

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AECOM October 5, 2022

1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fractions listed below. These SDGs were received on July 18, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project # 54721:

SDG #	<u>Fraction</u>
22F211	Wet Chemistry, Total Petroleum Hydrocarbons as Extractables, Ferrous Iron
22F227	
22F242	
22F253	

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco

Operations Manager/Senior Chemist

scuenco@lab-data.com

	524 pages-ADV Attachment 1																																
	90/10 2B/4 I	EDD		LI	DC#	54	721	(AE	ECO	М -	Но	nol	ulu,	HI A	/ Re	d H	iII C	Dily	Wa	ste,	СТ	O 1	8F0	176	5)								
LDC	SDG#	DATE REC'D	(3) DATE DUE	TPI (801		SG TPI (801	H-E		e II 500 E B)	(45 SIO	i 00- 2 C)	Diss (45 SIO	s. Si 00- 2 C)																				
Matrix:	Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	22F211	07/18/22	08/08/22	3	0	2	0	-	-	3	0	3	0																	Ш		<u> </u>	
В	22F227	07/18/22	08/08/22	3	0	1	0	1	0	3	0	3	0																	Ш		<u> </u>	
В	22F227	07/18/22	08/08/22	1	0	1	0	1	0	1	0	1	0																	Ш		<u> </u>	
С	22F242	07/18/22	08/08/22	4	0	1	0	-	-	2	0	2	0																	Ш			
D	22F253	07/18/22	08/08/22	-	-	-	-	1	0	-	-	-	-																	Ш			
																														Ш		<u> </u>	
																														Ш		<u> </u>	
																														Ш			
																														Ш		igsquare	
																														Ш		igsquare	
																														Ш		igsquare	
																														Ш		igsquare	
																														igsquare		—	
																														igsquare		—	
																														Ш		igsquare	
																														Ш		igsquare	
																														igsquare		 	
																														Щ		 	
																														Щ		 	
																														Щ		 	
																																 	
																																 	
																																 	
																														Ш		 	
		1	1																											\square		 	
		1	1																											\square		 	
				ļ																										Щ		 	
		1	1																											\square		 	
				ļ																										Щ		 	
																														\square		\vdash	
Total	T/SC			11	0	5	0	3	0	9	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 3, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 22F211

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU128	22F211-01	Water	06/21/22
HU141	22F211-02	Water	06/21/22
HU133	22F211-03	Water	06/21/22
HU141MS	22F211-02MS	Water	06/21/22
HU141MSD	22F211-02MSD	Water	06/21/22
HU141DUP	22F211-02DUP	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Silica, Dissolved Silica by Standard Method 4500-SIO2 C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 22F211

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22F211

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 22F211

No Sample Data Qualified in this SDG

SDG Labo MET	Date: 4 28 22 Date:											
valida	ation findings worksheets.	Ī	<u> </u>									
	Validation Area	Α Λ		Commer	<u> </u>							
I.	Sample receipt/Technical holding times	A/A										
- 11	Initial calibration	1 1 A										
111.												
IV 	Laboratory Blanks	17										
	Field blanks	1 1	100		- ·							
VI.	Matrix Spike/Matrix Spike Duplicates	1	(4,5)									
VII.		171	LÓSILOST	<u> </u>								
VIII.		1 1	Costasi	<i>y</i>								
IX.	Field duplicates	<u>/V</u>			· · · · · · · · · · · · · · · · · · ·							
X.	Target Analyte Quantitation	N A										
XI.	N = Not provided/applicable $R = Rin$	lo compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	olank						
	Client ID			Lab ID	Matrix	Date						
1	HU128			22F211-01	Water	06/21/22						
2	HU141			22F211-02	Water	06/21/22						
3	HU133			22F211-03	Water	06/21/22						
4	HU141MS			22F211-02MS	Water	06/21/22						
5	HU141MSD			22F211-02MSD	Water	06/21/22						
				1	I							

	Client ID	Lab ID	Matrix	Date
1	HU128	22F211-01	Water	06/21/22
2	HU141	22F211-02	Water	06/21/22
3	HU133	22F211-03	Water	06/21/22
4	HU141MS	22F211-02MS	Water	06/21/22
5	HU141MSD	22F211-02MSD	Water	06/21/22
6	HU141DUP	22F211-02DUP	Water	06/21/22
7				
8				
9				
10				
11				
12				
13				
14				
15				

Notes:

LDC #: 54721AG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2,3	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Si DZ) (DIS SIDZ)
	ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	PH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
4,5,6	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC C16+ C1O4 (DIS SIOZ)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	PH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2B

Laboratory:

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 22F211

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU128	22F211-01	Water	06/21/22
HU141	22F211-02	Water	06/21/22
HU133	22F211-03	Water	06/21/22
HU141(SGCU)	22F211-02(SGCU)	Water	06/21/22
HU133(SGCU)	22F211-03(SGCU)	Water	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- t Presumed contamination from trip blank.
- Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -**SDG 22F211**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 22F211**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 22F211

No Sample Data Qualified in this SDG

SDG #	#:54721A8a #:22F211 atory: <u>EMAX Laboratorie</u>	-		S	LETEN Stage 21		S WORKSHEET		Date: \$\frac{\\$/17}{\}Page: \frac{\}{\}of \frac{\}{\}Reviewer: \frac{\}{\}
The sa	HOD: GC TPH as Extract amples listed below were tion findings worksheets.	e rev	•			•	ition areas. Validatio		
	Validation	Are	а				Comm	ents	
1.	Sample receipt/Technical ho	olding	times	A/A					
II.	Initial calibration/ICV			10	0/0	PSO	/ ICY = 20		
III.	Continuing calibration			Δ			CCV = 20		
IV.	Laboratory Blanks			<u>A</u>					
V.	Field blanks			N					
VI.	Surrogate spikes	,		À					
VII.	Matrix spike/Matrix spike du	plicat	es	N					
VIII.	Laboratory control samples			A	KS 10)			
IX.	Field duplicates			N					
X.	Target analyte quantitation			N					
XI.	Target analyte identification			N					
XII	Overall assessment of data								
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet)	R = Rir	lo compounds nsate ield blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	urce blank R:
	Client ID						Lab ID	Matrix	Date
1	HU128						22F211-01	Water	06/21/22
2	HU141						22F211-02	Water	06/21/22
3	HU133						22F211-03	Water	06/21/22
	HU141(SGCU)						22F211-02(SGCU)	Water	. 06/21/22
5	HU133(SGCU)						22F211-03(SGCU)	Water	06/21/22
6									
7									
8									
9									
10									
11									
12									
13			Ţ						
lotes:									
	MBLKIW								
1 I		l				1			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 3, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B & 4

Laboratory:

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 22F227

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU139	22F227-01	Water	06/23/22
HU137**	22F227-02**	Water	06/23/22
HU110	22F227-03	Water	06/22/22
HU126**	22F227-04**	Water	06/22/22
HU119	22F227-05	Water	06/22/22
HU135	22F227-06	Water	06/22/22
HU139MS	22F227-01MS	Water	06/23/22
HU139MSD	22F227-01MSD	Water	06/23/22
HU139DUP	22F227-01DUP	Water	06/23/22

^{**}Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Ferrous Iron by Standard Method 3500-FE B Silica, Dissolved Silica by Standard Method 4500-SIO2 C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitation met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126
Wet Chemistry - Data Qualification Summary - SDG 22F227

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22F227

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126
Wet Chemistry - Field Blank Data Qualification Summary - SDG 22F227

No Sample Data Qualified in this SDG

SDG # abora	: 54721B6 : 22F227 atory: <u>EMAX Labora</u> OD: (Analyte) Ferro	tories, Inc., Torra	St ance, CA	age 2B/4	S WORKSHEET	2nd	Date:_9 28 Page:_1_of_1 Reviewer:AT\ Reviewer:
	umples listed below vion findings workshe		or each of the fo	ollowing valida	ution areas. Validatio		noted in attache
			Α Λ		Comm	iento	
<u>l. </u>	Sample receipt/Technic	cal holding times	AA				
	Initial calibration		A A	<u> </u>			<u> </u>
111.	Calibration verification		1 A				
IV_	Laboratory Blanks						
V	Field blanks	ila Dunlinata	TA A	(7,8)			
VI.	Matrix Spike/Matrix Spi		- <u>^</u>	9		<u></u>	
VII. VIII.	Duplicate sample analy		- 71	LCS I LCST	<u> </u>		
IX.	Laboratory control sam	ipies	1 1	worws			
	Field duplicates	otion	1 A	Not rovioused for	Ctoro OD volidation		
XI.	Target Analyte Quantita		1 1	INOT reviewed for	Stage 2B validation.		
ote:	A = Acceptable N = Not provided/appli SW = See worksheet ttes sample underwent S	NI cable R	D = No compounds = Rinsate B = Field blank	I s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	irce blank :
\Box	Client ID				Lab ID	Matrix	Date
	HU139				22F227-01	Water	06/23/22
ŀ	HU137**				22F227-02**	Water	06/23/22
	HU110			22F227-03	Water	06/22/22	
\neg	HU126**				22F227-04**	Water	06/22/22
					22F227-05	Water	06/22/22
	HU135				22F227-06	Water	06/22/22
			· · · · · · · · · · · · · · · · · · ·				

	Client ID	Lab ID	Matrix	Date
1	HU139	22F227-01	Water	06/23/22
2	HU137**	22F227-02**	Water	06/23/22
3	HU110	22F227-03	Water	06/22/22
4	HU126**	22F227-04**	Water	06/22/22
5	HU119	22F227-05	Water	06/22/22
6	HU135	22F227-06	Water	06/22/22
7	HU139MS	22F227-01MS	Water	06/23/22
8	HU139MSD	22F227-01MSD	Water	06/23/22
9	HU139DUP	22F227-01DUP	Water	06/23/22
10				
11				
12				
13				
14				
15				

Notes:_

Page 1 of 2 Reviewer: ATL

METHOD: Inorganics										
Validation Area	Yes	No	NA	Comments						
I. Technical holding times										
Were all technical holding times met?	V									
II. Calibration										
Were all instruments calibrated at the	./									
required frequency?										
Were the proper number of standards										
used?										
Were all initial and continuing calibration										
verifications within the QC limits?	V									
Were all initial calibration correlation										
coefficients within limits as specifed by the	✓		-							
method?										
Were balance checks performed as										
required?			V							
III. Blanks	L	<u> </u>								
Was a method blank associated with every	1									
sample in this SDG?	V									
Was there contamination in the method		1								
blanks?		V								
Was there contamination in the initial and		1/								
continuing calibration blanks?		•								
IV. Matrix Spike/Matrix Spike Duplicates/L	aborat	ory Du	plicates							
Were MS/MSD recoveries within the QC										
limits? (If the sample concentration			ŀ							
exceeded the spike concentration by a										
factor of 4, no action was taken.)										
Were the MS/MSD or laboratory duplicate	/									
relative percent differences (RPDs) within	V									
the QC limits?										
V. Laboratory Control Samples										
Was a LCS analyzed for each batch in the	V									
SDG?	V									
Were the LCS recoveries and RPDs (if	1									
applicable) within QC limits?	V									
X. Target Analyte Quantitation			<u> </u>	<u> </u>						
Were all reporting limits adjusted to reflect	V									
sample dilutions?	V									
Were all soil samples dry weight corrected?			V							
XI. Overall Assessment of Data										
Was the overall assessment of the data	./									
found to be acceptable?		<u> </u>	<u> </u>							

Page 2 of 2 Reviewer: ATL

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates				
Were field duplicates identifed in this SDG?		√		
Were target analytes detected in the field duplicates?			V	
XIII. Field Blanks				
Were field blanks identified in this SDG?				
Were target analytes detected in the field blanks?			V	

LDC #: 54721BC

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Fe2t)
3-76	ph TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (SiQ2) (SiQ2 DiS)
<i>S.</i> 7,7	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	ph TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
QC	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
7,8,9	ph TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (Fe2)
1 ' ' !	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4

Comments:	 	 	

LDC #: 54721BG

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page: | of | Reviewer: ATV

Method: Inorganics, Method See COV	N
------------------------------------	---

The correlation coefficient (r) for the calibration of 902 was recalculated. Calibration date: 063022

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100_

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution

True

True = concentration of each analyte in the ICV or CCV source

					Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Response	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0	0			
		s2	2	0.055	0.99948	0.99974	
		s3	5	0.131			\ \ \
	SiO2/ SiO2 Dis	s4	10	0.276			У
	C.A. Die	s5	15	0.402			
	1 21VZ V12	s6	20	0.546			
		s7	25	0.696			
CCV_L Calibration verification	3102	FOUND 15.337	TRUE 15.000		102	102	Y
CCV4 Calibration verification	3102 Dis	14.250	15.000		95	95	Y
CCVL Calibration verification	Fe2+	15.018	15.000		100	100	Y

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 54721BC

METHOD: Inorganics, Method ____

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page:_	of	1
Reviewer:	ATT	

Percent recoveries (%	6R) for a labora	atory control samp	ple and a matrix spike sample were recalculated using the following formula:
%R = Found x 100	Where,	Found =	concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation

Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$

True

Where,

S =

see cover

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

			mg/L Found/S	mg/L True/D	Recalculated	Reported	Acceptable
Sample ID	Type of Analysis	Element	(units)	(units)	%R / RPD	%R / RPD	(Y/N)
LCS	Laboratory control sample	SiO2/Dis SiO2	16.496	15.00	110	110	Y
7	Matrix spike sample	Fe ^{2†}	(SSR-SR) 14.014	12,000	93	93	Y
718	Duplicate sample	Fe2+	14.196	14.014	1	1	Y

Comments:	

LDC #: 54721BC

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:	<u> of </u>
Reviewer:_	ATV

METHOD: Inorganics, Method See Con	<u>/e/</u>	
Please see qualifications below for all que N N/A Have results been report N N/A Are results within the cali Y N N/A Are all detection limits be	estions answered "N". Not applicated and calculated correctly? brated range of the instruments? slow the CRQL?	ble questions are identified as "N/A".
Compound (analyte) results forrecalculated and verified using the following	SiD2 ng equation:	reported with a positive detect were
Concentration =	Recalculation: #4	
0.00	~22	

CV	0.262+0.0033	=	48.062
ラ 人	0.0276		,

#	Sample ID	Analyte	Reported Concentration (MG/L)	Calculated Concentration (MOLL)	Acceptable (Y/N)
	2	Fe ^{2†}	ND	ND	У
	4	SiD2	48	48.062	4
	4	3:02 Dis 8:02	41.5	48.062	V
		7 (3			7
		·			
				1	
				<u> </u>	

Note:		
,		

Laboratory Data Consultants, Inc. Data Validation Report

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Project/Site Name:

LDC Report Date: August 23, 2022

Total Petroleum Hydrocarbons as Extractables Parameters:

Validation Level: Stage 2B & 4

EMAX Laboratories, Inc., Torrance, CA Laboratory:

Sample Delivery Group (SDG): 22F227

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU110	22F227-03	Water	06/22/22
HU126**	22F227-04**	Water	06/22/22
HU119	22F227-05	Water	06/22/22
HU135	22F227-06	Water	06/22/22
HU126(SGCU)**	22F227-04(SGCU)**	Water	06/22/22
HU135(SGCU)	22F227-06(SGCU)	Water	06/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- Presumed contamination from preparation (method blank). b
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- Result exceeded the calibration range. m
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank. t
- Unusual problems found with the data not defined elsewhere. Description of the V problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -**SDG 22F227**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 22F227**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 22F227

No Sample Data Qualified in this SDG

				S WORKSHEET		Date: 8/11
	#:		age 2B/4			Page:tof
Labo	oratory: <u>EMAX Laboratories, Inc., Torrance</u>	<u>;, CA</u>				riewer:
MET	HOD: GC TPH as Extractables (EPA SW-	-846 Metho	od 8015C)		2nd Rev	iewei
	samples listed below were reviewed for ea ation findings worksheets.	ich of the fo	ollowing valida	ation areas. Validation	ı findings are not	ed in attached
	Validation Area			Comme	nts	
1.	Sample receipt/Technical holding times	410	<u> </u>			
II.	Initial calibration/ICV	AA	"/o p.:	50/14=w		
III.	Continuing calibration willing	∇	!	/ cw= 20) N	
IV.	Laboratory Blanks	\square			,	
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII	. Laboratory control samples	A	ks 17			
IX.	Field duplicates	N				
X.	Target analyte quantitation	1	Not reviewed for	r Stage 2B validation.		
XI.	Target analyte identification		Not reviewed for	r Stage 2B validation.		
XII	Overall assessment of data					
Note:	N = Not provided/applicable R = Rin	lo compounds nsate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source t OTHER:	olank
	Client ID			Lab ID	Matrix	Date
1	HU110			22F227-03	Water	06/22/22
<u>ま</u>	HU126**			22F227-04**	Water	06/22/22
3	HU119			22F227-05	06/22/22	
4	HU135			22F227-06	Water	06/22/22
5	HU126(SGCU)**			22F227-04(SGCU)**	Water	06/22/22
6	HU135(SGCU)			22F227-06(SGCU)	Water	06/22/22
7						
8						
9	<u></u>					
10						
11						
12						
13					<u> </u>	
lotes:	1				- 1	
\perp	Ngckin					
	MALKIW SQC					
_						
- 1						

LDC #: 5472188a

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer: FT

Method: VGC __HPLC

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			.	
Were all technical holding times met?				
Was cooler temperature criteria met?				
Ila. Initial calibration		<u> </u>		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990?				
Were the RT windows properly established?	/	· _		
Ilb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				·
Were all percent differences (%D) ≤ 20%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 20%?	/			
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				·
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
V. Field Blanks	,			
Were field blanks identified in this SDG?				
Were target analytes detected in the field blanks?				
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?		-		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?	A		/	-
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?		,		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			

LDC#: 54721882

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?				
X. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?		-		
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?				
Were manual integrations reviewed and found acceptable?				
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

LDC#: 54721BXa

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	<u></u>	_/
Reviewer:_	FT	
2nd Reviewer		

METHOD: GC	<u> </u>	HPLC	

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound	(SO(etd)	(SD (std)	CF (initial)	CF (intial)	%RSD	%RSD
1	ICAL	8/12/2/	Diese Cp-Cz4	27380	27380	26318.7	26318.7	9.7	9.7
		\							
2									
<u> </u>									
3									
4									

Comments:	Refer to Initial Calibration f	<u>ndings worksheet for list of c</u>	<u>qualifications and associ</u>	<u>ated samples when repo</u>	<u>orted results do not agre</u>	e within 10.0% of the
recalculated	results.					

LDC #:	5472	1 B	8a
--------	------	-----	----

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	1_	_of_ <u>1</u>	
eviewer:	F	Т	

		./	
METHOD:	GC	HPLC HPLC	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	cer	4/28/22	Diesel Go-Czy	3rs ()	581.25	581.25	16	16
		1311						
2	دد٧	6/28/22	l l	V	553.77	553.17	1)	
3 3 S X								
3	ecv	7/9/22	V .	J	574.33	571.33	15	15
4								

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC	#:	5472	٠\	13×	a
	π		•		

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	1	of	1
leviewer:		FT	

METHOD: __ GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #5

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
monobenzen		100	84.494	KS	४८	O
Her acosane		25	27.428	110	IN	U
			<u> </u>			

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
:						

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	7	n-Triacontane	P	1-methylnaphthalene	V	Tri-n-propyltin	ВВ	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	X	Triphenyl Phosphate		

LDC #:	5472	138a
,	• (Lab

VALIDATION FINDINGS WORKSHEET

oratory Control Sample/Laborator	y Control Sample Duplicates	Results Verification

Page	:_1_of	1_
Reviewer:	FT	

METHOD:

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA)

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples:___

	Sp	ike	Spike S Concer	Sample	rc	s	LC	SD	LCS/L	CSD
Compound	(Na	ded \V)	(ug	レ)	Percent F	Recovery	Percent I	Recovery	RP	D
100 mg 10	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
TPH Diesel Range	5000	5000	554D	5890	111	11.)	115/	18	6	6
7										
					·					
									-	
					:					
,										,
·				Š						

Comments:	

LDC #:	54	121	BXa	_
		1	1/ -	

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	_1_of_1_
viewer.	FT

e.	./	
METHOD:	GC	HPLC

The c	oncentration of the sample wa	as calculated for the target analyte	identified below using the fo	llowing calculation:	
Conce	entration= (A)(Fv)(Df)	Example:			
Fv= F	(RF)(Vs or Ws)(%S/100 rea or height of the target analyte to final Volume of extract filution Factor	Sample ID be measured		TPH- Diesel Ra	J
In Vs= In Ws= In	verage response factor of the target the initial calibration iitial volume of the sample iitial weight of the sample ercent Solid	analyte Concentra	ation = 565	5642D (10) 518.69795 (960) =2 238.75	(1000) =
#	Sample ID	Target analyte	Reported Concentrations (પક્	Recalculated Results Concentrations (Qualifications
	#2	7PH. Diesel Range	2200	2228.15	
	,	J		•	
	\				

Comments:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

October 3, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 22F242

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU139	22F242-01	Water	06/23/22
HU137	22F242-04	Water	06/23/22
HU139MS	22F242-01MS	Water	06/23/22
HU139MSD	22F242-01MSD	Water	06/23/22
HU139DUP	22F242-01DUP	Water	06/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Silica, Dissolved Silica by Standard Method 4500-SIO2 C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 22F242

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22F242

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Wet Chemistry - Field Blank Data Qualification Summary - SDG 22F242

No Sample Data Qualified in this SDG

SDG 7	#: 54721C6 VALIDATIO #: 22F242 atory: EMAX Laboratories, Inc., Torrance	S	LETENESS stage 2B	S WORKSHEE		Date: 9/28/22 Page: _l of _l Reviewer: _41/_ Reviewer:
METH	HOD: (Analyte) Silica, Dissolved Silica (S	SM4500-SIC	D2 C)			
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	ation areas. Validat	ion findings are	noted in attached
	Validation Area			Comi	ments	
1.	Sample receipt/Technical holding times	AA				
ll.	Initial calibration	A				
HI.	Calibration verification	A				
IV	Laboratory Blanks	A				
٧	Field blanks	N				
VI.	Matrix Spike/Matrix Spike Duplicates	A	(3,4)			
VII.	Duplicate sample analysis	A	5			
VIII.	Laboratory control samples	A	LCS/LCST)		
IX.	Field duplicates	N	()			
X.	Target Analyte Quantitation	N				
ΧI	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Rir	No compounds nsate ïeld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	irce blank :
	Client ID			Lab ID	Matrix	Date
1	HU139			22F242-01	Water	06/23/22
2	HU137			22F242-04	Water	06/23/22
3	HU139MS			22F242-01MS	Water	06/23/22
	HU139MSD			22F242-01MSD	Water	06/23/22
5	HU139DUP			22F242-01DUP	Water	06/23/22
6						
7						
8						
9						
10						
11						
12						
13						
14						

Notes:

LDC #: 5472106

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATV

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2	PH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC C16+ CIO4 (S102) (S102 DIS)
,	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK ON NH3 TKN TOC O10+ ClO4
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIK CN NH ₃ TKN TOC Cr6+ CIO ₄
3,4,5	ph TDS CI F NO $_3$ NO $_2$ SO $_4$ O-PO $_4$ AIK CN NH $_3$ TKN TOC Cr6+ CIO $_4$ (S) 02)
·	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ AIk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4

Comments:			

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:

August 23, 2022

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2B

Laboratory:

EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 22F242

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU139	22F242-01	Water	06/23/22
HU142	22F242-02	Water	06/23/22
HU143	22F242-03	Water	06/23/22
HU137	22F242-04	Water	06/23/22
HU139(SGCU)	22F242-01(SGCU)	Water	06/23/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated, High Bias): The analyte was analyzed for and positively identified by J+ the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- (Estimated, Low Bias): The analyte was analyzed for and positively identified by Jthe laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- (Estimated, Bias Indeterminate): The analyte was analyzed for and positively J identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Χ (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- ICP Serial Dilution %D was not within control limits. а
- b Presumed contamination from preparation (method blank).
- Calibration %RSD, r, r², %D or %R was noncompliant. С
- The analysis with this flag should not be used because another more technically d sound analysis is available.
- MS/MSD or Duplicate RPD was high. е
- f Presumed contamination from FB or ER.
- ICP ICS results were unsatisfactory. g
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample 0 custody problems.
- RPD between two columns was high (GC only). р
- MS/MSD recovery was not within control limits. q
- Surrogate recovery was not within control limits. S
- Presumed contamination from trip blank.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- LCS/LCSD RPD was high. W
- Chemical recovery was not within control limits (Radiochemistry only). У

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -**SDG 22F242**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data **Qualification Summary - SDG 22F242**

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 22F242

No Sample Data Qualified in this SDG

SDG#	t: 54721C8a VALIDATION t: 22F242 atory: EMAX Laboratories, Inc., Torrance.	St	LETENESS tage 2B	S WORKSHEET	Rev	Date: <u></u>
Γhe sa	IOD: GC TPH as Extractables (EPA SW-amples listed below were reviewed for eaction findings worksheets.		•	ation areas. Validatior	2nd Rev n findings are not	
	Validation Area			Comme	ents	
l.	Sample receipt/Technical holding times	A / A				
11.	Initial calibration/ICV	Å/A	0/0 850	1.ex =20	1	
111.	Continuing calibration ending	Δ		(520) n)	
IV.	Laboratory Blanks	Α		i		
V.	Field blanks	N				
VI.	Surrogate spikes	Δ				
VII.	Matrix spike/Matrix spike duplicates	N				
VIII.	Laboratory control samples	4	lcs 10			
IX.	Field duplicates	N				
Χ.	Target analyte quantitation	N				
XI.	Target analyte identification	N			,	
XII	Overall assessment of data					
Note:	N = Not provided/applicable R = Rins	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	olank
	Client ID			Lab ID	Matrix	Date
1 F	HU139			22F242-01	Water	06/23/22
2 F	HU142			22F242-02	Water	06/23/22
3 F	HU143			22F242-03	Water	06/23/22
4 F	HU137			22F242-04	Water	06/23/22
5 F	HU139(SGCU)			22F242-01(SGCU)	Water	06/23/22
6						
7					<u> </u>	
8						
9						
10						
11						
12						
13						
lotes:						
——————————————————————————————————————	ABURIN					
- V	1BKIW SGC					
+						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: October 5, 2022

Parameters: Ferrous Iron

Validation Level: Stage 2B

Laboratory: EMAX Laboratories, Inc., Torrance, CA

Sample Delivery Group (SDG): 22F253

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU108	22F253-01	Water	06/28/22
HU108MS	22F253-01MS	Water	06/28/22
HU108MSD	22F253-01MSD	Water	06/28/22
HU108DUP	22F253-01DUP	Water	06/28/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Ferrous Iron by Standard Method 3500-FE B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- g MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P	
HU108MS/MSD (HU108)	Ferrous Iron	58 (75-125)	57 (75-125)	UJ (all non-detects)	А	

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to MS/MSD %R, data were qualified as estimated in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Ferrous Iron - Data Qualification Summary - SDG 22F253

Sample	Analyte	Flag		Reason	
HU108	Ferrous Iron	UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R) (q)	

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Ferrous Iron - Laboratory Blank Data Qualification Summary - SDG 22F253

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176
Ferrous Iron - Field Blank Data Qualification Summary - SDG 22F253

No Sample Data Qualified in this SDG

SDG Labo MET	#: 22F253 ratory: EMAX Laboratories, Inc., To HOD: (Analyte) Ferrous Iron (SM35) samples listed below were reviewed	rrance,	S <u>CA</u> <u>B)</u>	tage 2B	tion areas. Validat	2nd	Date: 9 28 22 Page: 1 of 1 Reviewer: 4TV Reviewer:
valida	ation findings worksheets.				0		
	Validation Area		A /		Comi	ments	
<u>l.</u>	Sample receipt/Technical holding times		A,A				
	Initial calibration		<u> </u>			<u> </u>	
III.	Calibration verification		1				
IV	Laboratory Blanks		#				
<u> </u>	Field blanks		N Ou/	(0.2)			
VI.	Matrix Spike/Matrix Spike Duplicates		SW	(213)	· · · · · · · · · · · · · · · · · · ·		
VII.	Duplicate sample analysis		#	4			
VIII.	Laboratory control samples		#	LCS LCST)		
IX.	Field duplicates		_N				
X.	Target Analyte Quantitation		N A				
XI.	Overall assessment of data		<u> </u>				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No R = Rins FB = Fie		s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank :
	Client ID				Lab ID	Matrix	Date
1	HU108				22F253-01	Water	06/28/22
2	HU108MS				22F253-01MS	Water	06/28/22
3	HU108MSD				22F253-01MSD	Water	06/28/22
4	HU108DUP				22F253-01DUP	Water	06/28/22
5							
6							

	Client ID	Lab ID	Matrix	Date
1	HU108	22F253-01	Water	06/28/22
2	HU108MS	22F253-01MS	Water	06/28/22
3	HU108MSD	22F253-01MSD	Water	06/28/22
4	HU108DUP	22F253-01DUP	Water	06/28/22
5				
6				
7				
8				
9				
10_				
11				
12				
13				
14				
15				

Notes:_____

ı	DC.	#•	5472	ID6	
_	.DC	# .	J412	יטטו	

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	1	_of_1	
eviewer	ΔΤ	1	

METHOD: Inorganics,	EPA Method	See cover		

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A

Was a matrix spike analyzed for each matrix in this SDG?

Y(N)N/A

Were matrix spike percent recoveries (%R) within the cont

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

of 4 or more, no action was taken.

N N/A Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples?

LEVEL IV ONLY:

Y N (N/A) Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/N	ISD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
L	2/3		W	Fe2+	58 (75-125)	57 (75-125)		1	J-/UJ/A (non-detect)
\parallel	<u> </u>		··						
\parallel									
L									
H							<u>-</u>		
L			··-						

Comments:		 				