

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AECOM October 19, 2022

1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fractions listed below. This SDG was received on July 19, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project # 54720:

SDG #	<u>Fraction</u>
580-115437-1	Volatiles, Semivolatiles, Polynuclear Aromatic Hydrocarbons, Metals, Wet Chemistry, Gasoline
	Range Organics, Polychlorinated Dioxins/Dibenzofurans, Methane

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco

Operations Manager/Senior Chemist

scuenco@lab-data.com

	60 pages-ADV													tachr																			
	90/10 2B/4	EDD		L	DC#	[‡] 54	720	(AE	ECC	M -	Но	nol	ulu,	HI	/ Re	d H	ill C	Dily	Wa	ste,	СТ	0 1	8F0	176	5)								
LDC	SDG#	DATE REC'D	(3) DATE DUE		OA 60D)	SV (827	OA 70E)	PA (82 -SI	Hs 70E IM)	(5 Met (601	als	GF (82 LU		Dio:	xins 90A)	Meti (1)	nane 75)	Al (232	lk. 20B)	NO NO (35:	O₃/ ♭₂-N 3.2)	DC (906	DC 80A)	TC (906									
Matrix	c: Water/Soil			W	S	W	S	W	S	W		W		W	S	W	S	W	S	W	S	W	S	W		W	S	W	S	W	S	W	S
Α	580-115437-1	07/19/22	08/09/22	3	0	2	0	2	0	1	0	3	0	2	0	2	0	1	0	1	0	1	0	1	0			<u> </u>				igwdot	
																												\vdash				$\vdash\vdash$	\dashv
																																	\exists
																												igspace				\square	_
					<u> </u>																							┢				\vdash	\dashv
																												 				\vdash	
																																	\dashv
					<u> </u>																							<u> </u>		ļ!		\square	
					<u> </u>																							┢				\vdash	
																												 				\vdash	
																												—				\square	
																												\vdash				$\vdash \vdash$	
							$\vdash\vdash$																					\vdash	$\vdash\vdash$	${f H}$		$\vdash \vdash$	_
																												1					
																												ऻ				\square	_
																												\vdash				$\vdash \vdash$	$-\parallel$
Total	T/SC			3	0	2	0	2	0	1	0	3	0	2	0	2	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	19
<u> </u>																																<u> </u>	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Volatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU108	580-115437-1	Water	06/28/22
HU107	580-115437-2	Water	06/28/22
HU111	580-115437-3	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- (Estimated, Low Bias): The analyte was analyzed for and positively identified by Jthe laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- 1 LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the ٧ problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/01/22	Chloromethane Bromomethane	28.9 28.5	All samples in SDG 580-115437-1	UJ (all non-detects) UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/03/22	1,2-Dibromo-3-chloropropane	20.6	All samples in SDG 580-115437-1	UJ (all non-detects)	Α

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration	Associated Samples
MB 580-395846	07/03/22	1,2,4-Trichlorobenzene Hexachlorobutadiene	0.239 ug/L 0.101 ug/L	All samples in SDG 580-115437-1
MB 580-396240	07/07/22	Naphthalene	0.340 ug/L	All samples in SDG 580-115437-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU108	1,2,4-Trichlorobenzene	0.18 ug/L	0.35U ug/L
	Naphthalene	0.26 ug/L	0.50U ug/L
HU107	1,2,4-Trichlorobenzene	0.19 ug/L	0.35U ug/L
	Naphthalene	0.26 ug/L	0.50U ug/L
HU111	1,2,4-Trichlorobenzene	0.18 ug/L	0.35U ug/L
	Naphthalene	0.26 ug/L	0.50U ug/L

VI. Field Blanks

Sample HU107 was identified as a trip blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU107	06/28/22	1,2,4-Trichlorobenzene Naphthalene	0.19 ug/L 0.26 ug/L	HU108 HU111

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU108	1,2,4-Trichlorobenzene	0.18 ug/L	0.35U ug/L
	Naphthalene	0.26 ug/L	0.50U ug/L
HU111	1,2,4-Trichlorobenzene	0.18 ug/L	0.35U ug/L
	Naphthalene	0.26 ug/L	0.50U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-395846 (All samples in SDG 580-115437-1)	1,2-Dibromo-3-chloropropane	141 (62-128)	-	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-395846 (All samples in SDG 580-115437-1)	Acetone	46 (≤20)	NA	-

X. Field Duplicates

Samples HU108 and HU111 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr		
Analyte	HU108	HU111	RPD (Limits)
1,2,4-Trichlorobenzene	0.18	0.18	0 (≤50)
Chloroform	0.22	0.21	5 (≤50)
Naphthalene	0.26	0.26	0 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D and continuing calibration %D, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected in three samples.

Due to trip blank contamination, data were qualified as not detected in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-115437-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU108 HU107 HU111	Chloromethane Bromomethane	UJ (all non-detects) UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU108 HU107 HU111	1,2-Dibromo-3-chloropropane	UJ (all non-detects)	А	Continuing calibration (%D) (c)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU108	1,2,4-Trichlorobenzene Naphthalene	0.35U ug/L 0.50U ug/L	Α	b
HU107	1,2,4-Trichlorobenzene Naphthalene	0.35U ug/L 0.50U ug/L	А	b
HU111	1,2,4-Trichlorobenzene Naphthalene	0.35U ug/L 0.50U ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-115437-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU108	1,2,4-Trichlorobenzene Naphthalene	0.35U ug/L 0.50U ug/L	А	t
HU111	1,2,4-Trichlorobenzene Naphthalene	0.35U ug/L 0.50U ug/L	А	t

SDG # Labora METH The sa	#:_54720A1a VALIDATIO #:_580-115437-1 atory: Eurofins, Tacoma, WA HOD: GC/MS Volatiles (EPA SW-846 Me + T\c9 amples listed below were reviewed for eation findings worksheets.	Siethod 8260D	Stage 2B	S WORKSHEET ation areas. Validation	F Revi 2nd Revi	
	Validation Area			Comme	nts	
1.	Sample receipt/Technical holding times	AA				
II.	GC/MS Instrument performance check	4				
III.	Initial calibration/ICV	Dy.	0 /0 psc) = B (2 CW =	CY = 20	
IV.	Continuing calibration ending	SW		CW ±	20/50	
V.	Laboratory Blanks	SW		- · · · ·	•	
VI.	Field blanks	5W	TB = 2			
VII.	Surrogate spikes					
VIII.	Matrix spike/Matrix spike duplicates	N				
IX.	Laboratory control samples	SW	LOSID			
Χ.	Field duplicates	5W	D = 1,	3		
XI.	Internal standards	Δ				
XII.	Target analyte quantitation/TIC	N				
XIII.	Target analyte identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data					
Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank						
	Client ID MINN		Lab ID	Matrix	Date	
+ 1	HU108 (2			580-115437-1	Water	06/28/22
2 1 1	HU107 TB			580-115437-2	Water	06/28/22
4	√					

	Client ID MAIN	Lab ID	Matrix	Date
† 1 !	HU108 (2	 580-115437-1	Water	06/28/22
+ 2 1 T	HU107 TB	580-115437-2	Water	06/28/22
4 3	HU111 17	580-115437-3	Water	06/28/22
4				
5				
6				
7				
8				
9				
lotes				
1	MB 580-396176 580-395846			
2	MB 580-396740 MB 580-396240			

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1. Ethylene Dibromide

LDC#: 54720Ala

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	_lof_	<u> </u>
eviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\,$ $\,$ $\,$)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Were all %D within the validation criteria of <20 %D2

X.	N/N/A Were all %D within the validation criteria of ≤20 %D?				(c)		
#	Date	Standard ID	Compound	Finding %D (Limit: 20.0% / 30%)	Associated Samples	いかんと Qualifications	
	7/1/22	1CY-TAC13	A		AII	. It down for all NO	
	8050		8	28.9 28.5	V		
	<u> </u>						
	ļ						
	<u> </u>						
	<u> </u>						
<u> </u>	<u> </u>						
_	<u> </u>						
	<u> </u>						
	ļ						
	 	<u> </u>		ļ			
	 						
_							
<u> </u>							
	 						
-							
一							
	 				lander, and the same of the s		
_	1						
\vdash	†						

LDC #: 54720A A

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	/ _{of}	1
Reviewer	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ♥)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF?

1 0		vere all %D and KKrs	within the validation c	illeria di 520 %D and	1 20.00 KKF !	<u> </u>	
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	F [†] Qualifications
	W7 3 27	cey-580-3958	6 MM	20.6		All	Jiday/ ND
	1750						1+/uJ/A
ļ							- /
-	 						
ļ							
-							
ļ							
-							
ļ		<u>'</u>					
-							
<u> </u>			<u> </u>	<u> </u>	<u> </u>		
-							
-							
_							
11	1		1				

LDC #:	547	201	412
--------	-----	-----	-----

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	of
Reviewer:	FT

METHOD:	GC/MS VOA	(EPA SW	846	Method	8260	囚
	00,0	(• . • .			•

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a method blank associated with every sample in this SDG?

YN N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

VN N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

(b)

Blank analysis date: 1/2/22

Conc. units: val. Associated Samples: All

Compound	Blank ID		Sample Identification						
The second secon	MB 580-3	99846	1	2	3				
KKK	0.139		0.18 6.354	0.19/0.351	1 0.18 0.2	su			
LLL	0.101		_						
								··-	
									,

Blank analysis date: 7 7 22 AII Conc. units: NA Associated Samples: Blank ID Compound Sample Identification MB 580 3 71624U 0.26 0.26 0.26 0.740 n.304 6.5bu MMM /o.50U

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

	LDC	#:	94	12	DA	ره
--	-----	----	----	----	----	----

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	<u></u>	1
viewer: I	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 7)	
Were field blanks identified in this SDG?	
Y N N/A Were target compounds detected in the field blanks?	
Blank units: wall Associated sample units: ugl	
Sampling date: 628/22	

(t)

Blank units:	Associated sample units:
Sampling date:	

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: Associated Samples:

Compound	Blank ID	Sample Identification						

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC#: 54720Ala

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	l _{of}
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 ♥)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

✓ N N/A Was a LCS required?

Y N 1N/A Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#		Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	LC>17 580-	MM	141 (62 -128)	()	()	A() ())	Italip all ND
	395846	F	()	()	46 (20)	1 (w)	Janp
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
P***			()	()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC #: 54720Ala

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	l _{of} _]
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\mathcal Q$)

N N/A

Were field duplicate pairs identified in this SDG?

Were target compounds detected in the field duplicate pairs?

	Concentrat	tion (ug L)		
Compound	1	3	RPD (≤ 50 %)	QUAL
KKK	0.18	0.18	Ö	
K	0.22	0.21	5	
MMM	0.26	0.26	0	
			1	

Compound	Concentration ()	RPD (≤ %)	QUAL

Compound	Concentration ()	RPD (≤ %)	QUAL
			:

Compound	Concentratio	n ()	RPD (≤ %)	QUAL

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 13, 2022

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU108	580-115437-1	Water	06/28/22
HU111	580-115437-3	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/06/22	2,4-Dinitrophenol	75.9	All samples in SDG 580-115437-1	UJ (all non-detects)	Α

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-395878 (All samples in SDG 580-115437-1)	Bis(2-chloroisopropyl) ether Bis(2-chloroethyl) ether	22 (≤20) 22 (≤20)	NA	-

X. Field Duplicates

Samples HU108 and HU111 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All tentatively identified compound quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-115437-1	All tentatively identified compounds (TIC).	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ending CCV %D, data were qualified as estimated in two samples.

Due to TICs, data were qualified as presumptive and estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-115437-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU108 HU111	2,4-Dinitrophenol	UJ (all non-detects)	Α	Continuing calibration (ending CCV %D) (c)
HU108 HU111	All tentatively identified compounds (TICs).	NJ (all detects)	A	Target analyte quantitation (TICs) (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

SDG _abor METI The s	DC #: 54720A2a VALIDATION COMPLETENESS WORKSHEET DG #: 580-115437-1 Stage 2B aboratory: Eurofins, Tacoma, WA NETHOD: GC/MS Semivolatiles (EPA SW-846 Method 8270E) + 1169 The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached alidation findings worksheets.					
	Validation Area			Comr	ments	
I.	Sample receipt/Technical holding times	AA				
II.	GC/MS Instrument performance check	\triangle	,			
111.	Initial calibration/ICV	AIA	0/0	PSP = 15, 1	2 10	Y = 20
IV.	Continuing calibration ending	SW	/			D
V.	Laboratory Blanks	Δ			· ·	
VI.	Field blanks	N				
VII.	Surrogate spikes	Δ				
VIII.	Matrix spike/Matrix spike duplicates	W	co			
IX.	Laboratory control samples	su	Les 10			
X.	Field duplicates	ND		1, 2		
XI.	Internal standards	Λ				
XII.	Target analyte quantitation / T/C	SM				
XIII.	Target analyte identification	N			<u></u>	
XIV.		N N				
XIV.	System performance Overall assessment of data	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1844 PM
Note:	A = Acceptable ND = No N = Not provided/applicable R = Rins	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER:	rce blank :
	Client ID			Lab ID	Matrix	Date
1	HU108			580-115437-1	Water	06/28/22
2	HU111			580-115437-3	Water	06/28/22
3						
4						
5						
6						
7						
8						
ء ا						
lotes:						
	MB 580-390878					
			1 1		1 1	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

			T The state of the	
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-taluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC#: 54720A2a

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	l_{of}
Reviewer:	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Y/N/N/A Y (N) N/A

Were all %D and RRFs within the validation criteria of ≤20%D and ≥0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	7612	w -dow	9 HH	759		A II	FUJ/A NO
	2034		7				
			-				
			w				
ļ					-		
	<u> </u>				<u> </u>		
	_						
<u> </u>							
				1994		The first control of the second control of t	
<u> </u>							
1							

LDC#: <u>94720</u>A2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	_ <u>L</u> bf
Reviewer:	FT

(w)

METHOD: GC/MS BNA (Method &2)10 E

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". \(\frac{\omega}{N_1} \text{ N/A} \)

Was a LCS required?

Y W N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

							
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	10510	MHM	()	()	w (w)	Αι ⁾	Jan 1P ND
	580-395870	8	()	()	12 (20)		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
				()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()			

LDC #: 54720A2a	54720A2a
-----------------	----------

VALIDATION FINDINGS WORKSHEET Target Analytes Quantitation

Page: _	1	of	1	
Reviewer		FT		

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- $\frac{Y}{Y}$ Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?
- Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Sample ID	Compound	Finding	Qualifications
	all	all Tentatively Identified Compounds (TIC)		NJ/A (V)
				W-02-02-0
<u> </u>				
<u> </u>	`			
				
			· · · · · · · · · · · · · · · · · · ·	

Comments:	omments: See sample calculation verification worksheet for recalculations				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification Matrix		Collection Date
HU108	580-115437-1	Water	06/28/22
HU111	580-115437-3	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- **J**+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory.
- Estimated Maximum Possible Concentration (HRGC/HRMS only) k
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- 0 Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. s
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the V problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples in the full scan analysis as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU108 and HU111 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 580-115437-1**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-115437-1

No Sample Data Qualified in this SDG

SDG #	#:_ 54720A2b		PLETENESS Stage 2B	WORKSHEET	F	Date: \$ 8 9 9 9 9 9 9 9 9 9
NETH	IOD: GC/MS Polynuclear Aromatic Hydro	carbons (E	EPA SW-846 N	Method 8270E-SIM)	£110 1.00.	ewoi.
	amples listed below were reviewed for eaction findings worksheets.	ch of the fo	ollowing valida	tion areas. Validation	findings are note	ed in attached
	Validation Area			Comme	nts	
l.	Sample receipt/Technical holding times	14				
IJ.	GC/MS Instrument performance check	4	<u> </u>	·		
III.	Initial calibration/ICV	AIA	3/0 PSD	CU = 20	ey = 20	
IV.	Continuing calibration ending	<u>A</u>		CW = 20	50	
V.	Laboratory Blanks	4	<u></u>			
VI.	Field blanks	N				
VII.	Surrogate spikes	4				
VIII.	Matrix spike/Matrix spike duplicates	N				
IX.	Laboratory control samples	Δ	100 10			
X.	Field duplicates	NO	D = 1	,2		. =
XI.	Internal standards	4				
XII.	Target analyte quantitation	N_				
XIII.	Target analyte identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID	<u></u>	· · · · · · · · · · · · · · · · · · ·	Lab ID	Matrix	Date
17	HU108			580-115437-1	Water	06/28/22
<u>2</u>	HU111			580-115437-3	Water	06/28/22
3						
4						
5						
6						
7						
8						
9						
lotes:					T	
N	18 580-39 587 8					
-			++-			
+			_			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU108	580-115437-1	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Calcium Magnesium Potassium Sodium	0.0458 ug/L 0.0849 ug/L 0.278 ug/L 0.139 ug/L	All samples in SDG 580-115437-1

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Metals - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Metals - Field Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

LDC #: 54720A4b SDG #: 580-115437-1

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Laboratory: Eurofins, Tacoma, WA

Page: \[\text{ of } \]
Reviewer: \[\frac{1}{2} \]
2nd Reviewer: \[\frac{1}{2} \]

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A A	
II.	Instrument Calibration	A	
III.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	•
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	LCS/LCSD
X.	Field Duplicates	N	' '
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

TB = Trip blank O
EB = Equipment blank

SB=Source blank OTHER:

Client ID Lab ID Matrix Date HU108 580-115437-1 Water 06/28/22 2 3 5 6 8 9 10 11 12 13 14

Notes:			
		- 0.02.100	

LDC #: 54720A4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1
Reviewer: 41

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1	W	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K) Se, Ag, Na) Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments:	Mercury by CVAA if performed		 	

LDC #: 54720A4b

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:	_1	of	1	
Reviewer:				_

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>ug/L</u>

Soil preparation factor applied: NA
Associated Samples: all

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (mg/L)	Maximum ICB/CCB ^a (mg/L)	Action Level					
Ca			0.0458	229					
Mg			0.0849	424.5					,
К			0.278	1390					·
Na			0.139	695					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

September 30, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU108	580-115437-1	Water	06/28/22
HU108MS	580-115437-1MS	Water	06/28/22
HU108MSD	580-115437-1MSD	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Dissolved Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

SDG #	: 54720A6 VA t: 580-115437-1 atory: <u>Eurofins, Tacoma,</u> WA	LIDATIO		LETENES: tage 2B	S WORKSHEET		Date: 9/28/00 Page: 1 of 1 Reviewer: 41/ Reviewer: 4
	OD: (Analyte) Alkalinity (SM2 SW-846 Method 9060A)	320B), DO	C (EPA SV	V-846 Method	l 9060A), Nitrate/Nit	rite-N (EPA Me	ethod 353.2), TOC
	amples listed below were revieusion findings worksheets.	wed for ea	ach of the fo	ollowing valida	ation areas. Validatio	on findings are	noted in attached
	Validation Area				Comm	nonts	
1.	Sample receipt/Technical holding t	imes	AA		COIIII	ients	
"	Initial calibration	iiies	A				
111.	Calibration verification		A				
IV	Laboratory Blanks		A				
V	Field blanks		Ìλ				
VI.	Matrix Spike/Matrix Spike Duplicate	es	A	(2,3)		· · · · · · · · · · · · · · · · · · ·	
VII.	Duplicate sample analysis		l ll	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
VIII.	Laboratory control samples		A	LCSILCS	SD .		
IX.	Field duplicates		N				
X.	Target Analyte Quantitation		N				
XI	Overall assessment of data		A				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rin	lo compounds nsate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	irce blank :
	Client ID				Lab ID	Matrix	Date
1 H	-IU108	·			580-115437-1	Water	06/28/22
2 I	HU108MS				580-115437-1MS	Water	06/28/22
3 H	HU108MSD				580-115437-1MSD	Water	06/28/22
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14					<u></u>		
Notes:							

LDC #: 54720AG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATC

All circled methods are applicable to each sample.

Sample ID	Parameter
t	pH TDS CI F NO3 NO2 SO4 O-PO4 (AIR) CN NH3 TKN (TOC) Cr6+ CIO4 (NB3 (NB2-N) (DOC)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
QC	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
213	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (DOC)
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CI F NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ Alk CN NH $_3$ TKN TOC Cr6+ ClO $_4$
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	DH TDS CLE NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4

Comments:_____

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Gasoline Range Organics

Validation Level:

Stage 2B

Laboratory:

Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU108	580-115437-1	Water	06/28/22
HU107	580-115437-2	Water	06/28/22
HU111	580-115437-3	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample HU107 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU108 and HU111 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

SDG: _abor METH The s	#: 54720A7 VALIDATION #: 580-115437-1 atory: Eurofins, Tacoma, WA HOD: GC/MS Gasoline Range Organics (In amples listed below were reviewed for each tion findings worksheets.	S EPA SW-8	itage 2B 346 Method 83		Method)	Date: 8/4 Page:lof_/ Reviewer: d Reviewer:
	Validation Area			Comm	ents	
l.	Sample receipt/Technical holding times	AIA				
11.	GC/MS Instrument performance check	A				
III.	Initial calibration/ICV	A, A	12	1CY 5 20		
IV.	Continuing calibration	7		CU £ 20/20		
V.	Laboratory Blanks	_				
VI.	Field blanks	NÓ	TB = 2			
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	N	os			
IX.	Laboratory control samples	Δ	100 10			
X.	Field duplicates	NO	0=1,3			
XI.	Internal standards	Δ	,			
XII.	Target analyte quantitation	N				•
XIII.	Target analyte identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	4				
lote:	N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	OTHE	ource blank R:
	Client ID			Lab ID	Matrix	Date
17	HU108			580-115437-1	Water	06/28/22
	HU107			580-115437-2	Water	. 06/28/22
	HU111			580-115437-3	Water	06/28/22
4						
5						
6						
7						
8						
9						
otes:						
1	18 53U-396176	·				
+						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

August 23, 2022 **LDC Report Date:**

Polychlorinated Dioxins/Dibenzofurans Parameters:

Stage 2B Validation Level:

Eurofins, Tacoma, WA Laboratory:

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU108	580-115437-1	Water	06/28/22
HU111	580-115437-3	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-274215	07/11/22	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,7,8-TCDF OCDD OCDF Total HxCDD Total HxCDF Total HpCDD Total HpCDD Total PeCDD Total PCDD	0.00000950 ug/L 0.000000580 ug/L 0.000000418 ug/L 0.000000484 ug/L 0.000000694 ug/L 0.00000675 ug/L 0.00000116 ug/L 0.000000813 ug/L 0.000000824 ug/L 0.00000654 ug/L 0.00000654 ug/L 0.00000132 ug/L 0.00000132 ug/L 0.0000138 ug/L 0.00000147 ug/L 0.00000147 ug/L 0.00000147 ug/L 0.00000135 ug/L 0.00000135 ug/L 0.00000135 ug/L 0.00000132 ug/L 0.00000132 ug/L 0.00000132 ug/L 0.00000132 ug/L 0.00000132 ug/L 0.00000120 ug/L 0.00000120 ug/L 0.000001570 ug/L	All samples in SDG 580-115437-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU108	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF OCDD OCDF Total HxCDD Total HxCDD Total HpCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.00000015 ug/L 0.00000037 ug/L 0.00000027 ug/L 0.00000029 ug/L 0.00000037 ug/L 0.00000033 ug/L 0.00000033 ug/L 0.00000034 ug/L 0.00000037 ug/L 0.0000042 ug/L 0.0000042 ug/L 0.0000037 ug/L 0.0000037 ug/L	0.0000015U ug/L 0.0000037U ug/L 0.0000027U ug/L 0.0000029U ug/L 0.0000037U ug/L 0.0000037U ug/L 0.0000033U ug/L 0.0000033U ug/L 0.0000037J ug/L 0.0000014J ug/L 0.0000014J ug/L 0.0000014J ug/L 0.0000014J ug/L 0.0000014J ug/L

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU111	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF OCDD OCDF Total HxCDD Total HxCDF Total HpCDD Total HpCDD Total PCDD/PCDF Total PCDD Total PCDD Total PCDD	0.0000012 ug/L 0.0000028 ug/L 0.0000031 ug/L 0.0000031 ug/L 0.0000026 ug/L 0.0000033 ug/L 0.00000036 ug/L 0.00000054 ug/L 0.0000025 ug/L 0.0000025 ug/L 0.0000011 ug/L 0.0000012 ug/L 0.0000012 ug/L 0.0000070 ug/L 0.00000620 ug/L 0.0000040 ug/L 0.0000042 ug/L	0.0000012U ug/L 0.00000028U ug/L 0.00000031U ug/L 0.00000042U ug/L 0.00000033U ug/L 0.00000033U ug/L 0.00000054U ug/L 0.00000054U ug/L 0.00000025U ug/L 0.00000025U ug/L 0.0000012J ug/L 0.0000012J ug/L 0.0000070J ug/L 0.0000070J ug/L 0.0000062U ug/L 0.0000062U ug/L 0.0000062U ug/L 0.0000042U ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples HU108 and HU111 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	Concentration (ug/L)					
Analyte	HU108_	HU111	RPD (Limits)				
1,2,3,4,6,7,8-HpCDD	0.0000096U	0.0000012	156				
1,2,3,4,6,7,8-HpCDF	0.0000015	0.00000028	60				
1,2,3,4,7,8-HxCDF	0.0000037	0.0000031	18				
1,2,3,4,7,8,9-HpCDF	0.0000027	0.00000042	43				

	Concentr		
Analyte	HU108	HU111	RPD (Limits)
1,2,3,6,7,8-HxCDD	0.000096U	0.0000026	189 (≤50)
1,2,3,6,7,8-HxCDF	0.00000029	0.0000033	13 (≤50)
1,2,3,7,8,9-HxCDD	0.0000037	0.000095U	185 (≤50)
1,2,3,7,8,9-HxCDF	0.000096U	0.0000036	186 (≤50)
2,3,4,6,7,8-HxCDF	0.0000071	0.00000054	172 (≤50)
OCDD	0.0000033	0.0000025	28 (≤50)
OCDF	0.00000069	0.0000042	49 (≤50)
Total HxCDD	0.0000037	0.0000026	35 (≤50)
Total HxCDF	0.0000014	0.0000011	24 (≤50)
Total HpCDD	0.000096U	0.0000012	156 (≤50)
Total HpCDF	0.00000042	0.0000070	50 (≤50)
Total PCDD/PCDF	0.0000062	0.0000062	0 (≤50)
Total TCDD	0.0000037	0.0000040	8 (≤50)
Total TCDF	0.0000025	0.0000022	13 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-115437-1	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-115437-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU108 HU111	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	A	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU108	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HxCDF 1,2,3,6,7,8-HxCDD 2,3,4,6,7,8-HxCDF OCDD OCDF Total HxCDD Total HxCDF Total PCDD/PCDF Total PCDD/PCDF Total PCDD	0.0000015U ug/L 0.00000037U ug/L 0.00000027U ug/L 0.00000029U ug/L 0.00000037U ug/L 0.0000037U ug/L 0.0000033U ug/L 0.0000033U ug/L 0.0000037J ug/L 0.0000014J ug/L 0.0000042J ug/L 0.0000062J ug/L 0.0000037J ug/L	Α	b
HU111	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF OCDD OCDF Total HxCDD Total HxCDD Total HpCDD Total PCDD/PCDF Total PCDD/PCDF Total PCDD Total PCDD	0.0000012U ug/L 0.00000028U ug/L 0.00000031U ug/L 0.00000042U ug/L 0.00000036U ug/L 0.00000036U ug/L 0.00000054U ug/L 0.00000025U ug/L 0.00000011J ug/L 0.0000011J ug/L 0.0000012J ug/L	А	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

SDG	#: 54720A21 VALIDATIO #: 580-115437-1 ratory: Eurofins, Tacoma, WA		PLETENESS Stage 2B	WORKSHEET	1	Date: 2 12 Page:lof Reviewer:Reviewer:
MET	HOD: HRGC/HRMS Polychlorinated Diox	ins/Dibenz	ofurans (EPA	SW-846 Method 82		TOVIOWOI.
	samples listed below were reviewed for ea ation findings worksheets.	ach of the f	ollowing valida	tion areas. Validation	on findings are	noted in attached
	Validation Area			Comm	nents	
<u>ı.</u>	Sample receipt/Technical holding times	AA				
II.	HRGC/HRMS Instrument performance check	1				
111.	Initial calibration/ICV	A-IA	0/0 PSD	£20	10x =	20 30
IV.	Continuing calibration	A		در	V = 201	E .
V.	Laboratory Blanks	SW				
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII	Laboratory control samples	Δ	ics D			
IX.	Field duplicates	SW	D=1	1		
X.	Labeled Compounds	A				
XI.	Target analyte quantitation	SW				
XII.	Target analyte identification	N				
XIII		N				
XIV		\ \A				
Note:	N = Not provided/applicable R = Rir	lo compound nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	HU108 <i>[</i> 2			580-115437-1	Water	06/28/22
2	ни111 Р			580-115437-3	Water	06/28/22
3						
4						
5						
6						
7						
8						
9						
10						
Notes:						
\square	MB410-274215					
	·					*
				<u> </u>		

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:					
_					

LDC #: 54720A21

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1	_of_	_1_
Reviewer:		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Were all samples associated with a method blank?
- $\frac{Y}{Y}$ Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)
- \overline{Y} Was the method blank contaminated?

Blank extraction date: 7/11/22 Blank analysis date: 7/11/22 Associated samples:

Conc. units: ug/L

Compound	Blank ID	Sample Identification								
	MB 410 -274215	5x		1	2					
F	0.000000950	0.000004750		-	0.0000012U					
0	0.000000580	0.000002900		0.00000015U	0.00000028U					
С	0.00000418	0.000002090		-	-					
κ	0.00000484	0.000002420		0.00000037U	0.00000031U			-		
P	0.000000766	0.000003830		0.00000027U	0.00000042U					
D	0.000000694	0.000003470		-	0.00000026U					
L	0.000000675	0.000003375		0.00000029U	0.00000033U			<u> </u>		
В	0.0000116	0.000005800		-	-			approximate the second		
I	0.00000813	0.000004065		-	-	····				
E	0.00000360	0.000001800		0.00000037U	-					
N	0.000000824	0.000004120		-	0.00000036U					
М	0.000000654	0.000003270		0.00000071U	0.00000054U					
Н	0.00000132	0.000000660		-	-	919.4811				
G	0.00000212	0.000010600		0.0000033U	0.0000025U					
Q	0.0000138	0.000006900		0.00000069U	0.00000042U					
Т	0.0000147	0.000007350		0.00000037J	0.00000026J					
х	0.00000264	0.000013200		0.0000014J	0.0000011J					
U	0.00000950	0.000004750		-	0.0000012J					
Υ	0.0000135	0.000006750		0.00000042J	0.00000070J					
S	0.00000116	0.000005800		-	_					

	MB 410 -274215	5x		1	2			
W	0.000000813	0.000004065		-	-			
V	0.00000132	0.000000660		-	-			
Total PCDD/PCDF	0.0000120	0.000600000		0.0000062J	0.0000062J			
Total PCDD	0.00000570	0.000028500	<u>.</u>	0.0000037J	0.0000040J			
Total PCDF	0.0000632	0.000031600		0.0000025J	0.00000222J	1		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 54720A21

LDC#: 54720A21

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1__of_1__ Reviewer:_FT

METHOD: EPA SW 846 Method 8290A

	Concentr	ation (ug/L)	(≤50)		
Compound	1	2	RPD		
F	0.000096U	0.000012	156		
0	0.0000015	0.00000028	60		
К	0.00000037	0.00000031	18		
Р	0.00000027	0.00000042	43		
D	0.0000096U	0.00000026	189		
L	0.00000029	0.00000033	13		
E	0.00000037	0.000095U	185		
N	0.0000096U	0.00000036	186		
М	0.0000071	0.00000054	172		
G	0.000033	0.0000025	28		
0	0.00000069	0.00000042	49		
Т	0.00000037	0.00000026	35		
х	0.000014	0.0000011	24		
U	0.0000096U	0.0000012	156		
Υ	0.00000042	0.00000070	50		
Total PCDD/PCDF	0.0000062	0.0000062	0		
Total TCDD	0.000037	0.0000040	8		
Total TCDF	0.0000025	0.0000022	13		

LDC#: 54720A2

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation

Page:	1	_of_	1	_
Reviewer:	F	Т		

METHOD: GC/GCMS EPA SW 846

8290A

Please, see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Y N N/A Y N N/A

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	Sample ID Compound		Qualifications
		IIΑ	Resulto qualified		Jau/A (K)
ļ			"I" by the laboratory		
-			as EMPC		
-	- N. P			· · · · · · · · · · · · · · · · · · ·	

Comments:	See sample calculation verification worksheet for recalculations
•	

	Concentr		
Analyte	HU108	HU111	RPD (Limits)
1,2,3,6,7,8-HxCDD	0.000096U	0.00000026	189 (≤50)
1,2,3,6,7,8-HxCDF	0.00000029	0.0000033	13 (≤50)
1,2,3,7,8,9-HxCDD	0.00000037	0.000095U	185 (≤50)
1,2,3,7,8,9-HxCDF	0.000096U	0.0000036	186 (≤50)
2,3,4,6,7,8-HxCDF	0.00000071	0.00000054	172 (≤50)
OCDD	0.000033	0.0000025	28 (≤50)
OCDF	0.00000069	0.00000042	49 (≤50)
Total HxCDD	0.0000037	0.00000026	35 (≤50)
Total HxCDF	0.000014	0.0000011	24 (≤50)
Total HpCDD	0.000096U	0.0000012	156 (≤50)
Total HpCDF	0.00000042	0.0000070	50 (≤50)
Total PCDD/PCDF	0.0000062	0.0000062	0 (≤50)
Total TCDD	0.000037	0.000040	8 (≤50)
Total TCDF	0.0000025	0.0000022	13 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

August 23, 2022 LDC Report Date:

Parameters: Methane

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115437-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
HU108	580-115437-1	Water	06/28/22	
HU107	580-115437-2	Water	06/28/22	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated, High Bias): The analyte was analyzed for and positively identified by J+ the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- е MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- Internal standard performance was unsatisfactory. i
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- 1 LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample HU107 was identified as a trip blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-115437-1

No Sample Data Qualified in this SDG

SDG : _abor	#:580-115437-1 ratory:_Eurofins, Tacoma, WA		LETENES tage 2B	S WORKSHEET		Date: 8 8 8 Page: of 1 Viewer: 1
METH	HOD: GC Methane (Method RSK-175)					
	amples listed below were reviewed for ea tion findings worksheets.	ch of the fo	ollowing valida	ation areas. Validation	findings are no	oted in attached
	Validation Area			Comme	nts	
l.	Sample receipt/Technical holding times	A/A				
11.	Initial calibration/ICV	44	0/0 PS	/1c1=20		
111.	Continuing calibration leveling	Α		CC1 = 20/2	W	
IV.	Laboratory Blanks	\triangle		1		
V.	Field blanks	NN	TB=2			
VI.	Surrogate spikes	Δ				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	A	ies 10			
IX.	Field duplicates	N				
X.	Target analyte quantitation	N				
XI.	Target analyte identification	N				
XII	Overall assessment of data					
lote:	N = Not provided/applicable R = Rin	lo compounds sate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source OTHER;	blank
	Client ID			Lab ID	Matrix	Date
7	HU108			580-115437-1	Water	06/28/22
<u></u>	HU107 \(\bar{\B}			580-115437-2	Water	06/28/22
3						
4		····				
5						
6						
7						
8						
9						
10						
11						
12 lotes:						
T	110 4000					
N	AB 410 272721		- -			~