/MS Instrument performance check	Δ	
_III.	Initial calibration/ICV	44	12 101 = 20
IV.	Continuing calibration ending	N	CW = 20/20
V.	Laboratory Blanks	K	
VI.	Field blanks	NV	TB=25
VII.	Surrogate spikes	Δ	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	Δ	Les IV
X.	Field duplicates	N	D = 3,4
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	4	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	4	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

Client ID	Lab ID	Matrix	Date	
1 HU115	580-115123-1	Water	06/20/22	
1 HU114 TB	580-115123-2	Water	06/20/22	
1 1 HU123** ()	580-115123-3**	Water	06/20/22	
1 HU124	580-115123-4	Water	06/20/22	
12 HU122 TB	580-115123-5	Water	06/20/22	
HU115MS	580-115123-1MS	Water	06/20/22	
HU115MSD	580-115123-1MSD	Water	06/20/22	
3				

1	102	980-394TI	1			
		990-39564				
	MIN	900-77-07	ν_			
\vdash				_		

LDC#: 5471907

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: FT

Method: GC HPLC

				T
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				<u> </u>
Ila. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) < 20%?			_	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?				
Were the RT windows properly established?		·		
Ilb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) ≤ 20%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20%?				
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
V. Field Blanks				
Were field blanks identified in this SDG?		-		
Were target analytes detected in the field blanks?			-	
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			1	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			\	
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	_			
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC#: 5471907

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
X. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?				
Were manual integrations reviewed and found acceptable?				
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC #: 54719D7

Validation Findings Worksheet <u>Initial Calibration Calculation Verification</u>

Page:_1		of	_1	
Reviewer	: F	Ŧ		

Method: Method __8260/CADOHS LUFT Method_____

Calibration Date	Instrument/Column	Compound	Standard	(Y) Response	(X) Conc.	(X^2) Conc.
6/3/2022	TACO 36	GRO	1	17.850	5	25
		C6-C12	2	21.209	10	100
			3	37.293	25	625
			4	61.285	50	2500
			5	127.440	100	10000
			6	623.050	500	250000
			7	1260.300	1000	1000000
			8	1814.850	1500	2250000
			9	3977.740	2600	6760000

Regression Output Calculated Reported Constant 27.5942 122.9800 С С Std Err of Y Est R Squared 0.9982075 0.9930000 Degrees of Freedom b b а а 0.9394193302 0.0002193493 1.0311000000 0.0000181000 X Coefficient(s) Std Err of Coef. 0.999103 Correlation Coefficient 0.998207 Coefficient of Determination (r^2)

LDC #: 54719 D7

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:_	1	_of	1_
eviewer:	F	Т	

HOD: GCHPLC
HOD: GCHPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

	C4dd	Calibration			Reported	Recalculated	Reported	Recalculated
#	Standard ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	cer	7/1/22	920 C/ - C/2	1.00	1.05	1.0468	4.7	4.7
		1014						, ,
2								
3								
4	·							
						-		

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	_of_	1
eviewer:	1	=T	

LDC #: 54719 P7

METHOD: __GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:___

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			<u> </u>	Reported	Recalculated	
4-BFB		10.0	8.94	89	89	O
				•		

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene		Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	ВВ	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	СС	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	х	Triphenyl Phosphate	<u> </u>	

LDC #: 5471907

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Pag	ge:	1	_of_	1
Reviewer:		F	Τ	

METHOD: GC __HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration
SC = Sample concentration

MS = Matrix spike

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

SA = Spike added

MSD = Matrix spike duplicate

MS/MSD samples: 6 4 7

Compound	Sp Add (ua.	led	Sample Conc.	Spike S Concer (No.	tration		spike Recovery	Matrix Spik			MSD PD
The state of the state of	мѕ	MSD	0,	мѕ	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
981)	1000	1000	24	1066	1010	طاما	106	101	10)	5	5
					<u> </u>						
						 					
						-					
						 					
							<u> </u>				

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 54719 D7

VALIDATION FINDINGS WORKSHEET

Page:	<u>1</u> 0	f_1_
-------	------------	------

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer:

METHOD: GC _HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA)

RPD =(((SSCLCS - SSCLCSD) * 2) / (SSCLCS + SSCLCSD))*100

Where

SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples:

Les 10

530-395648

Compound	Sp Add	ike ded	Spike S Concer (40	it rat jon	LC Percent I	CS Recovery	LC:		LCS/L	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
GRO	1000	1000	640	972	104	107)	97	97	7	7
						,				
			-							
<u> </u>					<i>'</i>					
				_						

LCSCI	Cross	wind

Comments:

LDC #: 54719P7

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	1	_of_	1
Reviewer:	F	T	

METHOD: VGC HPLC

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Concentration= (A)(Fv)(Df)

Example:

(RF)(Vs or Ws)(%S/100)

Sample ID. LCS 580-395648 GRO C6-C12

A= Area or height of the target analyte to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the target analyte
In the initial calibration

Vs= Initial volume of the sample

Vs= Initial volume of the sample
Ws= Initial weight of the sample

%S= Percent Solid

Concentration =	10 43.3	ng	L	=
·		17		

F	<u> </u>	- C12			
#	Sample ID	Target analyte	Reported Concentrations (ug)	Recalculated Results Concentrations (Qualifications
	ies	GR U	1040	1043.3	
	25624380 (10)	= 1.0311 (x) + 0.0	0000181 (x2) +	122.98	
	210291				
	·	X= 104.3			

Comments:	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 12, 2022

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B & 4

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU124	580-115123-4	Water	06/20/22
HU115MS	580-115123-1MS	Water	06/20/22
HU115MSD	580-115123-1MSD	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-270726	06/29/22	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD CODD OCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDD Total TCDD Total TCDD Total TCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.00000319 ug/L 0.00000688 ug/L 0.000000537 ug/L 0.000000587 ug/L 0.000000571 ug/L 0.000000571 ug/L 0.000000578 ug/L 0.000000578 ug/L 0.00000565 ug/L 0.00000066 ug/L 0.000000453 ug/L 0.000000187 ug/L 0.000000187 ug/L 0.00000208 ug/L 0.0000159 ug/L 0.0000159 ug/L 0.0000159 ug/L 0.00000187 ug/L 0.0000187 ug/L 0.0000187 ug/L 0.0000187 ug/L 0.0000187 ug/L 0.0000187 ug/L 0.0000189 ug/L 0.00000194 ug/L 0.00000194 ug/L 0.00000192 ug/L 0.00000192 ug/L 0.000000187 ug/L 0.00000187 ug/L 0.00000187 ug/L	All samples in SDG 580-115123-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU115	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-HxCDD 2,3,4,6,7,8-HxCDD 2,3,4,6,7,8-HxCDD CODD CODF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDD Total PeCDD Total PeCDD Total PeCDF Total PeCDD Total PeCDD Total PCDD/PCDF	0.0000030 ug/L 0.000013 ug/L 0.0000011 ug/L 0.0000012 ug/L 0.0000013 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000015 ug/L	0.0000030U ug/L 0.0000013U ug/L 0.0000011U ug/L 0.0000017U ug/L 0.0000017U ug/L 0.0000011U ug/L
	Total PCDD Total PCDF	0.000029 ug/L 0.000014 ug/L	0.000029J ug/L 0.000014J ug/L
HU123**	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF CODD OCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDD Total PeCDD Total PCDD	0.0000028 ug/L 0.0000093 ug/L 0.00000056 ug/L 0.00000029 ug/L 0.00000077 ug/L 0.00000058 ug/L 0.0000058 ug/L 0.0000058 ug/L 0.0000058 ug/L 0.0000062 ug/L 0.0000062 ug/L 0.0000066 ug/L 0.0000027 ug/L 0.0000020 ug/L 0.0000020 ug/L 0.0000022 ug/L 0.0000022 ug/L 0.0000023 ug/L 0.0000024 ug/L 0.0000027 ug/L 0.0000027 ug/L 0.0000027 ug/L 0.0000028 ug/L 0.0000010 ug/L 0.0000010 ug/L 0.0000010 ug/L 0.0000010 ug/L 0.0000010 ug/L 0.0000010 ug/L	0.0000028U ug/L 0.00000093U ug/L 0.00000056U ug/L 0.00000029U ug/L 0.0000007U ug/L 0.000007TU ug/L 0.00000058U ug/L 0.00000057U ug/L 0.0000057U ug/L 0.0000057U ug/L 0.0000006U ug/L 0.0000027U ug/L 0.000020U ug/L 0.000020U ug/L 0.000022J ug/L 0.000023J ug/L 0.000023J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L 0.0000013J ug/L 0.0000027J ug/L 0.0000013J ug/L 0.0000013J ug/L 0.0000013J ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU124	1,2,3,4,6,7,8-HpCDD	0.0000021 ug/L	0.0000021U ug/L
	1,2,3,4,6,7,8-HpCDF	0.0000014 ug/L	0.0000014U ug/L
	1,2,3,4,7,8-HxCDD	0.00000042 ug/L	0.00000042U ug/L
	1,2,3,4,7,8-HxCDF	0.00000070 ug/L	0.00000070U ug/L
	1,2,3,4,7,8,9-HpCDF	0.00000056 ug/L	0.00000056U ug/L
	1,2,3,6,7,8-HxCDD	0.00000062 ug/L	0.00000062U ug/L
	1,2,3,6,7,8-HxCDF	0.00000036 ug/L	0.00000036U ug/L
	1,2,3,7,8-PeCDD	0.00000097 ug/L	0.00000097U ug/L
	1,2,3,7,8-PeCDF	0.00000078 ug/L	0.00000078U ug/L
1	1,2,3,7,8,9-HxCDD	0.00000080 ug/L	0.00000080U ug/L
	2,3,4,6,7,8-HxCDF	0.00000056 ug/L	0.00000056U ug/L
	2,3,4,7,8-PeCDF	0.00000067 ug/L	0.00000067U ug/L
	2,3,7,8-TCDF	0.00000015 ug/L	0.00000015U ug/L
	OCDD	0.000017 ug/L	0.000017U ug/L
	OCDF	0.0000029 ug/L	0.0000029U ug/L
	Total HxCDD	0.0000018 ug/L	0.0000018J ug/L
	Total HxCDF	0.0000024 ug/L	0.0000024J ug/L
Į .	Total HpCDD	0.0000021 ug/L	0.0000021J ug/L
	Total HpCDF	0.0000020 ug/L	0.0000020J ug/L
	Total PeCDD	0.00000097 ug/L	0.00000097J ug/L
	Total PeCDF	0.0000015 ug/L	0.0000015J ug/L
	Total TCDF	0.00000015 ug/L	0.00000015J ug/L
	Total PCDD/PCDF	0.000031 ug/L	0.000031J ug/L
	Total PCDD	0.000022 ug/L	0.000022J ug/L
	Total PCDF	0.0000090 ug/L	0.0000090J ug/L
		L	

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HU115MS/MSD (HU115)	1,2,3,7,8-PeCDD	128 (76-121)	-	J+ (all detects)	Α

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples HU123** and HU124 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Analyte	HU123**	HU124	RPD (Limits)
1,2,3,4,6,7,8-HpCDD	0.0000028	0.0000021	29 (≤50)
1,2,3,4,6,7,8-HpCDF	0.00000093	0.000014	40 (≤50)
1,2,3,4,7,8-HxCDD	0.0000056	0.0000042	29 (≤50)
1,2,3,4,7,8-HxCDF	0.00000029	0.0000070	83 (≤50)
1,2,3,4,7,8,9-HpCDF	0.0000040	0.0000056	33 (≤50)
1,2,3,6,7,8-HxCDD	0.0000077	0.0000062	22 (≤50)
1,2,3,6,7,8-HxCDF	0.0000058	0.0000036	47 (≤50)
1,2,3,7,8-PeCDD	0.0000010	0.0000097	3 (≤50)
1,2,3,7,8-PeCDF	0.00000089	0.0000078	13 (≤50)
1,2,3,7,8,9-HxCDD	0.00000062	0.00000080	25 (≤50)
1,2,3,7,8,9-HxCDF	0.0000074	0.0000078	5 (≤50)
2,3,4,6,7,8-HxCDF	0.0000057	0.0000056	2 (≤50)
2,3,4,7,8-PeCDF	0.0000066	0.0000067	2 (≤50)
2,3,7,8-TCDF	0.00000027	0.0000015	57 (≤50)
OCDD	0.000020	0.000017	16 (≤50)
OCDF .	0.0000020	0.0000029	37 (≤50)
Total HxCDD	0.0000020	0.000018	11 (≤50)
Total HxCDF	0.0000022	0.0000024	9 (≤50)
Total HpCDD	0.0000028	0.0000021	29 (≤50)

	Concentra		
Analyte	HU123**	HU124	RPD (Limits)
Total HpCDF	0.0000013	0.000020	42 (≤50)
Total PeCDD	0.0000010	0.0000097	3 (≤50)
Total PeCDF	0.0000016	0.000015	6 (≤50)
Total TCDF	0.0000027	0.0000015	57 (≤50)
Total PCDD/PCDF	0.000033	0.000031	6 (≤50)
Total PCDD	0.000026	0.000022	17 (≤50)
Total PCDF	0.000074	0.0000090	20 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-115123-1	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	А

For samples HU123** and HU124, 2,3,7,8-TCDF was not confirmed in the 2nd column since the 1st column result was less than the limit of quantitation.

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to MS/MSD %R and results reported by the laboratory as EMPC, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-115123-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU115	1,2,3,7,8-PeCDD	J+ (all detects)	А	Matrix spike/Matrix spike duplicate (%R) (m)
HU115 HU123** HU124	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU115	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HxCDF Total HpCDD Total HpCDD Total PeCDD Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD	0.0000030U ug/L 0.000013U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000011U ug/L 0.0000010U ug/L 0.0000014U ug/L 0.0000017U ug/L 0.0000013U ug/L 0.0000013U ug/L 0.000004U ug/L 0.000004U ug/L 0.000004U ug/L 0.0000052J ug/L 0.0000052J ug/L 0.0000051J ug/L 0.0000051J ug/L 0.0000053J ug/L 0.0000053J ug/L 0.0000053J ug/L 0.0000053J ug/L 0.0000053J ug/L 0.0000053J ug/L 0.000004J ug/L	A	b

				
Sample	Analyte	Modified Final Concentration	A or P	Code
HU123**	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDD 2,3,4,6,7,8-HxCDD 2,3,4,6,7,8-HxCDF 2,3,7,8-TCDF OCDD OCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDD Total PeCDD Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.0000028U ug/L 0.0000093U ug/L 0.00000056U ug/L 0.00000029U ug/L 0.0000007U ug/L 0.0000074U ug/L 0.0000058U ug/L 0.0000058U ug/L 0.0000058U ug/L 0.0000057U ug/L 0.0000057U ug/L 0.0000027U ug/L 0.0000020U ug/L	A	b
HU124	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,8-PeCDF 2,3,7,8-TCDF OCDD OCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDD Total PeCDD Total PCDD Total PCDD/PCDF Total PCDD Total PCDD	0.0000021U ug/L 0.0000014U ug/L 0.0000042U ug/L 0.00000070U ug/L 0.00000056U ug/L 0.00000036U ug/L 0.00000097U ug/L 0.00000078U ug/L 0.00000056U ug/L 0.0000056U ug/L 0.0000056U ug/L 0.0000015U ug/L 0.0000015U ug/L 0.0000015U ug/L 0.0000029U ug/L 0.0000029U ug/L 0.0000029J ug/L 0.0000097J ug/L 0.0000015J ug/L	A	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

SDG a Labor	#: <u>580-115123-1</u> atory: <u>Eurofins, Tacoma, WA</u>	St	age 2B	/4	S WORKSHEET		F Revi 2nd Revi	Date: 8 19 Page:of ewer: ewer:
METH	IOD: HRGC/HRMS Polychlorinated Dioxi	ns/Dibenz	ofurans (EPA :	SW-846 Method 829	30A)	
	amples listed below were reviewed for ea tion findings worksheets.	ch of the fo	ollowing v	/alida	tion areas. Validatio	n fii	ndings are note	ed in attached
	Validation Area				Comm	ent	s	
l.	Sample receipt/Technical holding times	AIA						<u>,, , , , , , , , , , , , , , , , , , ,</u>
11.	HRGC/HRMS Instrument performance check	4						
III.	Initial calibration/ICV	ALA	% P	5P	520 1	<u> </u>	= 20/30	
IV.	Continuing calibration	Δ			CW L	2	0/30	
V.	Laboratory Blanks	We						
VI.	Field blanks	N		-				
VII.	Matrix spike/Matrix spike duplicates	SW						
VIII.	Laboratory control samples	5WA	les	P				
IX.	Field duplicates	500	0=	2,	か			
X.	Labeled Compounds	Δ		1				
XI.	Target analyte quantitation	SW	Not review	ed for	Stage 2B validation.			
XII.	Target analyte identification	<u> </u>				M.	7	
XIII.		A				17 -		
XIV.	System performance Overall assessment of data	A	Not review	eu ioi	Stage 2B validation.			· · · · · · · · · · · · · · · · · · ·
lote:	A = Acceptable ND = Non N = Not provided/applicable R = Rin	o compounds	s detected		D = Duplicate TB = Trip blank EB = Equipment blanl	ς.	SB=Source bl OTHER:	ank
	Client ID				Lab ID	N	latrix	Date
1	HU115				580-115123-1	V	Vater .	06/20/22
2	HU123**				580-115123-3**	Įv	Vater	06/20/22
3	HU124 $\overset{``}{\mathcal{O}}$				580-115123-4	V	Vater	06/20/22
4	HU115MS				580-115123-1MS	Ţv	Vater	06/20/22
	HU115MSD				580-115123-1MSD	Tv	Vater	06/20/22
6								
7								
8						1		
9					<u> </u>	T		
10						\dagger		
lotes:								
	MB 41D-270726							
	, ,							

LDC #: 5471 902

VALIDATION FINDINGS CHECKLIST

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times	т—			
All technical holding times were met.	_			
Cooler temperature criteria was met.		Ĺ		
II. GC/MS Instrument performance check			·	
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?		<u> </u>		
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?	/			
Was the mass resolution adequately check with PFK?	/			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		L		·
Illa. Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) ≤ 20% for all analytes and labeled compounds ?				
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ?	/			
IV. Continuing calibration			-	
Was a contiuning calibration performed at the beginning and end of each 12 hour period?				
Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?	/			
Was the signal to noise ratio for each target compound and for each recovery and internal standard \geq 10?				
V. Laboratory Blanks				
Was a method blank associated with every sample in this SDG?				, .
Was a method blank performed for each matrix and whenever a sample extraction was performed?				
Was there contamination in the method blanks?		<u> </u>		
VI. Field blanks				
Field blanks were identified in this SDG.			F	
Target compounds were detected in the field blanks.		<u> </u>		

LDC #: 5471 902

VALIDATION FINDINGS CHECKLIST

Page: 2 of_	<u>~</u>
Reviewer: FT	
2nd Reviewer:	

VII. Matrix spike/Matrix spike duplicates	· · · · ·			
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	-			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
VIII. Laboratory control samples		· · · · · · · · · · · · · · · · · · ·		
Was an LCS analyzed per extraction batch?	_		<u> </u>	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	_		<u> </u>	
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.			<u> </u>	
X. Labeled Compoubds				
Were internal standard recoveries within the 40-135% criteria?				
Was the minimum S/N ratio of all internal standard peaks ≥ 10?				
XI. Compound quantitation	·	,	r	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?		-		
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?			<u> </u>	
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?			<u> </u>	
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?				
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?	/	<u> </u>		
Was an acceptable lock mass recorded and monitored?	/	<u> </u>	<u></u>	
XIII. System performance				
System performance was found to be acceptable.		ł		
XIV. Overall assessment of data	/			
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			

LDC #: 54719D21

VALIDATION FINDINGS WORKSHEET <u>Blanks</u>

Page:_	1	_of_	1
Reviewer:		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- $\frac{\frac{Y}{Y}}{\frac{Y}{Y}}$ Were all samples associated with a method blank?
- Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)
- Was the method blank contaminated?

Blank extraction date: _6/29/22 _Blank analysis date: _6/29/22 Associated samples:

Conc. units: ug/L

Compound	Blank ID	Sample Identification							
	MB 410 -270726	5x	1	2	3				
F	0.00000319	0.000015950	0.0000030U	0.0000028U	0.0000021U				
О	0.00000668	0.000003340	0.0000013U	0.00000093U	0.0000014U				
С	0.00000537	0.000002685	0.0000011U	0.00000056U	0.00000042U				
κ	0.000000587	0.000002935	0.0000013U	0.00000029U	0.00000070U				
Р	0.000000371	0.000001855	0.0000011U	0.00000040U	0.00000056U				
D	0.00000571	0.000002855	0.00000019U	0.00000077U	0.00000062U				
L	0.00000578	0.000002890	0.0000011U	0.00000058U	0.00000036U				
В	0.00000319	0.000001595	0.00000051U	0.0000010U	0.00000097U				
I	0.00000565	0.000002825	0.0000010U	0.00000089U	0.00000078U				
<u>E</u>	0.00000478	0.000002390	0.0000014U	0.00000062U	0.00000080U				
М	0.0000066	0.000003300	0.00000017U	0.00000057U	0.00000056U				
J	0.00000453	0.000002265	0.0000013U	0.00000066U	0.00000067U				
Α	0.000000746	0.000000373	-	-	-				
Н	0.00000187	0.000000935	<u>-</u>	0.00000027U	0.00000015U				
G	0.0000206	0.000103000	0.000021U	0.000020U	0.000017U				
Q	0.00000223	0.000011150	0.0000040U	0.0000020U	0.0000029U				
Т	0.00000159	0.000007950	0.0000044J	0.0000020J	0.0000018J				
x	0.0000183	0.000009150	0.0000052J	0.0000022J	0.0000024J				
U	0.00000319	0.000015950	0.0000030J	0.0000028J	0.0000021J				
Υ	0.0000104	0.000005200	0.0000024J	0.0000013J	0.0000020J				

s	0.000000319	0.000001595	0.00000051J	0.0000010J	0.0000097J
w	0.0000102	0.000005100	0.0000023J	0.0000016J	0.000015J
R	0.000000746	0.000000373	-	-	-
V	0.000000187	0.000000935	-	0.00000027J	0.00000015J
Total PCDD/PCDF	0.0000321	0.000160500	0.000044J	0.000033J	0.000031J
Total PCDD	0.0000258	0.000129000	0.000029J	0.000026J	0.000022J
Total PCDF	0.0000631	0.000031550	0.000014J	0.0000074J	0.000000J

CIRCLED 0.00000079RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within 0.00000089 five times the method blank concentration were qualified as not detected, "U".

LDC # 54719D21

LDC#: 547/90)

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	_/ _{of_}	_
Reviewer:_	FT	

HRGC/HR MS

METHOD: GG/MS BNA (EPA SW 846 Method 8276) ピュタロム

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

YN N/A Was a MS/MSD analyzed every 20 samples of each matrix?

N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	4,5	B	128 (76-12)	()	()	\	It du / A Det
			()	()	()		
			()	()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
]	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		<u> </u>	(')	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC#:_54719D21

VALIDATION FINDINGS WORKSHEET _Field Duplicates

Page:_1	of1_
Reviewer:	FT

METHOD: 8290A

	Concentra	ation (ug/L)	(≤50)
Compound	2	3	RPD
F	0.0000028	0.0000021	29
О	0.0000093	0.0000014	40
С	0.0000056	0.00000042	29
к	0.0000029	0.0000070	83
Р	0.0000040	0.0000056	33
D	0.0000077	0.00000062	22
L	0.0000058	0.0000036	47
В	0.0000010	0.0000097	3
1	0.00000089	0.0000078	13
Е	0.00000062	0.00000080	25
N	0.0000074	0.0000078	5
М	0.0000057	0.0000056	2
J	0.0000066	0.0000067	2
Н	0.0000027	0.0000015	57
G	0.000020	0.000017	16
Q	0.0000020	0.0000029	37
Т	0.0000020	0.0000018	11
х	0.0000022	0.0000024	9
U	0.0000028	0.0000021	29
Υ	0.0000013	0.0000020	42
s	0.0000010	0.0000097	3
w	0.0000016	0.0000015	6
V	0.0000027	0.0000015	57
Total PCDD/PCDF	0.000033	0.000031	6
Total PCDD	0.000026	0.000022	17
Total PCDF	0.000074	0.0000090	20
			??

LDC#: 547/902/

VALIDATION FINDINGS WORKSHEET <u>Target Analyte Quantitation and Reported CRQLs</u>

Page:	/ of	/
Reviewer:		,

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y N N/A Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

			T Total		
#_	Date	Sample ID	Finding	Associated Samples	Qualifications
		IIA	Results qualified I" by the laboratory		Jan (K)
			by the laboratory		
			as =MPC		
		2.3	H- NO 2nd when		fex+
			performed. Results		
			pertormed. Results		
			4 100		
<u> </u>		W.C.A.V.S.dar			
1					

Comments:	See sample calculation	verification workshee	et for recalculations	 			
-							

LDC #: 54719D21

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _1_ of _1_ Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

 A_x = Area of Compound

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S= Standard deviation of the RRFs,

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)	(10/50/100 std)	(10/50/100 std)	(Initial)	(Initial)		
1	ICAL	1/6/2022	2,3,7,8-TCDF	1.0576	1.0576	1.1309	1.1309	15.1	15.1
	DF18471		2,3,7,8-TCDD	1.0589	1.0589	1.1359	1.1359	16.7	16.7
			1,2,3,6,7,8-HxCDD	1.0166	1.0166	1.0526	1.0526	5.1	5.1
	İ		1,2,3,4,6,7,8-HpCDD	1.0509	1.0509	1.0671	1.0671	8.3	8.3
			OCDF	0.9190	0.9190	0.9320	0.9320	4.0	4.0

LDC #: 547/902/

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1	_of_	1	
Reviewer:		FT		

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard

A, = Area of compound, C_v = Concentration of compound,

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	CCV	6/29/22	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1. 1309	1.015	1.015	10.1	2 10.2
	MB 7,3	1 ' ('	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.1359	1104	1.104	2-8	2.8
		1516	1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1.0526	1.01	1.011	3.9	3.9
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.0671	1.045	1.045	2.0	2.6
			OCDF (13C-OCDB) OCDF	0.9320	09166	0.9166	1.7	1.7
2			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	-				
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					

Comments:	Refer to Routin	<u>ie Calibration findi</u>	<u>ngs worksheet for I</u>	<u>ist of qualificatio</u>	ns and associated	<u>ı samples when rej</u>	ported results do no	t agree within 1	<u>0.0% of the</u>
recalculated	d results.								
							. =		

LDC#: 547/902/

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	1	_of	1_
Reviewe	r:	FT	-

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

Where: SSR = Spiked sample result, SR = Sample result

SA = Spike added

RPD = I MSR - MSDR I * 2/(MSR + MSDR)

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples: __

Ŋ	4	_ 5	

		Spike Sample Spiked Sample <u>Matrix Spike Matrix Spike Duplicate</u> Added Concentration						e Duplicate	MS/I	/ISD	
Compound	ll <i>.</i>		(nex 1)		V)	Percent	Recovery	Percent	Recovery	RPD	RPD
	MS.	MSD	0	M.S.	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
2,3,7,8-TCDD	0.00090	0.0019	20	0.000206	0.0001915	108	108	[02.	102	5	S
1,2,3,7,8-PeCDD	0.000952		0.000000	000122	0.00116	128	125	121	12)	د ا	2
1,2,3,4,7,8-HxCDD	0.000952	•	U. 60000 11	0.00107	0.00109	112	126 112	114	114	2	2
1	0.000952		0.0000011	0,00100	0.00104	105	105	108	108	4	4
	0.00190			0.00206		108	108	109	109	1	
		,									

Comments: <u>F</u>	Refer to Matrix Spik	ce/Matrix Spike Dup	licate findings works	sheet for list of qu	ualifications and ass	sociated samples wi	<u>nen reported result</u>	s do not agree withi	n 10.0% of the
recalculated r	results.								
							· · · · · · · · · · · · · · · · · · ·		

LDC#: 547/9D2/

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

410 -270726 LCS ID: 105 10

	Spike Spiked Sample						LCSD		LCS/LCSD	
Compound	18	ded)	l#	ntration みん)	Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
2,3,7,8-TCDD	12 00020D	0.00200	0.000217	0.000215	108	108	108	108	1	1
1,2,3,7,8-PeCDD	0.00100		0.00120	0.0012	120	120	121	12)	. 1	1
1,2,3,4,7,8-HxCDD	0.00100	0.00100	0.0011	0.00107	11]	n)	107	107	3	3
1,2,3,4,7,8,9-HpCDF	0,00100	0.00100	0.00108	0.00103	108	Yol	103	103	4	ij
OCDF	0.00200	0.00200	0.00222	0.00220	11,1	111	110	טוו	1	1
				·						
										·
								540		

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC#: 5471902/

only.

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

$\sqrt{2}$)N	N/A
lπ	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentrat	tion	$= \frac{(A_{v})(I_{s})(DF)}{(A_{is})(RRF)(V_{o})(\%S)}$	Example:
A _x =	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D
A _{is} =	=	Area of the characteristic ion (EICP) for the specific internal standard	2 () () () ()
l _s =	=	Amount of internal standard added in nanograms (ng)	Conc. = $(1039)(20)(200)(7)$
V _o =	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	Conc. = (1029) (20) (200) (1/2095206) (0.9320) (10)
RRF =	=	Relative Response Factor (average) from the initial calibration	=
Df =	=	Dilution Factor.	0.000002011 49
%S =	=	Percent solids, applicable to soil and solid matrices	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration (ug /)	Qualification
	# 2	Ocof	0.0000020	17	1
ļ 					
 					
 					
L					<u> </u>

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Methane

Validation Level:

Stage 2B & 4

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115123-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU115	580-115123-1	Water	06/20/22
HU114	580-115123-2	Water	06/20/22
HU123**	580-115123-3**	Water	06/20/22
HU122	580-115123-5	Water	06/20/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not 'Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- а ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits.
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- W LCS/LCSD RPD was high.
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

Retention time windows were established as required by the method for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

Retention times in the calibration standards were within the established retention time windows for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples HU114 and HU122 were identified as trip blanks. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-115123-1

No Sample Data Qualified in this SDG

G #	:54719D51 VALIDATIC t:580-115123-1 atory:_ <u>Eurofins, Tacoma, WA</u>		PLETENESS age 2B/4	S WORKSHEET	Re	Date: 2 Page: <u>l</u> of_ eviewer: <u>p</u> eviewer: <u>f</u>
ΞTΗ	OD: GC Methane (Method RSK-175)					
	amples listed below were reviewed for e ion findings worksheets.	ach of the f	ollowing valida	tion areas. Validati	on findings are n	oted in attach
	Validation Area			Comr	nents	
I.	Sample receipt/Technical holding times	A/A	,			
II.	Initial calibration/ICV	4/4	0/0 \$5	D/144 = 20		
III.	Continuing calibration evalury	<u> </u>		CW = 21	olno	
IV.	Laboratory Blanks	A				
V.	Field blanks	ND	T13=	2, 4		
/I.	Surrogate spikes	Δ		1		
/11.	Matrix spike/Matrix spike duplicates	N				
III.	Laboratory control samples	Δ	us 1	り		
X.	Field duplicates	N				
K .	Target analyte quantitation	Δ	Not reviewed for	Stage 2B validation.		
(I.	Target analyte identification	Δ	Not reviewed for	Stage 2B validation.	MI	
11	Overall assessment of data	A_				
e: idica	N = Not provided/applicable R = R	No compound insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Source OTHER: nk	e blank
-	Client ID			Lab ID	Matrix	Date
۱.	I U115			580-115123-1	Water	06/20/22
٠ ١	HU114 TP			580-115123-2	Water	06/20/22
J	· ·!U123**			580-115123-3**	Water	06/20/22
	1U122 ТВ			580-115123-5	Water	06/20/22
\perp						
\perp						

LDC #: 547 1905)

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: FT

Method: _GC _HPLC

Validation Area	Yes	No	NA	Findings/Comments					
I. Technical holding times									
Were all technical holding times met?									
Was cooler temperature criteria met?		<u> </u>							
lla. Initial calibration									
Did the laboratory perform a 5 point calibration prior to sample analysis?									
Were all percent relative standard deviations (%RSD) < 20%?									
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?			/						
Were the RT windows properly established?		[<u> </u>							
Ilb. Initial calibration verification	-A*								
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?									
Were all percent differences (%D) ≤ 20%?									
III. Continuing calibration									
Was a continuing calibration analyzed daily?									
Were all percent differences (%D) ≤ 20%?									
Were all the retention times within the acceptance windows?									
IV. Laboratory Blanks									
Was a laboratory blank associated with every sample in this SDG?				,					
Was a laboratory blank analyzed for each matrix and concentration?									
Was there contamination in the laboratory blanks?									
V. Field Blanks									
Were field blanks identified in this SDG?				. *					
Were target analytes detected in the field blanks?									
VI. Surrogate spikes									
Were all surrogate percent recovery (%R) within the QC limits?									
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/						
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?									
VII. Matrix spike/Matrix spike duplicates									
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?									
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?									
VIII. Laboratory control samples									
Was an LCS analyzed per analytical or extraction batch?									
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?									

LDC#: 9471905)

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates			,	
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
X. Target analyte quantitation	,			
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?				
Were manual integrations reviewed and found acceptable?				
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC #: 5471 9 ps)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	_/ _{of_}	/
Reviewer:_	FT	
2nd Reviewer:		

METHOD: GC	 _HPLC_	

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where: A = Area of compound C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound	CF (99.0std)	CF (49.() std)	CF (initial)	CF (intial)	%RSD	%RSD
1	KAL	5/18/21	Methane	1899545	1899545	189 385378	1893853.78	8.6	8.6
		,							
<u> </u>									
2									
3									
<u> </u>									
4									
							-		

Comments: R	<u>Refer to Initial C</u>	alibration findings	worksheet for lis	<u>t of qualifications</u>	and associated	l samples whe	n reported	<u>results do not</u>	<u>agree within</u>	10.0% of the
recalculated re	esults.									

LDC #:	5471905)
--------	----------

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:_	_1_of_1	
Reviewer:	FT	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

	Standard ID	Calibration Date	Target Analyte	Average CF(Ical)/ CCV	Reported CF/ Conc.	Recalculated CF/ Conc.	Reported %D	Recalculated %D
#				Conc.	CCV	CCV		760
1	cov	6/27/22	Methane	59.9	54.4	54. 니	9.2	9.2
		15 14'			, 	, , , , , , , , , , , , , , , , , , , ,		
	MB 4 1							
				<u> </u>				
2	cer	6/27/22	↓	59.9	53.5	53.5	10.6	10.6
		(181)						
	2,3,5	2043						
<u> </u>								
3								
L								
4								

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	_of_	1
Reviewer:		FT	

LDC #: <u>54719</u> D5)

METHOD: __GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #カ

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Propene		9.9	15.4	77	17	U
1				.,		

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
			_			

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitratoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene		Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	ВВ	2,4-Dichlorophenylacetic acid
Ε	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	СС	2,5-Dibromotoluene
F	1.4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	х	Triphenyl Phosphate		

LDC #: 54719 DS)

VALIDATION FINDINGS WORKSHEET

.aborator	/ Control	Sample/Laborator	Control Sample	Duplicates	Results Verification
			,	- apilaatoo	itosaits verification

Pag	e: <u> 1 </u>	OT_1_
	-	

Reviewer:

METHOD: \(\sumeq GC \)_HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA)

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added

LCSD = Laboratory Control Sample duplicate

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS/LCSD samples: LCS/D - 416-269813

	Sp Ado	ike led	Spike S	Sample htration-	LC	:s	LC	SD	LCS/L	.CSD
Compound	(ug	\tilde{V}	(u	2)	Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recaic.	Reported	Recalc.
m thane	59.9	59.9	34.3	54.6	9)	91	91	9)	١	1
	_		•							
·										
								·		

LCSCL	Crev.wpd

Comments:

LDC #: 547 19 D5)

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	1	of_	1	
Reviewer	F	Т		

Ws= Initial weight of the sample

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Concentration= (A)(Fv)(Df)	Example:		
(RF)(Vs or Ws)(%S/100)			
	Sample ID. Les 41	0-269813 Nethane	
A= Area or height of the target analyte to be measured	•		
Fv= Final Volume of extract			
Df= Dilution Factor			
RF= Average response factor of the target analyte	Concentration =	102753545	:
In the initial calibration		18 9 385 3.78	
Vs= Initial volume of the sample		10 1 10 7 10	

= 54.256 mg/L %S= Percent Solid

#	Sample ID	Target analyte	Reported Concentrations (Recalculated Results Concentrations	Qualifications
	Les	Methane	와 · 3	54.256	
			 		
-					

Comments:		
		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 7, 2022

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115161-1	Water	06/21/22
HU140	580-115161-2	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU132	580-115161-4	Water	06/21/22
HU128	580-115161-5	Water	06/21/22
HU127	580-115161-6	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. s
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/22/22	Bromomethane	22.4	All samples in SDG 580-115161-1	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/26/22	Acetone Bromomethane	21.9 46.7	All samples in SDG 580-115161-1	UJ (all non-detects) UJ (all non-detects)	A

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/27/22	Bromomethane	105.1	All samples in SDG 580-115161-1	UJ (all non-detects)	Α

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte TIC (RT in minutes)	Concentration	Associated Samples
MB 580-39500	06/26/22	1,2,4-Trichlorobenzene Dibromochloromethane Ethylbenzene Hexachlorobutadiene Naphthalene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54) 1,3,5-Trichlorobenzene (14.65) 1,2,3-Trichlorobenzene (15.53)	0.208 ug/L 0.0552 ug/L 0.0818 ug/L 0.106 ug/L 0.432 ug/L 0.211 ug/L 0.205 ug/L 0.205 ug/L 0.264 ug/L 0.154 ug/L 0.162 ug/L 0.0175 ug/L 0.230 ug/L	All samples in SDG 580-115161-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
HU141	Ethylbenzene	0.078 ug/L	0.078J+ ug/L
	Styrene	0.21 ug/L	0.50U ug/L
	Xylenes, total	0.20 ug/L	0.35U ug/L
	o-Xylene (12.21)	0.20 ug/L	0.20U ug/L
	1,3,5-Trimethylbenzene (12.99)	0.15 ug/L	0.15U ug/L
	p-Isopropyltoluene (13.54)	0.15 ug/L	0.15U ug/L
HU140	Ethylbenzene Naphthalene Styrene Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.079 ug/L 0.37 ug/L 0.21 ug/L 0.26 ug/L 0.15 ug/L 0.16 ug/L	0.079J+ ug/L 0.50U ug/L 0.50U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L

Sample	Analyte	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
HU133	Ethylbenzene	0.077 ug/L	0.077J+ ug/L
	Styrene	0.21 ug/L	0.50U ug/L
	1,3,5-Trimethylbenzene (12.99)	0.15 ug/L	0.15U ug/L
	p-Isopropyltoluene (13.54)	0.15 ug/L	0.15U ug/L
HU132	Ethylbenzene	0.077 ug/L	0.077J+ ug/L
	Styrene	0.21 ug/L	0.50U ug/L
	Xylenes, total	0.20 ug/L	0.35U ug/L
	o-Xylene (12.21)	0.20 ug/L	0.20U ug/L
	Isopropylbenzene (12.51)	0.26 ug/L	0.26U ug/L
	1,3,5-Trimethylbenzene (12.99)	0.15 ug/L	0.15U ug/L
	p-Isopropyltoluene (13.54)	0.16 ug/L	0.16U ug/L
HU128	Ethylbenzene Naphthalene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.088 ug/L 0.41 ug/L 0.25 ug/L 0.25 ug/L 0.26 ug/L 0.16 ug/L 0.15 ug/L	0.088J+ ug/L 0.50U ug/L 0.35U ug/L 0.25U ug/L 0.26U ug/L 0.16U ug/L 0.15U ug/L
HU127	Ethylbenzene Naphthalene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.078 ug/L 0.36 ug/L 0.21 ug/L 0.20 ug/L 0.20 ug/L 0.26 ug/L 0.15 ug/L 0.16 ug/L	0.078J+ ug/L 0.50U ug/L 0.50U ug/L 0.35U ug/L 0.20U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L

VI. Field Blanks

Samples HU140, HU132, and HU127 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU140	06/21/22	Ethylbenzene Naphthalene Styrene	0.079 ug/L 0.37 ug/L 0.21 ug/L	HU141
HU132	06/21/22	Ethylbenzene Styrene Xylenes, total	0.077 ug/L 0.21 ug/L 0.20 ug/L	HU133
HU127	06/21/22	Ethylbenzene Naphthalene Styrene Xylenes, total	0.078 ug/L 0.36 ug/L 0.21 ug/L 0.20 ug/L	HU128

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU141	Ethylbenzene	0.078 ug/L	0.078J+ ug/L
	Styrene	0.21 ug/L	0.50U ug/L
HU133	Ethylbenzene	0.077 ug/L	0.077J+ ug/L
	Styrene	0.21 ug/L	0.50U ug/L
HU128	Ethylbenzene	0.088 ug/L	0.088J+ ug/L
	Naphthalene	0.41 ug/L	0.50U ug/L
	Xylenes, total	025 ug/L	0.35U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All target analyte quantitations met validation criteria.

All tentatively identified compound (TICs) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-115161-1	All laboratory calibrated analytes reported as Tentatively Identified Compounds (TICs).	J (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, continuing calibration %D and ending CCV %D, and analytes reported as TICs, data were qualified as estimated in six samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in six samples.

Due to trip blank contamination, data were qualified as not detected or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-115161-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU141 HU140 HU133 HU132 HU128 HU127	Bromomethane	UJ (all non-detects)	A	Initial calibration verification (%D) (c)
HU141 HU140 HU133 HU132 HU128 HU127	Acetone Bromomethane	UJ (all non-detects) UJ (all non-detects)	А	Continuing calibration (%D) (c)
HU141 HU140 HU133 HU132 HU128 HU127	Bromomethane	UJ (all non-detects)	А	Continuing calibration (ending CCV %D) (c)
HU141 HU140 HU133 HU132 HU128 HU127	All laboratory calibrated analytes reported as Tentatively Identified Compounds (TICs).	J (all detects)	А	Target analyte quantitation (TICs) (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

Sample	Analyte TIC (RT in minutes)	Modified Final Concentration	A or P	Code
HU141	Ethylbenzene Styrene Xylenes, total o-Xylene (12.21) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.078J+ ug/L 0.50U ug/L 0.35U ug/L 0.20U ug/L 0.15U ug/L 0.15U ug/L	Α	b
HU140	Ethylbenzene Naphthalene Styrene Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.079J+ ug/L 0.50U ug/L 0.50U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L	А	b
HU133	Ethylbenzene Styrene 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.077J+ ug/L 0.50U ug/L 0.15U ug/L 0.15U ug/L	А	b

Sample	Analyte TIC (RT in minutes)	Modified Final Concentration	A or P	Code
HU132	Ethylbenzene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.077J+ ug/L 0.50U ug/L 0.35U ug/L 0.20U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L	А	b
HU128	Ethylbenzene Naphthalene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.088J+ ug/L 0.50U ug/L 0.35U ug/L 0.25U ug/L 0.26U ug/L 0.16U ug/L 0.15U ug/L	А	b
HU127	Ethylbenzene Naphthalene Styrene Xylenes, total o-Xylene (12.21) Isopropylbenzene (12.51) 1,3,5-Trimethylbenzene (12.99) p-Isopropyltoluene (13.54)	0.078J+ ug/L 0.50U ug/L 0.50U ug/L 0.35U ug/L 0.20U ug/L 0.26U ug/L 0.15U ug/L 0.16U ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-115161-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU141	Ethylbenzene Styrene	0.078J+ ug/L 0.50U ug/L	Α	t
HU133	Ethylbenzene Styrene	0.077J+ ug/L 0.50U ug/L	Α	t
HU128	Ethylbenzene Naphthalene Xylenes, total	0.088J+ ug/L 0.50U ug/L 0.35U ug/L	А	t

LDC #: 54719E1a VALIDATION COMPLETENESS WORKSHEET SDG #: 580-115161-1 Stage 2B Page: 1 of 1 Reviewer: 7 2nd Reviewer: 1 The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments I. Sample receipt/Technical holding times \(\Delta/\Delta\)

	Validation Area		Comments
l.	Sample receipt/Technical holding times	$\Delta \Delta$	
II.	GC/MS Instrument performance check	4	
III.	Initial calibration/ICV	ANN	0/0 RSD = 15 12 1CY = 20
IV.	Continuing calibration ending	SW	CCV = 20/50
V.	Laboratory Blanks	5W	•
VI.	Field blanks	SW	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ŋ	
IX.	Laboratory control samples	A	Ves IV
X.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation / +1 C	SW	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	/	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank

7 – No compounds delected

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank

= Trip blank OTHER:

	Client ID	Lab ID	Matrix	Date
<u>1</u> †	HU141	580-115161-1	Water	06/21/22
<u>*</u>	HU140 TB	580-115161-2	Water	06/21/22
3	HU133	580-115161-3	Water	06/21/22
4	HU132 TB	580-115161-4	Water	06/21/22
5	HU128	580-115161-5	Water	06/21/22
6	HU127 TB	580-115161-6	Water	06/21/22
7				
8				
9				

MB 580-395002			
•			

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB, tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Aliyi chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 54719E1a

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	1	_of_	1
Reviewer		F	Т

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Were all %D within the validation criteria of <20 %D?

<u>N</u> _	Were all ^o	%D within the validation	n criteria of ≤20 %D′	?	(c)				
#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Associated Samples	Qualifications			
	6/22/22	ICV	В	22.4	All	J+/UJ/A all ND			
				-					
									
	_**								

LDC #:	547	19E	la
--------	-----	-----	----

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	of/
eviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ♥)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Y N N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

(c)

	Y N/N/A Were all %D and RRFs within the validation chiefla of ≤20 %D and ≥0.05 RRF?								
#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifica	tions	
	6/26/22	CCV-TAC113	F	21.9		(IA	∆ [†] /u 3/A	all ND	
	2032		В	46.7		V	J+/W/A	V	
							,		
	6/27/22	CEV-TAC 113	В	105.1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1+/W/A	all ND	
<u> </u>	0648	closing							
<u></u>		,							
 									
 									
 									
ļ						 			
<u> </u>									
 									
 	,					 			
<u> </u>							 		
 -									
 -							 		
				 		 			

LDC#: 54719E)~

VALIDATION FINDINGS WORKSHEET Blanks

Page:_		1
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ?)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

IY N N/A Was a method blank associated with every sample in this SDG?

Y N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Y/N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date: 6 26 22 Conc. units: 49 L

Associated Samples: All

(b)

Compound	Blank ID				Sa	mple Identificat	ion		
	MB 580-3	9500	4	1	2	3	4	5	6
KKK	0.208								
T	0.0952								
EE	8180.0			0.078 J+	0.079 5+	0.077 1	12 7700	0.0887	0.0781
LLL	0.106								
мим	0.432				0.37/0.50 U			0.41/0.504	0.36 0.501
FF	0.211			0.21 /0.50U	0.21/0.504	0.21 0504	0.21 0.50U	I	0.21 10.504
99	0.205			0.20/0351	<u> </u>		0.20/0351	h 0.25 0.35	U 0.20 0.354

1100	

Blank analysis date: Conc. units:

Compound	Blank ID			Saı	mple Identificat	ion			
	V		1	12	2	3	4	S	6
3 555	0.205	12.21)	0.20(12.21)				0.20 (12.21)	0.25(12-21)	020 (122)
VV	0.264	12.51)			0.26 (12.51)		0.26(12.51)	0.26 (12.51)	0.26 (1251
1,3,5-Trimethylbung	ne 0.154 (12,99)	0.15 (12.99)	0.15 (12.99)	0.15 (12.99)	0.15 (2.99)	0.15 (12.99)	0.16 (12.99)	0.15 (12.99
GAG	0.230 0.16	2 (13.54)	0.15 (13.54)	0.15/(13.54)	0.16 (13.54	0.15 (13.54)	0.16(13.54)	0.15 (13.54)	0.16(13.54
135-Trichlorobenze	e 0.715 0.	175 (14.45)	`		`	•			,
NNN	0.230	(15.53)							
		<u> </u>							

Associated Samples:

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 54719 E 6	_
------------------	---

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: / of /	
eviewer: FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 17) N/A Were field blanks identified in this SDG?

Y/N N/A Were target compounds detected in the field blanks?

Blank units: 49 / Associated sample units: 49 / Sampling date: 62122

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other:____

TP Associated Samples:

Compound	Blank ID	Sample Identification				
	2					
66	0.019	0.078 1				
НММ	0.37					
FF	0.21	a21/0.50 M				

Blank units: What Associated sample units: What Associated sample units:

TB Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: **Associated Samples:**

Compound	Blank ID	Sample Identification					
	4	3					
EE	0.017	0.017 5					
FF	0.21	0.2110.50	ом				
99	0.20	(

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC #: 54719 E a	LDC #:	547	19E 1	۷.
------------------	--------	-----	-------	----

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:	<u>/</u> of <u>/</u>
eviewer:	

	/EDA 014/ 040 41		<u>r leiu i</u>	Dialiks				Rev	iewer. Fi
	eld blanks identified	I in this SDG?	?				(f)	
Field blank type: (circle	one) Field Blank /	Rinsate / Trip Blank / Oth	er: TB	Asso	ciated Sampl	es:	5		
Compound	Blank ID			s	ample Identific	ation			
	6								
PE	0.018	0.088 17							
MMM	0.36	0.41 10.50	b U						
FF	0.2)	012/0.5	૦ ૫						
44	0.20	0.25 /0.7	5 SU						
		.							
								ļ	
Sampling date:	Associated sample one) Field Blank /	e units: Rinsate / Trip Blank / Oth	er:	Asso	ociated Sampl	es:			
Compound	Blank ID			S	ample Identifica	ation			
	,								
				- The rain				,	
			1]			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC #: 5479EG

VALIDATION FINDINGS WORKSHEET Target Analyte and TIC

Page:	<u>/</u> of_/
Reviewer:	1

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

#	Date	Sample ID	Analyte	Finding	Qualifications
			All laboratory calibrated analytes reported as		Jdets/A (v)
			tentatively identified compounds (TIC)		
					
				,	
					· ·
					-

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115161-1	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU128	580-115161-5	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated, High Bias): The analyte was analyzed for and positively identified by J+ the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- (Estimated, Low Bias): The analyte was analyzed for and positively identified by Jthe laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- е MS/MSD or Duplicate RPD was high.
- Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory. i
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits. L
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
06/30/22	2,4-Dinitrophenol	72.3	All samples in SDG 580-115161-1	UJ (all non-detects)	Α

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All tentatively identified compound quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
HU128	All laboratory calibrated analytes reported as tentatively identified compounds (TIC).	J (all detects)	А
All samples in SDG 580-115161-1	All tentatively identified compounds (TIC).	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D, data were qualified as estimated in three samples.

Due to TICs, data were qualified as presumptive and estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-115161-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU141 HU133 HU128	2,4-Dinitrophenol	UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU128	All laboratory calibrated analytes reported as tentatively identified compounds (TIC).		Α	Target analyte quantitation (TICs) (v)
HU141 HU133 HU128	All tentatively identified compounds (TIC).		А	Target analyte quantitation (TICs) (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

ı DC .	#. 54740F22 VALIDATIO		U ETENES	S WORKSHEET		Date: 8
	#: <u>54719E2a </u>		tage 2B	3 WORKSHEET		Page: _of_/
	ratory: Eurofins, Tacoma, WA	3	lage ZD		R	teviewer:F
			- \		2nd R	Reviewer:
METI	H OD: GC/MS Semivolatiles (EPA SW-84 すていら	46 Method 8	270E)			
The s	amples listed below were reviewed for e	ach of the fo	ollowing valid	ation areas. Validation	on findings are r	noted in attache
	ation findings worksheets.		· ·		•	
	Validation Area			Comm	nents	
I.	Sample receipt/Technical holding times	414				
11.	GC/MS Instrument performance check	Δ				
III.	Initial calibration/ICV	AA	% PSC	1 = 20 12	101=21	0
IV.	Continuing calibration	500	100	CW = 20 W		
V.	Laboratory Blanks	A		200		
VI.	Field blanks	N N				
VII.		SW				
VIII.	Surrogate spikes	N	U>			
	Matrix spike/Matrix spike duplicates	SW				
IX.	Laboratory control samples	N N				
X.	Field duplicates	 '				
XI.	Internal standards Target analyte quantitation / 11 C	A			- 100	
XII.	, , , , , , , , , , , , , , , , , , , ,	<u>C</u> N		· · · · · · · · · · · · · · · · · · ·		
XIII.	Target analyte identification	N				
XIV.		N				
XV.	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R = R	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	SB=Sourc OTHER: nk	ce blank
	Client ID			Lab ID	Matrix	Date
1	HU141			580-115161-1	Water .	06/21/22
12	HU133			580-115161-3	Water	06/21/22
' 3	HU128			580-115161-5	Water	06/21/22
4						
5						
6			J			
7						
8						
9						
Votes:						
	MB 580-395166				· ·	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WETTIOD. CONTO CVOR				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachiorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#: 54719 E2a

(V) N/A

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	<u>/</u> of	/
Reviewer:	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Were all %D and RRFs within the validation criteria of ≤20%D and ≥0.05 RRF?

#_	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	6/30/22	ecv	НН	72.3		All	J'MJ/A ND
	1959						
	,,,,						
<u> </u>							
<u></u>			<u> </u>				
<u> </u>							
<u> </u>							
ļ							
 							
 							
 							
<u> </u>							
 							
I		_					
<u> </u>							

LDC #:	547	19	E	2a
--------	-----	----	---	----

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	_1 _{of}
Reviewer:	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were percent recoveries (%R) for surrogates within QC limits?

Y N M/A If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

N N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Lir	nits)		Qualifications	
	2	TPH	138	(50-134)	V0	gual	
				()			
				()			
	3	<u> </u>	137	(1	<u> </u>		
ļ			 	()			
	& -00 20 cull.		120				
ļ	MB 580-395166	<u> </u>	138	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V		
				()			
				()			
				()			
				()			
				_()			
			 	()			
				()			
			+				
							
			 	$\overrightarrow{}$			_
				()			
				` ;	•		\neg
			<u> </u>	()			\neg
				()			
				()			
				()			

(NBZ) = Nitrobenzene - d5

(FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14 (2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol

(2CP) = 2-Chlorophenol - d4

LDC #: 94719EZa

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	1/of
Reviewer:	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 6)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Y N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#_	LCS/LCSD ID	Compound	%R	LCS (Limits)	%R	LCSD (Limits)	RPD (Limits)	Associated S	amples	Qualifica	tions
	res 10	C		()	119	(38-117)	()	AII	(8)	Stan/P	OU NY)
	580-395166	BBB	142	(27-129	142	(27-129	()				
			` '	()	<u> </u>	()	23 (20)		(ω)	Jat /P	
_				()		()	()				
L				()		()	()				
L				(·)		()	()				
<u> </u>				()		()	()				
<u> </u>				()		()	()	ļ			
L				()			()				
<u> </u>				()		()	()	-			
<u> </u>				()		()	()	-			
<u> </u>				()		()	()				
<u> </u>				()		()	()				
⊩				()		()	()				
⊩				()		()	()				
<u> </u>				()		()	()	 			
⊩				()			()				
⊨				()							
╟┈				()		()	()				
\vdash			_	()		()	()	ļ			
 			_	1		()	()				
-			1	()		()	()				
\vdash			_	()		()	()				
\vdash				()		()	()				

LDC #: 54/19E2A

VALIDATION FINDINGS WORKSHEET <u>Target Analyte and TIC</u>

Page:	<u>(</u> of <u> </u>
Reviewer:	>

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

#	Date	Sample ID	Analyte	Finding	Qualifications
		3	All laboratory calibrated analytes reported as		Jdets/A (v)
			tentatively identified compounds (TIC)		140
		1 14			
		fle	All tentatively identified compounds (TIC)		NJdets/A (v)
		· · · · · · · · · · · · · · · · · · ·			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115161-1	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU128	580-115161-5	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- (Estimated, Low Bias): The analyte was analyzed for and positively identified by Jthe laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory: however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- Presumed contamination from FB or ER. f
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples in the full scan analysis as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 580-115161-1**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-115161-1

No Sample Data Qualified in this SDG

SDG : _abor METH The s	#:54719E2b	S ocarbons (E	tage 2B EPA SW-846		Rev 2nd Rev	
/allua						<u> </u>
l.	Validation Area Sample receipt/Technical holding times	Δ /Δ		Comme	nts	
II.	GC/MS Instrument performance check	ΑΔ				
III.	Initial calibration/ICV	AA	% psp	45 12	101 = 20)	
IV.	Continuing calibration	A	(0 F-V)		101 = W W/W	
V.	Laboratory Blanks	4		200 =	w/w	
VI.	Field blanks	N				
VII.	Surrogate spikes	Δ		-		
VIII.	Matrix spike/Matrix spike duplicates	N				
IX.	Laboratory control samples	۵	100 110			
X.	Field duplicates	N	7			
XI.	Internal standards	Λ_				
XII.	Target analyte quantitation	N				
XIII.	Target analyte identification	N	,			
XIV.	System performance	N			***************************************	
XV.	Overall assessment of data	7				
lote:	A = Acceptable ND = No N = Not provided/applicable R = Rins	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1	HU141			580-115161-1	Water	06/21/22
2	HU133			580-115161-3	Water	06/21/22
3	HU128			580-115161-5	Water	06/21/22
4						
5						
6		,				
7						
8						
9						
lotes:			- 1 - 1			
N	18 580-395166					
+						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115161-1	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU128	580-115161-5	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID Analyte		Maximum Concentration	Associated Samples	
ICB/CCB	Sodium Potassium	0.179 ug/L 0.4 ug/L	All samples in SDG 580-115161-1	

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Metals - Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Metals - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Metals - Field Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

LDC #: 54719E4b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #:___ 580-115161-1 Laboratory: Eurofins, Tacoma, WA

Reviewer: 2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
II.	Instrument Calibration	A	
111.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V	Field Blanks	N	
Vi.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	LCS/LCSD
_X.	Field Duplicates	N	. ,
XI.	Target Analyte Quantitation	N	
XII.	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

				T T
	Client ID	Lab ID	Matrix	Date
1	HU141	580-115161-1	Water	06/21/22
2	HU133	580-115161-3	Water	06/21/22
3	HU128	580-115161-5	Water	06/21/22
4				
5				
6				}
7				
8				
9				
10				
11				
12				
13		*****		
14				
15				

Notes:				
	 		1 10 100	

LDC #: 54719 E4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: __of __ Reviewer: __AT___

All circled elements are applicable to each sample.

	l l	· ·
		*
Sample ID	Matrix	Target Analyte List (TAL)
1,2,3	\mathcal{W}	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K) Se, Ag, Na) Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

LDC #: 54719E4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:	1	_of_	1	
Reviewer:	ATL			

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L

Soil preparation factor applied: NA
Associated Samples: all

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
Na			0.179	895					
к			0.4	2000					
						- · · · · · · · · · · · · · · · · · · ·			

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU141	580-115161-1	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU128	580-115161-5	Water	06/21/22
HU141MS	580-115161-1MS	Water	06/21/22
HU141DUP	580-115161-1DUP	Water	06/21/22
HU133MS	580-115161-3MS	Water	06/21/22
HU133MSD	580-115161-3MSD	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Dissolved Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
HU141MS (HU141)	Nitrate/Nitrite as N	87 (90-110)	J- (all detects)	А

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to MS/MSD %R, data were qualified as estimated in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-115161-1

Sample	Analyte	Flag	A or P	Reason
HU141	Nitrate/Nitrite as N	J- (all detects)	A	Matrix spike/Matrix spike duplicate (%R) (q)

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

SDG Labo MET	#: 54719E6 VALIDATIO #: 580-115161-1 ratory: Eurofins, Tacoma, WA HOD: (Analyte) Alkalinity (SM2320B), DO SW-846 Method 9060A)	S	stage 2B	S WORKSHEET 9060A), Nitrate/Nitr	2nd 1	Date: 9 28 27 Page: of Reviewer: #17 Reviewer: #	
	samples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida			noted in attached	
	Validation Area	Ι Λ Λ-		Comm	<u>ents</u>		
<u> </u>	Sample receipt/Technical holding times	1					
- 11	Initial calibration	17					
111.	Calibration verification	1					
IV	Laboratory Blanks	1.4					
V	Field blanks	<i>N</i>					
VI.	Matrix Spike/Matrix Spike Duplicates	SW	4, 6,7)			
VII.	Duplicate sample analysis	A	5				
VIII	Laboratory control samples	A	LCSILCST)			
IX.	Field duplicates	N					
X.	Target Analyte Quantitation	N					
ΧI	Overall assessment of data	A					
Note:	lote: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank						
	Client ID			Lab ID	Matrix	Date	
1	HU141			580-115161-1	Water	06/21/22	

	Client ID	Lab ID	Matrix	Date
1	HU141	580-115161-1	Water	06/21/22
2	HU133	580-115161-3	Water	06/21/22
3	HU128	580-115161-5	Water	06/21/22
4	HU141MS	580-115161-1MS	Water	06/21/22
5	HU141DUP	580-115161-1DUP	Water	06/21/22
6	HU133MS	580-115161-3MS	Water	06/21/22
7	HU133MSD	580-115161-3MSD	Water	06/21/22
8				
9				
10				
11				
12				
13				

1

LDC #: 54719EG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter
42,3	PH TDS CI F NO3 NO2 SO4 O-PO4 (AIK) CN NH3 TKN (TOC) Cr6+ CIO4 (NO3/NO2-N) (DOC)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
QC	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
4,5	PH TDS CLE NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4 $(N03/N02-N)$
1	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN (TOC)Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	PH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

Comments:	

LDC #: <u>54719E6</u>

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike Analysis</u>

Page:_	of
Reviewer:_	

Pleas	ETHOD: Inorganics, Method See cover								
	<u>N/A</u> v	concentration by a factor	nt recoveries (9	%R) within the	control limits of 75	o limit'S -125 (85-115% for Method 30	0.0)? If the sample c	oncentration exceeded the spike	
Y N			s acceptable?	See Level IV F	tecalculation Work	sheet for recalculations.			
#	Date	Matrix Spike ID	Matrix	Analyte	%R	Associated Samples		Qualifications	
		4	W	NO3/NO2-N	87 (90-110)	1	J-/UJ/A (detect)	Code: q	
_									
				<u> </u>					
_									
				<u> </u>			1		
			 						
				L	<u></u>				
Comr	nents:								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: August 23, 2022

Gasoline Range Organics Parameters:

Validation Level: Stage 2B

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-115161-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115161-1	Water	06/21/22
HU140	580-115161-2	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU132	580-115161-4	Water	06/21/22
HU128	580-115161-5	Water	06/21/22
HU127	580-115161-6	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- Holding times were exceeded. h
- Internal standard performance was unsatisfactory. i
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits. ı
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples HU140, HU132, and HU127 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

)G#	:54719E7 VALIDATI t:580-115161-1 atory:_Eurofins, Tacoma, WA		PLETENES Stage 2B	S WORKSHEE		Date: 8 Page: 1 of Reviewer: 8 Reviewer: 1
ETH	OD: GC/MS Gasoline Range Organics	s (EPA SW-8	346 Method 8	260/CADOHS LUF		reviewer.
	amples listed below were reviewed for a common state of the common	each of the fo	ollowing valid	lation areas. Valida	tion findings are	noted in attac
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	Δ Δ				
H.	GC/MS Instrument performance check	Δ				
III.	Initial calibration/ICV	Δ /Δ	(2	1CV 63	w	
IV.	Continuing calibration lending	Δ		101 63 CW =	20/W	
V.	Laboratory Blanks	7				
VI.	Field blanks	ND	T13=	2, 4, 6		
/II.	Surrogate spikes	A		, , ,		
/111.	Matrix spike/Matrix spike duplicates	N	US.		***************************************	•
X.	Laboratory control samples	<u> </u>	100 10)		
X.	Field duplicates	N				
XI.	Internal standards	A				A. C.
KII.	Target analyte quantitation	N	<u> </u>			
311.	Target analyte identification	N				·
IV.	System performance	N				
(V.	Overall assessment of data					
e:	N = Not provided/applicable R = I	No compounds Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	irce blank :
<u> </u>	Client ID			Lab ID	Matrix	Date
⊦	HU141			580-115161-1	Water	06/21/22
-	HU140 TB			580-115161-2	Water	06/21/22
<u> </u>	IU133			580-115161-3	Water	06/21/22
	HU132 TB			580-115161-4	Water	06/21/22
<u></u> ⊦	lU128			580-115161-5	· Water	06/21/22
F	HU127 TP)			580-115161-6	Water	06/21/22
\perp						:
es:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: October 12, 2022

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU141	580-115161-1	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU128	580-115161-5	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-270726	06/29/22	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD CODD OCDF Total HxCDD Total HxCDF Total HpCDD Total HpCDD Total TCDD Total TCDD Total TCDD Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.00000319 ug/L 0.00000688 ug/L 0.000000537 ug/L 0.000000587 ug/L 0.000000571 ug/L 0.000000571 ug/L 0.000000578 ug/L 0.000000578 ug/L 0.00000565 ug/L 0.00000565 ug/L 0.000000478 ug/L 0.000000453 ug/L 0.000000187 ug/L 0.00000187 ug/L 0.00000189 ug/L 0.0000199 ug/L 0.0000199 ug/L 0.0000199 ug/L 0.00000194 ug/L 0.00000194 ug/L 0.00000194 ug/L 0.00000194 ug/L 0.00000197 ug/L 0.00000197 ug/L 0.00000197 ug/L 0.00000197 ug/L 0.00000197 ug/L 0.00000187 ug/L 0.00000187 ug/L 0.00000187 ug/L 0.00000187 ug/L	All samples in SDG 580-115161-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

		Booker	Madical Elect
Sample	Analyte	Reported Concentration	Modified Final Concentration
HU141	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDD CODD CODF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PCDD	0.0000012 ug/L 0.0000013 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000050 ug/L 0.0000012 ug/L 0.0000010 ug/L 0.0000010 ug/L 0.0000014 ug/L 0.0000014 ug/L 0.0000031 ug/L 0.0000033 ug/L 0.0000033 ug/L 0.0000033 ug/L 0.000012 ug/L 0.000018 ug/L	0.0000012U ug/L 0.0000013U ug/L 0.0000011U ug/L 0.0000050U ug/L 0.0000037U ug/L 0.0000037U ug/L 0.0000010U ug/L 0.0000014U ug/L 0.0000037U ug/L 0.0000033U ug/L 0.000003J ug/L 0.000003J ug/L 0.000012J ug/L 0.000012J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L 0.000012J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L 0.000013J ug/L
HU133	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PCDD 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF CCDD CCDF Total HxCDD Total HxCDD Total HxCDF Total HpCDD Total PeCDD Total PeCDD Total PeCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD	0.0000014 ug/L 0.0000012 ug/L 0.0000079 ug/L 0.00000089 ug/L 0.00000087 ug/L 0.00000070 ug/L 0.00000067 ug/L 0.00000059 ug/L 0.00000062 ug/L 0.00000060 ug/L 0.0000060 ug/L 0.0000060 ug/L 0.00000210 ug/L 0.00000210 ug/L 0.00000210 ug/L 0.00000210 ug/L 0.00000210 ug/L 0.0000021 ug/L 0.0000021 ug/L 0.0000021 ug/L 0.0000011 ug/L 0.0000059 ug/L 0.0000059 ug/L 0.0000021 ug/L 0.0000021 ug/L 0.0000021 ug/L	0.0000014U ug/L 0.0000012U ug/L 0.00000079U ug/L 0.00000089U ug/L 0.00000082U ug/L 0.00000067U ug/L 0.0000059U ug/L 0.0000059U ug/L 0.0000062U ug/L 0.0000062U ug/L 0.0000060U ug/L 0.0000060U ug/L 0.0000021U ug/L 0.0000027J ug/L 0.0000027J ug/L 0.0000029J ug/L 0.0000059J ug/L 0.0000059J ug/L 0.0000059J ug/L 0.0000059J ug/L 0.0000059J ug/L 0.0000059J ug/L 0.000002J ug/L
HU128	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDD 2,3,4,6,7,8-PeCDF OCDD OCDF Total HxCDD Total HxCDD Total HyCDD Total HpCDD Total HpCDD Total PeCDF Total PeCDF Total PCDD/PCDF Total PCDD Total PCDD Total PCDD Total PCDD	0.0000029 ug/L 0.00000065 ug/L 0.00000022 ug/L 0.00000046 ug/L 0.00000062 ug/L 0.00000062 ug/L 0.00000030 ug/L 0.00000030 ug/L 0.00000057 ug/L 0.00000057 ug/L 0.00000057 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000012 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000012 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000012 ug/L 0.0000011 ug/L 0.0000011 ug/L 0.0000011 ug/L	0.0000029U ug/L 0.00000065U ug/L 0.00000065U ug/L 0.00000046U ug/L 0.00000058U ug/L 0.00000062U ug/L 0.000003U ug/L 0.0000039U ug/L 0.0000057U ug/L 0.0000057U ug/L 0.0000057U ug/L 0.0000057U ug/L 0.000001U ug/L 0.000001J ug/L 0.000001J ug/L 0.000001J ug/L 0.000001J ug/L 0.000001J ug/L 0.00001J ug/L 0.00001J ug/L 0.00001J ug/L 0.00001J ug/L 0.00001J ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-115161-1	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-115161-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU141 HU133 HU128	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	А	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU141	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDD OCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD Total PCDD	0.0000012U ug/L 0.0000013U ug/L 0.00000081U ug/L 0.0000050U ug/L 0.0000012U ug/L 0.0000012U ug/L 0.0000012U ug/L 0.0000010U ug/L 0.0000010U ug/L 0.0000014U ug/L 0.0000014U ug/L 0.0000033U ug/L 0.0000033U ug/L 0.0000033U ug/L 0.0000033U ug/L 0.0000012U ug/L 0.0000012U ug/L 0.000012U ug/L 0.000013U ug/L 0.000013U ug/L 0.000013U ug/L 0.000013U ug/L 0.000015U ug/L 0.000015U ug/L	A	b
HU133	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDD 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total PCDD	0.0000014U ug/L 0.0000012U ug/L 0.0000079U ug/L 0.0000089U ug/L 0.0000082U ug/L 0.0000067U ug/L 0.0000059U ug/L 0.0000069U ug/L 0.0000069U ug/L 0.0000069U ug/L 0.0000069U ug/L 0.0000069U ug/L 0.0000069U ug/L 0.0000016U ug/L 0.0000020J ug/L 0.0000021J ug/L 0.0000021J ug/L 0.0000011J ug/L	A	b

Sample	Analyte	Modified Final Concentration	A or P	Code
HU128	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 0CDD 0CDF Total HxCDD Total HxCDD Total HxCDD Total HpCDD Total PCDD	0.0000029U ug/L 0.00000065U ug/L 0.00000022U ug/L 0.00000046U ug/L 0.00000068U ug/L 0.00000062U ug/L 0.00000039U ug/L 0.00000039U ug/L 0.00000057U ug/L 0.00000057U ug/L 0.0000028U ug/L 0.000028U ug/L 0.000013J ug/L	A	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

SDG # _abora	t: <u>580-115161-1</u> atory: <u>Eurofins, Tacoma,</u> WA	S	stage 2B	S WORKSHEET	2nd	Date: \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Γhe sa	IOD: HRGC/HRMS Polychlorinated Dioxi amples listed below were reviewed for eation findings worksheets.		·			noted in attached
	Validation Area			Comm	ents	
l.	Sample receipt/Technical holding times	Δ/Λ				
11.	HRGC/HRMS Instrument performance check	Δ				
III.	Initial calibration/ICV	AA	0/0 PSD	= 20	101 = 26	0/30
IV.	Continuing calibration	\ \			€20/30	1
V.	Laboratory Blanks	ŚW				
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	N	O>			
VIII.	Laboratory control samples	A	KSID			
IX.	Field duplicates	N				
Х.	Labeled Compounds	Δ				
XI.	Target analyte quantitation	SW				-
XII.	Target analyte identification	N				
XIII.	System performance	N				
XIV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blanl	OTHER	rce blank :
	Client ID			Lab ID	Matrix	Date
1 1	HU141			580-115161-1	Water	06/21/22
2 1	HU133			580-115161-3	Water	06/21/22
3 I	HU128			580-115161-5	Water	06/21/22
4						
5						
6						
7						
8		-				
9						
10						
otes:						
M	B 410-270126					
_						

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

LDC #: 54719E21

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of_	_1_	
Reviewer:		FT		

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Were all samples associated with a method blank?
- $\frac{Y}{Y}$ Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)
- Was the method blank contaminated?

Blank extraction date: 6/29/22 Blank analysis date: 6/29/22 Associated samples:

Conc. units: ug/L

Compound	Blank ID	Sample Identification							
	MB 410 -270726	5x	1	2	3				
F	0.00000319	0.000015950	0.0000012U	0.0000014U	0.0000029U				
0	0.00000668	0.000003340	0.0000013U	0.0000012U	0.00000065U				
С	0.00000537	0.000002685	0.00000081U	0.00000079U	0.00000022U				
κ	0.00000587	0.000002935	0.0000011U	0.00000089U	0.00000046U				
P	0.00000371	0.000001855	0.00000050U	0.00000082U	0.00000058U				
D	0.00000571	0.000002855	0.0000012U	0.00000070U	0.00000062U				
L	0.000000578	0.000002890	0.00000037U	0.00000067U	0.00000023U				
В	0.00000319	0.000001595	0.0000010U	0.00000059U	-				
1	0.00000565	0.000002825	-	0.00000048U	0.00000039U				
E	0.00000478	0.000002390	0.00000095U	0.00000062U	0.00000023U				
М	0.0000066	0.000003300	0.0000014U	0.00000040U	0.00000057U				
J	0.000000453	0.000002265	-	0.00000060U	0.00000067U				
А	0.000000746	0.000000373	-	-	-				
н	0.00000187	0.000000935		-	-				
G	0.0000206	0.000103000	0.000020U	0.000016U	0.000021U				
Q	0.00000223	0.000011150	0.0000033U	0.0000024U	0.0000028U				
Т	0.0000159	0.000007950	0.0000030J	0.00000210J	0.0000011J				
х	0.0000183	0.000009150	0.0000033J	0.0000027J	0.0000013J				
U	0.0000319	0.000015950	0.0000012J	0.0000014J	0.0000029J				
Υ	0.0000104	0.000005200	0.0000018J	0.0000020J	0.0000012J				

s	0.00000319	0.000001595	0.0000010J	0.00000059J	0			
w	0.0000102	0.000005100	<u>-</u>	0.0000011J	0.0000011J			
R	0.000000746	0.000000373	-					
V	0.00000187	0.000000935	-	_	<u>-</u>			
Total PCDD/PCDF	0.0000321	0.000160500	0.000033J	0.000028J	0.000031J			
Total PCDD	0.0000258	0.000129000	0.000025J	0.000020J	0.000025J			
Total PCDF	0.0000631	0.000031550	0.0000084J	0.0000082J	0.0000064J	 		

CIRCLED 0.00000079RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within 0.00000089 five times the method blank concentration were qualified as not detected, "U".

LDC # 54719E21

54719E21 MB 410-27026 AECOM Red Hill Oily

LDC #: 547 19 62)

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation and CRQLs

Page:	1	_of	1
Reviewer		FT	

METHOD: 1613B 8290△

Please, see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

YNNA Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

# Sample ID		Compound	Finding	Qualifications		
	<u> </u>	All results qualified "I" by the laboratory		Jdu / m/ (K		
		as EMPC				
1						
_						
+						

COMQUA.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Methane

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115161-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU141	580-115161-1	Water	06/21/22
HU140	580-115161-2	Water	06/21/22
HU133	580-115161-3	Water	06/21/22
HU132	580-115161-4	Water	06/21/22
HU128	580-115161-5	Water	06/21/22
HU127	580-115161-6	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits. 1
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high.
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples HU140, HU132, and HU127 were identified as trip blanks. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-115161-1

No Sample Data Qualified in this SDG

SDG	#: 580-115161-1		PLETENES: Stage 2B	S WORKSHEET	-	Date: 8 19 1 Page: 10f 1
Labo	ratory: Eurofins, Tacoma, WA					Reviewer:
MET	HOD: GC Methane (Method RSK-175)				21101	(0V10W01
	samples listed below were reviewed for eation findings worksheets.	each of the f	ollowing valida	ition areas. Validati	on findings are	noted in attached
	Validation Area			Comm	nents	
1.	Sample receipt/Technical holding times	AA				
II.	Initial calibration/ICV	40	0/0 PSD /	1cV = 20		
111.	Continuing calibration ending	4	` /	CW = 20/2	J	
IV.	Laboratory Blanks			•		
V.	Field blanks	NO	TB = 2	, 46		
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	C>			
VIII	Laboratory control samples	4	les W			
IX.	Field duplicates	N				
Х.	Target analyte quantitation	N		, and the second		
XI.	Target analyte identification	N				
LXIL	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R = R	No compound Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	SB=Sour OTHER: nk	ce blank
	Client ID			Lab ID	Matrix	Date
1	HU141			580-115161-1	Water	06/21/22
2	HU140			580-115161-2	Water	06/21/22
3	HU133			580-115161-3	Water	06/21/22
4	HU132 TB			580-115161-4	Water	06/21/22
5	HU128			580-115161-5	Water	06/21/22
6	HU127 TB			580-115161-6	Water	06/21/22
7						
8						
9						
10						
11		·				
12						
Notes:						

1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115163-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU110	580-115163-1	Water	06/22/22
HU135	580-115163-2	Water	06/22/22
HU126	580-115163-3	Water	06/22/22
HU119	580-115163-4	Water	06/22/22
HU126MS	580-115163-3MS	Water	06/22/22
HU126MSD	580-115163-3MSD	Water	06/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Data Qualification Summary - SDG 580-115163-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115163-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115163-1

No Sample Data Qualified in this SDG

LDC #: 54719F6	_ VALIDATION COMPLETENESS WORKSHEET	Date: <u>9 27 2</u> 2
SDG #: 580-115163-1	Stage 2B	Page: <u> </u> of <u> </u>
Laboratory: Eurofins, Tacom	na, WA	Reviewer: ATV
		2nd Reviewer:

METHOD: (Analyte) Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0),

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AA	
ll ll	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	A	
	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	(5,6)
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LOSTLOSD
IX.	Field duplicates	\mathcal{N}	
X.	Target Analyte Quantitation	N	
_XI	Overall assessment of data	L A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Olis and ID	I ID		
	Client ID	Lab ID	Matrix	Date
1	HU110	580-115163-1	Water	06/22/22
2	HU135	580-115163-2	Water	06/22/22
3	HU126	580-115163-3	Water	06/22/22
4	HU119	580-115163-4	Water	06/22/22
5	HU126MS	580-115163-3MS	Water	06/22/22
6	HU126MSD	580-115163-3MSD	Water	06/22/22
7				
8				
9				
10				
11				
12				
13				
14				
15				

Notes:			 	

LDC #: 5471976

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

0I- ID	Power-ston.
Sample ID	Parameter ()
1-)4	PH TDS (CIXF) NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (BY)
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
516	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	PH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	PH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115197-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU137	580-115197-1	Water	06/23/22
HU139	580-115197-2	Water	06/23/22
HU137MS	580-115197-1MS	Water	06/23/22
HU137MSD	580-115197-1MSD	Water	06/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Data Qualification Summary - SDG 580-115197-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115197-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115197-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 54719G6 SDG #: 580-115197-1 Stage 2B Reviewer: Laboratory: Eurofins, Tacoma, WA 2nd Reviewer: METHOD: (Analyte) Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0), The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. **Validation Area** Comments Sample receipt/Technical holding times П Initial calibration III. Calibration verification IV Laboratory Blanks ٧ Field blanks VI. Matrix Spike/Matrix Spike Duplicates VII. Duplicate sample analysis VIII. Laboratory control samples Field duplicates IX. X. **Target Analyte Quantitation** XI. Overall assessment of data Note: A = Acceptable ND = No compounds detected SB=Source blank D = Duplicate N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank Client ID Lab ID Matrix Date HU137 580-115197-1 Water 06/23/22 2 HU139 Water 580-115197-2 06/23/22 HU137MS 3 580-115197-1MS Water 06/23/22 HU137MSD 580-115197-1MSD Water 06/23/22 5 6 8 9 10 11

Notes:

12 13 14 LDC #: 54719G6

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter
	ph TDS(CI)(F)(NO3 NO2 (SO) O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Br)
1,2	
	PH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	PH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
3,4	ph TDS (C) FNO2 NO2 SO4 O-PO4 AIK ON NH3 TKN TOC Cr6+ CIO4 (BY)
214	ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4

Comments: