

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

### SUBJECT: Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Data Validation

### Dear Ms. Ramos,

Enclosed is the final validation report for the fractions listed below. These SDGs were received on July 18, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

### LDC Project #54723:

| SDG #        | Fraction                                                                   |
|--------------|----------------------------------------------------------------------------|
| 580-115203-1 | Volatiles, Semivolatiles, Polynuclear Aromatic Hydrocarbons, Metals, Wet   |
| 580-115250-1 | Chemistry, Gasoline Range Organics, Polychlorinated Dioxins/Dibenzofurans, |
| 580-115346-1 | Methane                                                                    |

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

File Monto

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com

|        | 179 pages-AD  | /             |                    |            |            |            |            |                               |                 |                   |                  |                 | At               | tachr       | nent         | 1           |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|--------|---------------|---------------|--------------------|------------|------------|------------|------------|-------------------------------|-----------------|-------------------|------------------|-----------------|------------------|-------------|--------------|-------------|-------------|-----------|------------|--------------------|--------------------|-----------|-------------|------------------|---------------------|------------|------------|------------|------------|---|----------|---|-----------|
|        | 90/10 2B/4 E  | EDD           |                    | LI         | DC#        | ŧ 54       | 723        | (AE                           | ECO             | •M -              | Но               | nol             | ulu,             | HI          | / Re         | d H         | ill C       | Dily      | Wa         | ste,               | СТ                 | 01        | 8F0         | 176              | 5)                  |            |            |            |            |   |          |   |           |
| LDC    | SDG#          | DATE<br>REC'D | (3)<br>DATE<br>DUE | VC<br>(826 | DA<br>50D) | SV<br>(827 | OA<br>70E) | PA<br>(82 <sup>-</sup><br>-SI | Hs<br>70E<br>M) | ؛)<br>Met<br>(601 | 5)<br>als<br>0D) | GF<br>(82<br>LU | RO<br>60/<br>FT) | Dio<br>(829 | cins<br>I0A) | Meth<br>(17 | nane<br>75) | A<br>(232 | k.<br>20B) | Br,0<br>S(<br>(30) | CI,F<br>O₄<br>0.0) | NO<br>(30 | ₃-N<br>0.0) | NO<br>NO<br>(35: | D₃/<br>№2-N<br>3.2) | DC<br>(906 | DC<br>50A) | тс<br>(906 | DC<br>50A) |   |          |   |           |
| Matrix | :: Water/Soil |               |                    | W          | S          | W          | S          | W                             | S               | W                 | S                | W               | S                | W           | S            | W           | S           | W         | S          | W                  | S                  | W         | S           | W                | S                   | W          | S          | W          | S          | W | S        | W | S         |
| А      | 580-115203-1  | 07/18/22      | 08/08/22           | 6          | 0          | 3          | 0          | 3                             | 0               | 3                 | 0                | 6               | 0                | 3           | 0            | 6           | 0           | 3         | 0          | -                  | -                  | -         | -           | 3                | 0                   | 3          | 0          | 3          | 0          |   |          |   |           |
| А      | 580-115203-1  | 07/18/22      | 08/08/22           | 2          | 0          | 1          | 0          | 1                             | 0               | 1                 | 0                | 2               | 0                | 1           | 0            | 2           | 0           | 1         | 0          | -                  | -                  | -         | -           | 1                | 0                   | 1          | 0          | 1          | 0          |   | <u> </u> |   |           |
| В      | 580-115250-1  | 07/18/22      | 08/08/22           | 7          | 0          | 4          | 0          | 4                             | 0               | 2                 | 0                | 7               | 0                | 4           | 0            | 4           | 0           | 2         | 0          | -                  | -                  | -         | -           | 2                | 0                   | 2          | 0          | 2          | 0          |   | <u> </u> |   |           |
| С      | 580-115346-1  | 07/18/22      | 08/08/22           | -          | -          | -          | -          | -                             | -               | -                 | -                | -               | -                | -           | -            | -           | -           | -         | -          | 1                  | 0                  | 1         | 0           | -                | -                   | -          | -          | -          | -          |   | <u> </u> |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   | <u> </u> |   |           |
| $\mid$ |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   | $\square$ |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    | ĺ                  |           |             |                  |                     |            | ĺ          |            |            |   |          |   |           |
|        |               |               |                    |            |            |            |            |                               |                 |                   |                  |                 |                  |             |              |             |             |           |            |                    |                    |           |             |                  |                     |            |            |            |            |   |          |   |           |
| Total  | T/SC          |               |                    | 15         | 0          | 8          | 0          | 8                             | 0               | 6                 | 0                | 15              | 0                | 8           | 0            | 12          | 0           | 6         | 0          | 1                  | 0                  | 1         | 0           | 6                | 0                   | 6          | 0          | 6          | 0          | 0 | 0        | 0 | 98        |

### LDC Report# 54723A1a

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: August 24, 2022

Parameters: Volatiles

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

|                       | Laboratory Sample |        | Collection |
|-----------------------|-------------------|--------|------------|
| Sample Identification | Identification    | Matrix | Date       |
| HU135                 | 580-115203-1      | Water  | 06/22/22   |
| HU134                 | 580-115203-2      | Water  | 06/22/22   |
| HU126**               | 580-115203-3**    | Water  | 06/22/22   |
| HU125                 | 580-115203-4      | Water  | 06/22/22   |
| HU110**               | 580-115203-5**    | Water  | 06/22/22   |
| HU109                 | 580-115203-6      | Water  | 06/22/22   |
| HU119                 | 580-115203-7      | Water  | 06/22/22   |
| HU118                 | 580-115203-8      | Water  | 06/22/22   |

\*\*Indicates sample underwent Stage 4 validation

### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

### Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

### II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

### III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

| Date     | Analyte      | %D   | Associated<br>Samples              | Flag                 | A or P |
|----------|--------------|------|------------------------------------|----------------------|--------|
| 06/22/22 | Bromomethane | 22.4 | All samples in SDG<br>580-115203-1 | UJ (all non-detects) | A      |

### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

| Date     | Analyte                 | %D           | Associated<br>Samples              | Flag                                         | A or P |
|----------|-------------------------|--------------|------------------------------------|----------------------------------------------|--------|
| 06/26/22 | Bromomethane<br>Acetone | 46.7<br>21.9 | All samples in SDG<br>580-115203-1 | UJ (all non-detects)<br>UJ (all non-detects) | A      |

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

| Date     | Analyte      | %D    | Associated<br>Samples              | Flag                 | A or P |
|----------|--------------|-------|------------------------------------|----------------------|--------|
| 06/27/22 | Bromomethane | 105.1 | All samples in SDG<br>580-115203-1 | UJ (all non-detects) | А      |

All of the continuing calibration relative response factors (RRF) were within validation criteria.

### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID      | Analysis<br>Date | Analyte<br>TIC (RT in minutes)                                                                                                                                                                                                                                                                                        | Concentration                                                                                                                                                           | Associated<br>Samples              |
|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| MB 580-395002 | 06/26/22         | 1,2,4-Trichlorobenzene<br>Dibromochloromethane<br>Ethylbenzene<br>Hexachlorobutadiene<br>Naphthalene<br>Styrene<br>Xylenes, total<br>o-Xylene (12.21)<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54)<br>1,3,5-Trichlorobenzene (14.65)<br>1,2,3-Trichlorobenzene (15.53) | 0.208 ug/L<br>0.0552 ug/L<br>0.0818 ug/L<br>0.432 ug/L<br>0.211 ug/L<br>0.205 ug/L<br>0.205 ug/L<br>0.264 ug/L<br>0.154 ug/L<br>0.154 ug/L<br>0.0715 ug/L<br>0.230 ug/L | All samples in SDG<br>580-115203-1 |

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample | Analyte<br>TIC (RT in minutes)                                                                                                                                           | Reported<br>Concentration                                                                             | Modified Final<br>Concentration                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| HU135  | Ethylbenzene<br>Naphthalene<br>Xylenes, total<br>o-Xylene (12.21)<br>1,3,5-Trimethylbenzene (12.99)<br>p-lsopropyltoluene (13.59)                                        | 0.077 ug/L<br>0.36 ug/L<br>0.20 ug/L<br>0.20 ug/L<br>0.15 ug/L<br>0.15 ug/L<br>0.15 ug/L              | 0.077J+ ug/L<br>0.50U ug/L<br>0.35U ug/L<br>0.20U ug/L<br>0.15U ug/L<br>0.15U ug/L               |
| HU134  | Ethylbenzene<br>Styrene<br>Naphthalene<br>Xylenes, total<br>o-Xylene (12.21)<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) | 0.079 ug/L<br>0.36 ug/L<br>0.21 ug/L<br>0.20 ug/L<br>0.20 ug/L<br>0.26 ug/L<br>0.15 ug/L<br>0.16 ug/L | 0.079J+ ug/L<br>0.50U ug/L<br>0.35U ug/L<br>0.20U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.15U ug/L |

| Sample  | Analyte                        | Reported      | Modified Final |
|---------|--------------------------------|---------------|----------------|
|         | TIC (RT in minutes)            | Concentration | Concentration  |
| HU126** | Ethylbenzene                   | 0.078 ug/L    | 0.078J+ ug/L   |
|         | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|         | Xylenes, total                 | 0.20 ug/L     | 0.35U ug/L     |
|         | o-Xylene (12.21)               | 0.20 ug/L     | 0.20U ug/L     |
|         | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|         | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |
| HU125   | Ethylbenzene                   | 0.078 ug/L    | 0.078J+ ug/L   |
|         | Naphthalene                    | 0.36 ug/L     | 0.50U ug/L     |
|         | Styrene                        | 0.21 ug/L     | 0.35U ug/L     |
|         | Xylenes, total                 | 0.20 ug/L     | 0.35U ug/L     |
|         | o-Xylene (12.20)               | 0.20 ug/L     | 0.20U ug/L     |
|         | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|         | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|         | p-Isopropyltoluene (13.54)     | 0.16 ug/L     | 0.16U ug/L     |
| HU110** | Ethylbenzene                   | 0.078 ug/L    | 0.078J+ ug/L   |
|         | Naphthalene                    | 0.36 ug/L     | 0.50U ug/L     |
|         | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|         | Xylenes, total                 | 0.20 ug/L     | 0.35U ug/L     |
|         | o-Xylene (12.21)               | 0.20 ug/L     | 0.20U ug/L     |
|         | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
| HU109   | Ethylbenzene                   | 0.078 ug/L    | 0.078J+ ug/L   |
|         | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|         | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|         | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|         | p-Isopropyltoluene (13.54)     | 0.16 ug/L     | 0.16U ug/L     |
| HU119   | Ethylbenzene                   | 0.077 ug/L    | 0.077J+ ug/L   |
|         | Xylenes, total                 | 0.20 ug/L     | 0.35U ug/L     |
|         | o-Xylene (12.21)               | 0.20 ug/L     | 0.20U ug/L     |
|         | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|         | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|         | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |

## VI. Field Blanks

Samples HU134, HU125, HU109, and HU118 were identified as trip blanks. No contaminants were found with the following exceptions:

| Blank ID | Collection<br>Date | Analyte                                                  | Concentration                                     | Associated<br>Samples |
|----------|--------------------|----------------------------------------------------------|---------------------------------------------------|-----------------------|
| HU134    | 06/22/22           | Ethylbenzene<br>Naphthalene<br>Styrene<br>Xylenes, total | 0.079 ug/L<br>0.36 ug/L<br>0.21 ug/L<br>0.20 ug/L | HU135                 |
| HU125    | 06/22/22           | Ethylbenzene<br>Naphthalene<br>Styrene<br>Xylenes, total | 0.078 ug/L<br>0.36 ug/L<br>0.21 ug/L<br>0.20 ug/L | HU126**               |

| Blank ID | Collection<br>Date | Analyte                                                                   | Concentration                                                  | Associated<br>Samples |
|----------|--------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|
| HU109    | 06/22/22           | Ethylbenzene<br>Styrene                                                   | 0.078 ug/L<br>0.21 ug/L                                        | HU110**               |
| HU118    | 06/22/22           | Chloromethane<br>Ethylbenzene<br>Naphthalene<br>Styrene<br>Xylenes, total | 0.17 ug/L<br>0.078 ug/L<br>0.36 ug/L<br>0.21 ug/L<br>0.20 ug/L | HU119                 |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

| Sample  | Analyte        | Reported<br>Concentration | Modified Final<br>Concentration |
|---------|----------------|---------------------------|---------------------------------|
| HU135   | Ethylbenzene   | 0.077 ug/L                | 0.077J+ ug/L                    |
|         | Naphthalene    | 0.36 ug/L                 | 0.50U ug/L                      |
|         | Xylenes, total | 0.20 ug/L                 | 0.35U ug/L                      |
| HU126** | Ethylbenzene   | 0.078 ug/L                | 0.078J+ ug/L                    |
|         | Styrene        | 0.21 ug/L                 | 0.50U ug/L                      |
|         | Xylenes, total | 0.20 ug/L                 | 0.35U ug/L                      |
| HU110** | Ethylbenzene   | 0.078 ug/L                | 0.078J+ ug/L                    |
|         | Styrene        | 0.21 ug/L                 | 0.50U ug/L                      |
| HU119   | Ethylbenzene   | 0.077 ug/L                | 0.077J+ ug/L                    |
|         | Xylenes, total | 0.20 ug/L                 | 0.35U ug/L                      |

### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

## X. Field Duplicates

No field duplicates were identified in this SDG.

## XI. Internal Standards

All internal standard areas and retention times were within QC limits.

## XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation.

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

| Sample                          | Analyte                                             | Flag            | A or P |
|---------------------------------|-----------------------------------------------------|-----------------|--------|
| All samples in SDG 580-115203-1 | All laboratory calibrated analytes reported as TICs | J (all detects) | A      |

Raw data were not reviewed for Stage 2B validation.

## XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

### XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

## XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, continuing calibration %D, and TIC quantitation, data were qualified as estimated in eight samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in seven samples.

Due to trip blank contamination, data were qualified as not detected or estimated in four samples.

.

.

## Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-115203-1

| Sample                                                                   | Analyte                                             | Flag                                         | A or P | Reason (Code)                                                 |
|--------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------|---------------------------------------------------------------|
| HU135<br>HU134<br>HU126**<br>HU125<br>HU110**<br>HU109<br>HU119<br>HU118 | Bromomethane                                        | UJ (all non-detects)                         | A      | Initial calibration<br>verification (%D) (c)                  |
| HU135<br>HU134<br>HU126**<br>HU125<br>HU110**<br>HU109<br>HU119<br>HU118 | Bromomethane<br>Acetone                             | UJ (all non-detects)<br>UJ (all non-detects) | A      | Continuing calibration<br>(%D) (c)                            |
| HU135<br>HU134<br>HU126**<br>HU125<br>HU110**<br>HU109<br>HU119<br>HU118 | Bromomethane                                        | UJ (all non-detects)                         | A      | Continuing calibration<br>(ending CCV %D) (c)                 |
| HU135<br>HU134<br>HU126**<br>HU125<br>HU110**<br>HU109<br>HU119<br>HU118 | All laboratory calibrated analytes reported as TICs | J (all detects)                              | A      | Tentatively Identified<br>Compounds (TIC)<br>quantitation (v) |

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

| Sample | Analyte<br>TIC (RT in minutes)                                                                                                    | Modified Final<br>Concentration                                                    | A or P | Code |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|------|
| HU135  | Ethylbenzene<br>Naphthalene<br>Xylenes, total<br>o-Xylene (12.21)<br>1,3,5-Trimethylbenzene (12.99)<br>p-lsopropyltoluene (13.59) | 0.077J+ ug/L<br>0.50U ug/L<br>0.35U ug/L<br>0.20U ug/L<br>0.15U ug/L<br>0.15U ug/L | A      | b    |

| Sample  | Analyte<br>TIC (RT in minutes)                                                                                                                                           | Modified Final<br>Concentration                                                                                                                                                                                | A or P | Code |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| HU134   | Ethylbenzene<br>Styrene<br>Naphthalene<br>Xylenes, total<br>o-Xylene (12.21)<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) | enzene 0.079J+ ug/L   ne 0.50U ug/L   halene 0.35U ug/L   es, total 0.35U ug/L   ne (12.21) 0.20U ug/L   pylbenzene (12.51) 0.26U ug/L   Trimethylbenzene (12.99) 0.15U ug/L   ropyltoluene (13.54) 0.16U ug/L |        | b    |
| HU126** | Ethylbenzene<br>Styrene<br>Xylenes, total<br>o-Xylene (12.21)<br>1,3,5-Trimethylbenzene (12.99)<br>p-lsopropyltoluene (13.54)                                            | Inzene 0.078J+ ug/L   e 0.50U ug/L   s, total 0.35U ug/L   le (12.21) 0.20U ug/L   rimethylbenzene (12.99) 0.15U ug/L   opyltoluene (13.54) 0.15U ug/L                                                         |        | Ь    |
| HU125   | Ethylbenzene<br>Naphthalene<br>Styrene<br>Xylenes, total<br>o-Xylene (12.20)<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) | 0.078J+ ug/L<br>0.50U ug/L<br>0.35U ug/L<br>0.35U ug/L<br>0.20U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.16U ug/L                                                                                                 | A      | b    |
| HU110** | Ethylbenzene<br>Naphthalene<br>Styrene<br>Xylenes, total<br>o-Xylene (12.21)<br>1,3,5-Trimethylbenzene (12.99)                                                           | 0.078J+ ug/L<br>0.50U ug/L<br>0.50U ug/L<br>0.35U ug/L<br>0.20U ug/L<br>0.15U ug/L                                                                                                                             | A      | b    |
| HU109   | Ethylbenzene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54)                                                      | 0.078J+ ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.16U ug/L                                                                                                                                           | A      | b    |
| HU119   | Ethylbenzene<br>Xylenes, total<br>o-Xylene (12.21)<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54)                           | 0.077J+ ug/L<br>0.35U ug/L<br>0.20U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.15U ug/L                                                                                                                             | A      | b    |

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-115203-1

| Sample | Analyte                                       | Modified Final<br>Concentration          | A or P | Code |  |
|--------|-----------------------------------------------|------------------------------------------|--------|------|--|
| HU135  | Ethylbenzene<br>Naphthalene<br>Xylenes, total | 0.077J+ ug/L<br>0.50U ug/L<br>0.35U ug/L | A      | t    |  |

| Sample  | Analyte                                   | Modified Final<br>Concentration          | A or P | Code |
|---------|-------------------------------------------|------------------------------------------|--------|------|
| HU126** | Ethylbenzene<br>Styrene<br>Xylenes, total | 0.078J+ ug/L<br>0.50U ug/L<br>0.35U ug/L | A      | t    |
| HU110** | Ethylbenzene<br>Styrene                   | 0.078J+ ug/L<br>0.50U ug/L               | A      | t    |
| HU119   | Ethylbenzene<br>Xylenes, total            | 0.077J+ ug/L<br>0.35U ug/L               | A      | t    |

Stage 2B/4

| Date:         | 8  | 21 | 1.2      |
|---------------|----|----|----------|
| Page:_        | Tq | sf | _        |
| Reviewer:     |    | P  | _        |
| 2nd Reviewer: |    | 癶  | <u>.</u> |

SDG #: <u>580-115203-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 54723A1a

### METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

### TTIC

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|          | Validation Area                                                                                                          |                                     | Comments         |                                                          |                       |          |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|----------------------------------------------------------|-----------------------|----------|--|--|--|
| 1.       | Sample receipt/Technical holding times                                                                                   | A/A                                 |                  |                                                          |                       |          |  |  |  |
| П.       | GC/MS Instrument performance check                                                                                       | A                                   |                  |                                                          |                       |          |  |  |  |
| 111      | Initial calibration/ICV                                                                                                  | Mer A                               | 1/0 RS           | $P \leq F (r)$                                           | 101 5                 | Ð        |  |  |  |
| ١٧       | . Continuing calibration                                                                                                 | ue                                  |                  | CLV E                                                    | 20/57)                |          |  |  |  |
| V.       | Laboratory Blanks                                                                                                        | SUK                                 |                  |                                                          | 1 -                   |          |  |  |  |
| VI       | Field blanks                                                                                                             | SW                                  | TB = 2           | 4,6,8                                                    |                       |          |  |  |  |
| VI       | . Surrogate spikes                                                                                                       |                                     | l                |                                                          |                       |          |  |  |  |
| VII      | I. Matrix spike/Matrix spike duplicates                                                                                  | N                                   |                  |                                                          |                       |          |  |  |  |
| IX       | Laboratory control samples                                                                                               | A                                   | ICSIP            |                                                          |                       |          |  |  |  |
| <u> </u> | X. Field duplicates                                                                                                      |                                     |                  |                                                          |                       |          |  |  |  |
| XI       | XI. Internal standards                                                                                                   |                                     |                  |                                                          |                       |          |  |  |  |
| XII      | . Target analyte quantitation /TTC                                                                                       | SM                                  | Not reviewed for | Stage 2B validation.                                     | -                     |          |  |  |  |
| XII      | /<br>I. Target analyte identification                                                                                    | Δ                                   | Not reviewed for | Stage 2B validation. 🕅                                   | ١T                    |          |  |  |  |
| XIV      | /. System performance                                                                                                    | Α                                   | Not reviewed for | Stage 2B validation.                                     | 4                     |          |  |  |  |
| XV       | . Overall assessment of data                                                                                             | 4                                   |                  |                                                          |                       |          |  |  |  |
| Note:    | A = AcceptableND = NN = Not provided/applicableR = RinSW = See worksheetFB = Ficates sample underwent Stage 4 validation | lo compounds<br>nsate<br>ield blank | s detected       | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank | SB=Source b<br>OTHER: | blank    |  |  |  |
|          | Client ID                                                                                                                |                                     |                  | Lab ID                                                   | Matrix                | Date     |  |  |  |
| 1        | HU135                                                                                                                    |                                     |                  | 580-115203-1                                             | Water                 | 06/22/22 |  |  |  |
| 2        | HU134 TP                                                                                                                 |                                     |                  | 580-115203-2                                             | Water                 | 06/22/22 |  |  |  |
| 3        | HU126**                                                                                                                  |                                     |                  | 580-115203-3** Water 06/22                               |                       |          |  |  |  |
| 4        | HU125 <b>TB</b>                                                                                                          |                                     |                  | 580-115203-4                                             | Water                 | 06/22/22 |  |  |  |
| 5        | HU110**                                                                                                                  |                                     |                  | 580-115203-5** Water 06/22/22                            |                       |          |  |  |  |
| 6        | ни109 ТВ                                                                                                                 |                                     |                  | 580-115203-6 Water 06/22/22                              |                       |          |  |  |  |
| 7        | HU119                                                                                                                    | 580-115203-7 Water 06/22/22         |                  |                                                          |                       |          |  |  |  |
| 8        | HU118 TB                                                                                                                 | 580-115203-8 Water 06/22/22         |                  |                                                          |                       |          |  |  |  |
| 9        |                                                                                                                          |                                     |                  |                                                          |                       |          |  |  |  |
| Notes    |                                                                                                                          |                                     |                  |                                                          |                       |          |  |  |  |
|          | MB 500-39500L                                                                                                            |                                     |                  |                                                          |                       |          |  |  |  |

| MB 500-395002 |     |    |        |  |  |
|---------------|-----|----|--------|--|--|
|               |     |    |        |  |  |
|               |     |    |        |  |  |
|               |     |    |        |  |  |
|               | 101 | in | 54723B |  |  |

|                     |                         | $\cap$ |   |
|---------------------|-------------------------|--------|---|
| Method: Volatiles ( | (EPA SW 846 Method 8260 | V      | ) |

| Validation Area                                                                                                                                                          | Yes | No | NA | Findings/Comments |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|--|--|--|
| I. Technical holding times                                                                                                                                               |     |    |    |                   |  |  |  |
| Were all technical holding times met?                                                                                                                                    | /   |    |    |                   |  |  |  |
| Was cooler temperature criteria met?                                                                                                                                     |     |    |    |                   |  |  |  |
| II. GC/MS Instrument performance check                                                                                                                                   |     |    |    |                   |  |  |  |
| Were the BFB performance results reviewed and found to be within the specified criteria?                                                                                 | /   |    |    |                   |  |  |  |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                             |     |    |    |                   |  |  |  |
| Illa. Initial calibration                                                                                                                                                |     |    |    |                   |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                               | /   |    |    |                   |  |  |  |
| Were all percent relative standard deviations (%RSD) $\leq$ 15% and relative response factors (RRF) within method criteria?                                              | /   |    |    |                   |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990?                                         | /   |    |    |                   |  |  |  |
| IIIb. Initial Calibration Verification                                                                                                                                   |     |    |    |                   |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                                            | /   |    |    |                   |  |  |  |
| Were all percent differences (%D) ≤ 20% ?                                                                                                                                |     |    |    |                   |  |  |  |
| IV. Continuing calibration                                                                                                                                               |     | -  |    |                   |  |  |  |
| Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?                                                                         | 1   |    |    |                   |  |  |  |
| Were all percent differences (%D) $\leq$ 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) $\leq$ 50% in the ending CCV? |     | /  |    |                   |  |  |  |
| V. Laboratory Blanks                                                                                                                                                     |     |    |    |                   |  |  |  |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                         | \   |    |    |                   |  |  |  |
| Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?                                                                          | ~   |    |    |                   |  |  |  |
| Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.                                                           | /   |    |    |                   |  |  |  |
| VI. Field blanks                                                                                                                                                         |     |    |    |                   |  |  |  |
| Were field blanks were identified in this SDG?                                                                                                                           | 1   |    |    |                   |  |  |  |
| Were target analytes detected in the field blanks?                                                                                                                       | /   |    |    |                   |  |  |  |
| VII. Surrogate spikes                                                                                                                                                    |     |    |    |                   |  |  |  |
| Were all surrogate percent recovery (%R) within QC limits?                                                                                                               | <   |    |    |                   |  |  |  |
| If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?                 |     |    | /  |                   |  |  |  |
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                               |     |    |    |                   |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?                                                                                            |     |    | /  |                   |  |  |  |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                 |     |    | /  |                   |  |  |  |

LDC #: 547234 a

# VALIDATION FINDINGS CHECKLIST

| Validation Area                                                                                                                             | Yes | No | NA | Findings/Comments |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|
| IX. Laboratory control samples                                                                                                              |     |    |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                           | /   |    |    |                   |
| Was an LCS analyzed per analytical batch?                                                                                                   | /   |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                            | /   |    |    |                   |
| X. Field duplicates                                                                                                                         |     |    |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                          |     | /  |    |                   |
| Were target analytes detected in the field duplicates?                                                                                      |     |    | /  |                   |
| XI. Internal standards                                                                                                                      |     |    |    |                   |
| Were internal standard area counts within -50% to +100% of the associated calibration standard?                                             | /   |    |    |                   |
| Were retention times within <u>+</u> 30 seconds of the associated calibration standard?                                                     | /   |    |    |                   |
| XII. Target analyte quantitation                                                                                                            |     |    |    |                   |
| Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?                                                                                         | /   |    |    |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?         | 1   |    |    |                   |
| Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | /   |    |    |                   |
| XIII. Target analyte identification                                                                                                         |     |    |    |                   |
| Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?                                                       | /   |    |    |                   |
| Did analyte spectra meet specified EPA "Functional Guidelines" criteria?                                                                    | /   |    |    |                   |
| Were chromatogram peaks verified and accounted for?                                                                                         | /   |    |    |                   |
| Were manual integrations reviewed and found acceptable?                                                                                     |     |    |    |                   |
| Did the laboratory provide before and after integration printouts?                                                                          | /   |    |    |                   |
| XIV. System performance                                                                                                                     |     |    |    |                   |
| System performance was found to be acceptable.                                                                                              | /   |    |    |                   |
| XV. Overall assessment of data                                                                                                              |     |    |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                      |     |    |    |                   |

## TARGET COMPOUND WORKSHEET

### METHOD: VOA

.

| A. Chloromethane             | AA. Tetrachloroethene           | AAA. 1,3,5-Trimethylbenzene                | AAAA. Ethyl tert-butyl ether      | A1. 1,3-Butadiene          |
|------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|----------------------------|
| B. Bromomethane              | BB. 1,1,2,2-Tetrachloroethane   | BBB. 4-Chlorotoluene                       | BBBB. tert-Amyl methyl ether      | B1. Hexane                 |
| C. Vinyl choride             | CC. Toluene                     | CCC. tert-Butylbenzene                     | CCCC. 1-Chlorohexane              | C1. Heptane                |
| D. Chloroethane              | DD. Chlorobenzene               | DDD. 1,2,4-Trimethylbenzene                | DDDD. Isopropyl alcohol           | D1. Propylene              |
| E. Methylene chloride        | EE. Ethylbenzene                | EEE. sec-Butylbenzene                      | EEEE. Acetonitrile                | E1. Freon 11               |
| F. Acetone                   | FF. Styrene                     | FFF. 1,3-Dichlorobenzene                   | FFFF. Acrolein                    | F1. Freon 12               |
| G. Carbon disulfide          | GG. Xylenes, total              | GGG. p-lsopropyltoluene                    | GGGG. Acrylonitrile               | G1. Freon 113              |
| H. 1,1-Dichloroethene        | HH. Vinyl acetate               | HHH. 1,4-Dichlorobenzene                   | HHHH. 1,4-Dioxane                 | H1. Freon 114              |
| I. 1,1-Dichloroethane        | II. 2-Chloroethylvinyl ether    | III. n-Butyibenzene                        | IIII. Isobutyl alcohol            | I1. 2-Nitropropane         |
| J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane     | JJJ. 1,2-Dichlorobenzene                   | JJJJ. Methacrylonitrile           | J1. Dimethyl disulfide     |
| K. Chloroform                | KK. Trichlorofluoromethane      | KKK. 1,2,4-Trichlorobenzene                | KKKK. Propionitrile               | K1. 2,3-Dimethyl pentane   |
| L. 1,2-Dichloroethane        | LL. Methyl-tert-butyl ether     | LLL. Hexachlorobutadiene                   | LLLL. Ethyl ether                 | L1. 2,4-Dimethyl pentane   |
| M. 2-Butanone                | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene                           | MMMM. Benzyl chloride             | M1. 3,3-Dimethyl pentane   |
| N. 1,1,1-Trichloroethane     | NN. Methyl ethyl ketone         | NNN. 1,2,3-Trichlorobenzene                | NNNN. lodomethane                 | N1. 2-Methylpentane        |
| O. Carbon tetrachloride      | OO. 2,2-Dichloropropane         | OOO. 1,3,5-Trichlorobenzene                | 0000.1,1-Difluoroethane           | O1. 3-Methylpentane        |
| P. Bromodichloromethane      | PP. Bromochloromethane          | PPP. trans-1,2-Dichloroethene              | PPPP. Tetrahydrofuran             | P1. 3-Ethylpentane         |
| Q. 1,2-Dichloropropane       | QQ. 1,1-Dichloropropene         | QQQ. cis-1,2-Dichloroethene                | QQQQ. Methyl acetate              | Q1. 2,2-Dimethylpentane    |
| R. cis-1,3-Dichloropropene   | RR. Dibromomethane              | RRR. m,p-Xylenes                           | RRRR. Ethyl acetate               | R1. 2,2,3- Trimethylbutane |
| S. Trichloroethene           | SS. 1,3-Dichloropropane         | SSS. o-Xylene                              | SSSS. Cyclohexane                 | S1. 2,2,4-Trimethylpentane |
| T. Dibromochloromethane      | TT. 1,2-Dibromoethane           | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methyl cyclohexane          | T1. 2-Methylhexane         |
| U. 1,1,2-Trichloroethane     | UU. 1,1,1,2-Tetrachloroethane   | UUU. 1,2-Dichlorotetrafluoroethane         | UUUU. Allyl chloride              | U1. Nonanal                |
| V. Benzene                   | VV. Isopropylbenzene            | VVV. 4-Ethyltoluene                        | VVVV. Methyl methacrylate         | V1. 2-Methylnaphthalene    |
| W. trans-1,3-Dichloropropene | WW. Bromobenzene                | WWW. Ethanol                               | WWWW. Ethyl methacrylate          | W1. Methanol               |
| X. Bromoform                 | XX. 1,2,3-Trichloropropane      | XXX. Di-isopropyl ether                    | XXXX. cis-1,4-Dichloro-2-butene   | X1. 1,2,3-Trimethylbenzene |
| Y. 4-Methyl-2-pentanone      | YY. n-Propylbenzene             | YYY. tert-Butanol                          | YYYY. trans-1,4-Dichloro-2-butene | Y1. 2-Propanol             |
| Z. 2-Hexanone                | ZZ. 2-Chlorotoluene             | ZZZ. tert-Butyl alcohol                    | ZZZZ. Pentachloroethane           | Z1.                        |

LDC #: 54723Ala

### VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260  $\,\mathcal{O}$  )

| Pleas<br>Y/N | As see qualifications below for all questions answered in . Not applicable questions are identified as INA .<br><u>N N/A</u> Was an initial calibration verification standard analyzed after each ICAL for each instrument?<br>N/N/A Were all %D within the validation criteria of $\leq 20$ %D? |             |          |                                           |                                        |                |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------------------------------------------|----------------------------------------|----------------|--|--|--|--|--|--|
| #            | Date                                                                                                                                                                                                                                                                                             | Standard ID | Compound | Finding %D<br>(Limit: <b>≰</b> 20.0%/30%) | Associated Samples                     | Qualifications |  |  |  |  |  |  |
|              | 6 22 22                                                                                                                                                                                                                                                                                          | ICN         | B        | 22.4                                      | A  \                                   | Jt/UJ/A NO     |  |  |  |  |  |  |
|              | 2024                                                                                                                                                                                                                                                                                             |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              | <b>_</b>                                                                                                                                                                                                                                                                                         |             |          |                                           |                                        |                |  |  |  |  |  |  |
| <b> </b>     |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
| <b> </b>     |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
| <b> </b>     |                                                                                                                                                                                                                                                                                                  |             | <u></u>  |                                           |                                        |                |  |  |  |  |  |  |
| <b> </b>     |                                                                                                                                                                                                                                                                                                  |             |          |                                           | ······································ |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              | · ·                                                                                                                                                                                                                                                                                              |             |          | ļ                                         |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             | <u></u>  |                                           |                                        |                |  |  |  |  |  |  |
|              | ļ                                                                                                                                                                                                                                                                                                |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  | ·           |          |                                           |                                        |                |  |  |  |  |  |  |
| L            |                                                                                                                                                                                                                                                                                                  |             |          | ļ                                         |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              | ļ                                                                                                                                                                                                                                                                                                |             |          |                                           |                                        |                |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                  |             | <u> </u> | l                                         |                                        |                |  |  |  |  |  |  |

LDC #: 54723A a

### VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

| Page:_     | _/ <sub>of_</sub> |  |
|------------|-------------------|--|
| Reviewer:_ | <u>FT</u>         |  |

(c)

**METHOD**: GC/MS VOA (EPA SW 846 Method 8260  $\mathcal{D}$ )

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? N NA

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

N/N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF ?

| #        | Date  | Standard ID    | Compound | Finding %D<br>(Limit: <u>&lt;</u> 20.0%) | Finding RRF<br>(Limit: <u>&gt;</u> 0.05) | Associated Samples                    | Qualifications                         |
|----------|-------|----------------|----------|------------------------------------------|------------------------------------------|---------------------------------------|----------------------------------------|
|          | 62622 | CCV 580-395002 | B        | 46.7                                     |                                          | (IA                                   | 1+/11/A ND                             |
|          | 2032  |                | F        | 2.0                                      |                                          | V                                     |                                        |
|          |       |                |          |                                          |                                          | •                                     |                                        |
|          |       |                |          |                                          |                                          |                                       |                                        |
|          | 62722 | Cen-closing    | B        | 105.1                                    |                                          | 11                                    | J+/us/A NV                             |
|          | 6640  | L              |          |                                          |                                          |                                       |                                        |
| I        |       |                |          |                                          |                                          |                                       |                                        |
|          |       |                |          |                                          |                                          |                                       |                                        |
| <b> </b> |       |                | g        |                                          |                                          |                                       |                                        |
| <b> </b> |       |                |          |                                          |                                          |                                       |                                        |
| <b> </b> | <br>  |                |          |                                          |                                          |                                       |                                        |
| <b> </b> |       |                |          |                                          |                                          |                                       |                                        |
| <b> </b> |       |                |          |                                          |                                          |                                       | · · · · · · · · · · · · · · · · · · ·  |
| <b> </b> |       |                |          |                                          |                                          |                                       |                                        |
| <u> </u> |       |                |          | [<br>                                    |                                          |                                       |                                        |
| <b> </b> |       |                |          |                                          |                                          |                                       |                                        |
| <b> </b> | ····  |                |          |                                          |                                          |                                       | · · · · · · · · · · · · · · · · · · ·  |
| <b> </b> |       |                |          |                                          |                                          |                                       |                                        |
| <b>i</b> |       |                |          |                                          |                                          |                                       |                                        |
| ┣        |       |                |          |                                          | · · · · · · · · · · · · · · · · · · ·    | · · · · · · · · · · · · · · · · · · · |                                        |
| ┣        |       |                |          |                                          |                                          |                                       | ······································ |
|          |       |                |          | <u> </u>                                 |                                          | <u> </u>                              |                                        |

| VALIDATION | FINDINGS | WORKSHEET |
|------------|----------|-----------|
|            | Blanks   |           |

Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260 P) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a method blank associated with every sample in this SDG?

Y/N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

 $\frac{\sqrt{N N/A}}{Blank analysis date: <u>b</u>24} 22$ 

| Compound | Blank ID | Sample Identification |           |           |           |           |            |             |           |
|----------|----------|-----------------------|-----------|-----------|-----------|-----------|------------|-------------|-----------|
|          | MB 580-3 | 95002                 | 1         | 2         | 3         | 4         | 5          | 4           | 7         |
| KKK      | 0.208    |                       |           |           |           |           |            |             |           |
| <u> </u> | 0.0952   |                       |           |           |           |           |            |             |           |
| EE       | 0. 0818  |                       | 0,0775+   | 0.0791    | 0.0785+   | 0.0791+   | 0.0785+    | £_870.0     | 0.077_1+  |
| H LLL    | 0.106    |                       | a         |           |           |           |            |             |           |
| имм      | 0.432    |                       | 0.36 0.50 | 0.36 0.50 |           | 0.36 0.90 | 0.36 0.50  |             |           |
| FF       | 0.21)    |                       |           | 0.21 1    | 0.21 0.50 | 0.21/1    | 0.21/1     | 0.21 0.50 V |           |
| 66       | 0.205    |                       | 0.20 0.33 | 0.20 0.35 | 0.20 0.35 | 0.2010.35 | 0.20 10.35 | 1           | 0.20 0.33 |

|                                         | Conc. units:            |               |      | Asso         | ciated Samples: |              | 411          |              |            |             |   |
|-----------------------------------------|-------------------------|---------------|------|--------------|-----------------|--------------|--------------|--------------|------------|-------------|---|
| Compound Blank ID Sample Identification |                         |               |      |              |                 |              |              |              |            |             |   |
| <b>F1C</b>                              |                         | V             |      | 1            | 2               | 3            | 4            | 5            | 6          | 7           |   |
| 11-                                     | 595                     | 0.205 (12.21) |      | 0.20 (12.21) | 0.20 (12.21)    | 0.20 (12.2)  | 0.20 (12.20  | 0.20 (1221)  |            | 0.20(12.21) |   |
|                                         | ٧V                      | 0.264 (12.51) |      |              | 0.26 (12.51)    |              | 0.26 (12.5)  | ) 0.15/12.99 | 0.26(251)  | 0.26 (12.5) | ) |
|                                         | 1,3,5- Trime thy benzen | e 0.154/12.99 | 2    | 0.15 (12.99) | 0.15 (12.99)    | 0.15 (12.99) | 0.15(12.99)  | 0,15/12.99   | 0.15/12.99 | 0.15 (12.94 | V |
|                                         | 669                     | 0,162 (13.5   | 4)   | 0.15/13.59   | 0.16 (13.54     | 0.15 (13.54) | 0.16 (13.54) |              | 0.16(13.54 | 0.15 (13.5) | ) |
|                                         | 1,3.5-Trichlorobence    | e 0.0715/14   | .65) |              |                 |              |              |              |            |             |   |
|                                         | NNN                     | 0.230/15.     | 3)   |              |                 |              |              |              |            |             |   |
|                                         |                         |               |      |              |                 |              | _            |              |            |             |   |

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Þ

. •

| LDC #: 51723A<br>METHOD: GC/MS VOA (E<br>Y N N/A Were field<br>Y N N/A Were targ<br>Blank units: vg/ Ass<br>Sampling date: vg/               | Page:of<br>Reviewer:_ <u>FT</u>            |                                                    |                    |                    |                                        |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|--------------------|--------------------|----------------------------------------|--|--|--|--|--|
| Field blank type: (cir&e one) Field Blank / Rinsate / Trip Blank / Other: TB Associated Samples:                                             |                                            |                                                    |                    |                    |                                        |  |  |  |  |  |
| Compound                                                                                                                                     | Blank ID                                   |                                                    | Samp               | ble Identification | ·····                                  |  |  |  |  |  |
|                                                                                                                                              | 2                                          |                                                    |                    |                    |                                        |  |  |  |  |  |
| EE                                                                                                                                           | 0.079                                      | 0.077                                              |                    |                    |                                        |  |  |  |  |  |
| ИММ                                                                                                                                          | 0.36                                       | 0.76 4                                             |                    |                    |                                        |  |  |  |  |  |
| FF                                                                                                                                           | 0.21                                       |                                                    |                    |                    |                                        |  |  |  |  |  |
| <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | 0.20                                       | 0.20 0.33                                          |                    |                    |                                        |  |  |  |  |  |
|                                                                                                                                              |                                            |                                                    |                    |                    |                                        |  |  |  |  |  |
|                                                                                                                                              |                                            |                                                    |                    |                    |                                        |  |  |  |  |  |
| Blank units: val As<br>Sampling date: 6 2<br>Field blank type: (circle of                                                                    | sociated samp<br>2 2 2<br>pne) Field Blank | le units: الجور<br>/ Rinsate / Trip Blank / Other: | <u>TP</u> Associat | ed Samples:        | 3                                      |  |  |  |  |  |
| Compound                                                                                                                                     | <u>ป</u>                                   | 2                                                  |                    |                    | ······································ |  |  |  |  |  |
| EE                                                                                                                                           | 0.078                                      | 0.078 1+                                           |                    |                    |                                        |  |  |  |  |  |
| ммм                                                                                                                                          | 0.36                                       |                                                    |                    |                    |                                        |  |  |  |  |  |
| FF                                                                                                                                           | 0.2                                        | 0.21 0.50                                          |                    |                    |                                        |  |  |  |  |  |
| 64                                                                                                                                           | 0,20                                       | 0.20 0.35                                          |                    |                    |                                        |  |  |  |  |  |
|                                                                                                                                              |                                            |                                                    |                    |                    |                                        |  |  |  |  |  |
|                                                                                                                                              |                                            |                                                    |                    |                    |                                        |  |  |  |  |  |
|                                                                                                                                              |                                            |                                                    |                    |                    |                                        |  |  |  |  |  |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

| LDC #: <u>5472</u> 3A<br><b>METHOD:</b> GC/MS VOA (E<br>Y N N/A Were field<br>Y N N/A Were targ<br>Blank units: <u>w //</u> Ass<br>Sampling date | EPA SW 846 Met<br>blanks identified<br>jet compounds de<br>sociated sample | VALIDAT<br>thod 8260 P)<br>d in this SDG?<br>etected in the field blanks?<br>a units: | ION FINDI<br><u>Field E</u> | NGS WOR<br>Blanks | KSHEET               |   | Page: <u>/</u> of<br>Reviewer: <u>FT</u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|-------------------|----------------------|---|------------------------------------------|
| Field blank type: (circle d                                                                                                                      | ine) Field Blank /                                                         | Rinsate / Trip Blank / Othe                                                           | er: <u>TB</u>               | Asso              | ciated Samples:      | 5 |                                          |
| Compound                                                                                                                                         | Blank ID                                                                   |                                                                                       |                             | S                 | ample Identification |   |                                          |
|                                                                                                                                                  | 6                                                                          | 5                                                                                     |                             |                   |                      |   |                                          |
| EE                                                                                                                                               | 0.078                                                                      | 0.078_1+                                                                              |                             |                   |                      |   |                                          |
| FF                                                                                                                                               | 0.2                                                                        | 0.21/0.50                                                                             |                             |                   |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             | ••••              |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   | · ·                  |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   | · · ·                |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   |                      |   |                                          |
| Sampling date: 623<br>Field blank type: (circle o                                                                                                | sociated samples<br>2/12/2/<br>one) Field Blank /                          | Rinsate / Trip Blank / Othe                                                           | er:                         | Asso              | ciated Samples:      | 7 |                                          |
| Compound                                                                                                                                         | Blank ID                                                                   |                                                                                       |                             | S                 | ample Identification |   |                                          |
|                                                                                                                                                  | 8                                                                          | 1                                                                                     |                             |                   |                      |   |                                          |
| Δ                                                                                                                                                | 0.17                                                                       | -                                                                                     |                             |                   |                      |   |                                          |
| EE                                                                                                                                               | 0.078                                                                      | 0.0775                                                                                |                             |                   |                      |   |                                          |
| ммм                                                                                                                                              | 0.36                                                                       |                                                                                       |                             | <u></u>           |                      |   |                                          |
| FF                                                                                                                                               | 0.21                                                                       |                                                                                       |                             |                   |                      |   |                                          |
| 66                                                                                                                                               | 0.20                                                                       | 0.20 U.33                                                                             |                             |                   |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   |                      |   |                                          |
|                                                                                                                                                  |                                                                            |                                                                                       |                             |                   |                      |   |                                          |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

### LDC #: <u>54723A1a</u>

### VALIDATION FINDINGS WORKSHEET **Target Analyte Quantitation**

Reviewer: FT

### METHOD: GCMS VOA EPA SW 846 Method 8260D

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\frac{Y}{Y}$ Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Compound                                                                                     | Lab RL is higher than QAPP RL | Qualifications |
|---|------|-----------|----------------------------------------------------------------------------------------------|-------------------------------|----------------|
|   |      | all       | All laboratory calibrated analytes<br>reported as Tentatively Identified<br>Compounds (TICs) |                               | Jdet/A (V)     |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              | · · · ·                       |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |

Comments: See sample calculation verification worksheet for recalculations

### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification



### METHOD: GCMS 8260D

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards %RSD = 100 \* (S/X) Where:

Ax = Area of compound Cx = Concentration of compound S = Standard deviation of the RRFs X = Mean of the RRFs Ais = Area of associated internal standard Cis = Concentration of internal Standard

|   |             |             |          | Reported        | Recalculated   | Reported   | Recalculated | Reported | Recalculated |
|---|-------------|-------------|----------|-----------------|----------------|------------|--------------|----------|--------------|
|   |             | Calibration |          |                 |                | AverageRRF | Average RRF  | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound | (RRF 5ug/L std) | (RRF 5ug/Lstd) | (Initial)  | (Initial)    |          |              |
|   | ICAL        | 6/22/2022   | A        | 0.4917          | 0.4917         | 0.4786     | 0.4786       | 14.1     | 14.1         |
|   | TAC 113     |             | CC       | 1.6414          | 1.6414         | 1.5432     | 1.5432       | 5.5      | 5.5          |
|   |             |             | 111      | 1.7421          | 1.7421         | 1.5218     | 1.5218       | 7.9      | 7.9          |

LDC #: 91723 A Q

### VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1\_of 1\_ Reviewer: FT

## METHOD: GC/MS VOA (EPA SW 846 Method 8260 ${\cal D}$ )

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$ 

Where: ave. RRF = initial calibration average RRF  $A_x$  = Area of target analyte  $C_x$  = Concentration of target analyte

RRF = continuing calibration RRF

A<sub>is</sub> = Area of associated internal standard

C<sub>is</sub> = Concentration of internal standard

| # | Standard ID | Calibration Date | Target Analyte (Internal Standard)     | Average RRF<br>(initial) | Reported<br>RRF<br>(CC) | Recalculated<br>RRF<br>(CC) | Reported<br>%D | Recalculated<br>%D |
|---|-------------|------------------|----------------------------------------|--------------------------|-------------------------|-----------------------------|----------------|--------------------|
| 1 | iev         | 626 22           | Δ                                      | 0. 4786                  | 0.4392                  | 0,4392                      | 8.2            | 8.2                |
|   |             | 2032             | cu                                     | 1.5432                   | 1.549                   | 1.549                       | 0.4            | 0.4                |
|   |             |                  | <i>U</i>                               | 1.5218                   | 1.507                   | 1.507                       | 1.0            | Ū,                 |
|   |             |                  |                                        |                          |                         |                             |                |                    |
| 2 |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  | ······································ |                          |                         |                             |                |                    |
| 3 |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  | · · · · · · · · · · · · · · · · · · ·  | ·····                    |                         |                             |                |                    |
|   |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  |                                        |                          |                         |                             | We want        |                    |
| 4 |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  |                                        |                          |                         |                             |                |                    |
|   |             |                  |                                        |                          |                         |                             |                |                    |

LDC #: 51723 A a

### VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:<u>1</u>of<u>1</u> Reviewer:<u>FT</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #5

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Dibromofluoromethane  | 10.0                | 11.6               | 116                             | 116                                 | 0                     |
| 1,2-Dichloroethane-d4 |                     | 115                | 115                             | 115                                 |                       |
| Toluene-d8            |                     | 9.52               | 95                              | 95                                  |                       |
| Bromofluorobenzene    |                     | 9.78               | 98                              | 9×                                  |                       |

Comments: \_\_\_\_\_\_

LDC #: 54723A/a

## VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 )

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 \* SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I \* 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: 10510 580-395002-

|                    | S         | oike | Spike | d Sample  |          | cs       |          | CSD      |          | /LCSD   |
|--------------------|-----------|------|-------|-----------|----------|----------|----------|----------|----------|---------|
| Compound           | Ad<br>مىن | ded  | Conce | entration | Percent  | Recovery | Percent  | Recovery | R        | PD      |
|                    | LCS       | LCSD | LCS   |           | Reported | Recalc.  | Reported | Recalc.  | Reported | Recalc. |
| 1,1-Dichloroethene | 5.0       | 5.0  | 5.11  | 4.97      | 102      | 102      | 99       | 99       | 3        | 3       |
| Trichloroethene    |           |      | 4.69  | 4.56      | 94       | 94       | 9        | 9)       | 3        | 3       |
| Benzene            |           |      | 5.01  | 492       | 100      | 100      | 98       | 98       | 2        | 2       |
| Toluene            |           |      | 4.89  | 4.84      | 98       | 98       | 97       | 91       | 1        | 1       |
| Chlorobenzene      | J         | J    | 4.78  | 4.72      | 96       | 96       | 94       | 91       |          | )       |

Comments:

LDC #: 54723A)a

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

### METHOD: GC/MS VOA (EPA SW 846 Method 8260 D

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

| Conce          | ntrati | on = $\frac{(A_x)(I_y)(DF)}{(A_{is})(RRF)(V_y)(\%S)}$                          | Example:              |
|----------------|--------|--------------------------------------------------------------------------------|-----------------------|
| A <sub>x</sub> | =      | Area of the characteristic ion (EICP) for the<br>target analyte to be measured | Sample I.D 作う,A       |
| $A_{is}$       | =      | Area of the characteristic ion (EICP) for the<br>specific internal standard    | Conc. = (10657) (100) |
| l <sub>s</sub> | =      | Amount of internal standard added in<br>nanograms (ng)                         | (1336701) (0.4786)    |
| RRF            | =      | Relative response factor of the calibration standard.                          |                       |
| V <sub>o</sub> | =      | Volume or weight of sample pruged in milliliters (ml) or grams (g).            | = 0.1666 ug]/         |
| Df             | =      | Dilution factor.                                                               |                       |
| %S             | =      | Percent solids, applicable to soils and solid matrices only.                   |                       |

| # | Sample ID | Compound | Reported Concentration | Calculated Goncentration | Qualification |
|---|-----------|----------|------------------------|--------------------------|---------------|
|   | #3        | 4        | 0.17                   | 0.1666                   | -             |
|   |           |          |                        |                          |               |
|   |           |          | <br>                   |                          |               |
|   |           |          |                        |                          |               |
|   |           |          |                        |                          |               |
|   |           |          |                        |                          |               |
|   |           |          |                        |                          |               |
|   |           |          |                        |                          |               |

### LDC Report# 54723A2a

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

| LDC | Report Date: | August 24, | 2022 |
|-----|--------------|------------|------|
|     |              |            |      |

Parameters: Semivolatiles

Validation Level:Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU135                 | 580-115203-1                        | Water  | 06/22/22           |
| HU126**               | 580-115203-3**                      | Water  | 06/22/22           |
| HU110                 | 580-115203-5                        | Water  | 06/22/22           |
| HU119                 | 580-115203-7                        | Water  | 06/22/22           |

\*\*Indicates sample underwent Stage 4 validation

### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

### Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

### II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

### III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

### **IV. Continuing Calibration**

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

### VI. Field Blanks

No field blanks were identified in this SDG.

### VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample HU119. Using professional judgment, no data were qualified when one base or one acid surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                           | Analyte                                 | RPD<br>(Limits)      | Flag | A or P |
|----------------------------------------------------------|-----------------------------------------|----------------------|------|--------|
| LCS/LCSD 580-395333<br>(All samples in SDG 580-115203-1) | Hexachlorobutadiene<br>Hexachloroethane | 38 (≤20)<br>23 (≤20) | NA   | -      |

## X. Field Duplicates

No field duplicates were identified in this SDG.

### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

### XII. Target Analyte and Tentatively Identified Compounds Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation.

All tentatively identified compound quantitations met validation criteria with the following exceptions:

| Sample  | Analyte                                                                                      | Flag            | A or P |
|---------|----------------------------------------------------------------------------------------------|-----------------|--------|
| HU126** | All laboratory calibrated analytes<br>reported as tentatively identified<br>compounds (TIC). | J (all detects) | A      |
| Sample                          | Analyte                                     | Flag             | A or P |
|---------------------------------|---------------------------------------------|------------------|--------|
| All samples in SDG 580-115203-1 | All tentatively identified compounds (TIC). | NJ (all detects) | А      |

Raw data were not reviewed for Stage 2B validation.

#### XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

#### XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to TICs, data were qualified as presumptive and estimated in four samples.

#### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-115203-1

| Sample                             | Analyte                                                                               | Flag             | A or P | Reason (Code)                             |
|------------------------------------|---------------------------------------------------------------------------------------|------------------|--------|-------------------------------------------|
| HU126**                            | All laboratory calibrated analytes reported as tentatively identified compounds (TIC) | J (all detects)  | A      | Target analyte<br>quantitation (TICs) (v) |
| HU135<br>HU126**<br>HU110<br>HU119 | All tentatively identified compounds (TIC)                                            | NJ (all detects) | A      | Target analyte<br>quantitation (TICs) (v) |

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Stage 2B/4

Date Page Reviewer 2nd Reviewe

LDC #: 54723A2a SDG #: 580-115203-1 Laboratory: Eurofins, Tacoma, WA

#### METHOD: GC/MS Semivolatiles (EPA SW-846 Method 8270E)

+ TIC9 The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|                    | Validation Area                                                                                                        |                                  |                  | Commer                                                   | nts                    |      |
|--------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|----------------------------------------------------------|------------------------|------|
| ١.                 | Sample receipt/Technical holding times                                                                                 | AIA                              |                  |                                                          |                        |      |
| Ш.                 | GC/MS Instrument performance check                                                                                     | A                                |                  |                                                          |                        |      |
| 111.               | Initial calibration/ICV                                                                                                | AA                               | o lo p           | 50 =15,12                                                | 101 52                 | D    |
| IV.                | Continuing calibration ending                                                                                          | Ā                                | ,                |                                                          | W = 20/50              |      |
| V.                 | Laboratory Blanks                                                                                                      | Δ                                |                  |                                                          | · ·                    |      |
| VI.                | Field blanks                                                                                                           | N                                |                  |                                                          |                        |      |
| VII.               | Surrogate spikes                                                                                                       | حسک                              |                  | <u></u>                                                  | · · · · ·              |      |
| <u></u>            | Matrix spike/Matrix spike duplicates                                                                                   | N                                | 25               |                                                          |                        |      |
| IX.                | Laboratory control samples                                                                                             | 50                               | LesIP            |                                                          |                        |      |
| Х.                 | Field duplicates                                                                                                       | N                                |                  |                                                          |                        |      |
| XI.                | Internal standards                                                                                                     | A                                |                  |                                                          |                        |      |
| XII.               |                                                                                                                        | SN                               | Not reviewed for | Stage 2B validation.                                     | ·                      |      |
| XIII.              | Target analyte identification                                                                                          | 4                                | Not reviewed for | Stage 2B validation.                                     | MI                     |      |
| XIV.               | System performance                                                                                                     | 4                                | Not reviewed for | Stage 2B validation.                                     |                        |      |
| XV.                | Overall assessment of data                                                                                             |                                  |                  |                                                          |                        |      |
| Note:<br>** Indica | A = AcceptableND = NN = Not provided/applicableR = RinSW = See worksheetFB = Fites sample underwent Stage 4 validation | o compound:<br>sate<br>eld blank | s detected       | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank | SB=Source bl<br>OTHER: | ank  |
| c                  | lient ID                                                                                                               |                                  |                  | Lab ID                                                   | Matrix                 | Date |

|       |           |                | matrix | Date     |  |  |  |  |  |
|-------|-----------|----------------|--------|----------|--|--|--|--|--|
| +     | HU135     | 580-115203-1   | Water  | 06/22/22 |  |  |  |  |  |
| 2     | HU126**   | 580-115203-3** | Water  | 06/22/22 |  |  |  |  |  |
| 3     | HU110     | 580-115203-5   | Water  | 06/22/22 |  |  |  |  |  |
| 4     | HU119 🖌   | 580-115203-7   | Water  | 06/22/22 |  |  |  |  |  |
| 5     |           |                |        |          |  |  |  |  |  |
| 6     | ,         |                |        |          |  |  |  |  |  |
| 7     |           |                |        |          |  |  |  |  |  |
| 8     |           |                |        |          |  |  |  |  |  |
| 9     |           |                |        |          |  |  |  |  |  |
| Notes | Notes:    |                |        |          |  |  |  |  |  |
|       | n n c 2 2 |                |        |          |  |  |  |  |  |

| MB | 580-3953 | 3 | > |  |  |
|----|----------|---|---|--|--|
|    | •        |   |   |  |  |
|    |          |   |   |  |  |
|    |          |   |   |  |  |

# Method: Semivolatiles (EPA SW 846 Method 8270 E)

| Validation Area                                                                                                                                                                             | Yes | No | NA | Findings/Comments |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|--|--|--|--|
| I. Technical holding times                                                                                                                                                                  |     |    |    |                   |  |  |  |  |
| Were all technical holding times met?                                                                                                                                                       | 1   |    |    |                   |  |  |  |  |
| Was cooler temperature criteria met?                                                                                                                                                        | 1   |    |    |                   |  |  |  |  |
| II. GC/MS Instrument performance check                                                                                                                                                      |     | _  |    |                   |  |  |  |  |
| Were the DFTPP performance results reviewed and found to be within the specified criteria?                                                                                                  | /   |    |    |                   |  |  |  |  |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                                | /   |    |    |                   |  |  |  |  |
| Illa. Initial calibration                                                                                                                                                                   |     |    |    |                   |  |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                                  | /   |    |    |                   |  |  |  |  |
| Were all percent relative standard deviations (%RSD) $\leq$ 15% and relative response factors (RRF) within method criteria?                                                                 | 1   |    |    |                   |  |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990?                                                            | 1   |    |    |                   |  |  |  |  |
| IIIb. Initial Calibration Verification                                                                                                                                                      |     |    |    |                   |  |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                                                               | /   |    |    |                   |  |  |  |  |
| Were all percent differences (%D) < 20%?                                                                                                                                                    |     |    |    |                   |  |  |  |  |
| IV. Continuing calibration                                                                                                                                                                  | ·   |    |    |                   |  |  |  |  |
| Was a continuing calibration standard analyzed at least once every 12 hours for<br>each instrument?                                                                                         | /   |    |    |                   |  |  |  |  |
| Were all percent differences (%D) $\leq$ 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) $\leq$ 50% for closing calibration verification? |     |    |    |                   |  |  |  |  |
| V. Laboratory Blanks                                                                                                                                                                        |     |    |    |                   |  |  |  |  |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                                            | /   |    |    |                   |  |  |  |  |
| Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?                                                                                             |     | 1  |    |                   |  |  |  |  |
| Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.                                                                              |     | /  |    |                   |  |  |  |  |
| VI. Field blanks                                                                                                                                                                            |     |    |    |                   |  |  |  |  |
| Were field blanks were identified in this SDG?                                                                                                                                              |     | /  |    |                   |  |  |  |  |
| Were target analytes detected in the field blanks?                                                                                                                                          |     |    | /  |                   |  |  |  |  |
| VII. Surrogate spikes                                                                                                                                                                       |     |    |    |                   |  |  |  |  |
| Were all surrogate percent recovery (%R) within QC limits?                                                                                                                                  | •   | /  |    |                   |  |  |  |  |
| If 2 or more base neutral or acid surrogates were outside QC limits, was a<br>reanalysis performed to confirm %R?                                                                           |     |    | ~  |                   |  |  |  |  |
| If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?                                                                                                |     |    |    |                   |  |  |  |  |
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                                  |     |    |    |                   |  |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?                                                                                                               |     |    |    |                   |  |  |  |  |

#### VALIDATION FINDINGS CHECKLIST

| Validation Area                                                                                                                       | Yes      | No | NA          | Findings/Comments |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|----|-------------|-------------------|
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                              |          |    | /           |                   |
| IX. Laboratory control samples                                                                                                        |          |    |             |                   |
| Was an LCS analyzed per extraction batch?                                                                                             | /        |    |             |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                      |          | /  |             |                   |
| X. Field duplicates                                                                                                                   |          |    |             |                   |
| Were field duplicate pairs identified in this SDG?                                                                                    |          | /  |             |                   |
| Were target analytes detected in the field duplicates?                                                                                | · -      |    | $\setminus$ |                   |
| XI. Internal standards                                                                                                                |          |    |             |                   |
| Were internal standard area counts within -50% to +100% of the associated calibration standard?                                       | /        |    |             |                   |
| Were retention times within ± 30 seconds of the associated calibration standard?                                                      | /        |    |             |                   |
| XII. Target analyte quantitation                                                                                                      |          |    |             |                   |
| Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?                                                                                   |          |    |             |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?   | /        |    |             |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |          |    |             |                   |
| XIII. Target analyte identification                                                                                                   |          |    |             |                   |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                        | $\angle$ |    |             |                   |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                             | /        |    |             |                   |
| Were chromatogram peaks verified and accounted for?                                                                                   | $\leq$   |    |             |                   |
| Were manual integrations reviewed and found acceptable?                                                                               | $\leq$   |    |             |                   |
| Did the laboratory provide before and after integration printouts?                                                                    |          |    |             |                   |
| XIV. System performance                                                                                                               | /        |    |             |                   |
| System performance was found to be acceptable.                                                                                        |          |    |             |                   |
| XV. Overall assessment of data                                                                                                        |          |    |             |                   |
| Overall assessment of data was found to be acceptable.                                                                                |          |    |             |                   |

# VALIDATION FINDINGS WORKSHEET

#### METHOD: GC/MS SVOA

| A. Phenol                       | CC. Dimethylphthalate           | EEE. Bis(2-ethylhexyl)phthalate  | GGGG. C30-Hopane                          | 11. Methyl methanesulfonate            |
|---------------------------------|---------------------------------|----------------------------------|-------------------------------------------|----------------------------------------|
| B. Bis (2-chloroethyl) ether    | DD. Acenaphthylene              | FFF. Di-n-octylphthalate         | HHHH. 1-Methylphenanthrene                | J1. Ethyl methanesulfonate             |
| C. 2-Chlorophenol               | EE. 2,6-Dinitrotoluene          | GGG. Benzo(b)fluoranthene        | IIII. 1,4-Dioxane                         | K1. o,o',o"-Triethylphosphorothioate   |
| D. 1,3-Dichlorobenzene          | FF. 3-Nitroaniline              | HHH. Benzo(k)fluoranthene        | JJJJ. Acetophenone                        | L1. n-Phenylene diamine                |
| E. 1,4-Dichlorobenzene          | GG. Acenaphthene                | III. Benzo(a)pyrene              | KKKK. Atrazine                            | M1. 1,4-Naphthoquinone                 |
| F. 1,2-Dichlorobenzene          | HH. 2,4-Dinitrophenol           | JJJ. Indeno(1,2,3-cd)pyrene      | LLLL. Benzaldehyde                        | N1. N-Nitro-o-toluidine                |
| G. 2-Methylphenol               | II. 4-Nitrophenol               | KKK. Dibenz(a,h)anthracene       | MMMM. Caprolactam                         | O1. 1,3,5-Trinitrobenzene              |
| H. 2,2'-Oxybis(1-chloropropane) | JJ. Dibenzofuran                | LLL. Benzo(g,h,i)perylene        | NNNN. 2,6-Dichlorophenol                  | P1. Pentachlorobenzene                 |
| I. 4-Methylphenol               | KK. 2,4-Dinitrotoluene          | MMM. Bis(2-Chloroisopropyl)ether | 0000. 1,2-Diphenylhydrazine               | Q1. 4-Aminobiphenyl                    |
| J. N-Nitroso-di-n-propylamine   | LL. Diethylphthalate            | NNN. Aniline                     | PPPP. 3-Methylphenol                      | R1. 2-Naphthylamine                    |
| K. Hexachloroethane             | MM. 4-Chlorophenyl-phenyl ether | OOO. N-Nitrosodimethylamine      | QQQQ. 3&4-Methylphenol                    | S1. Triphenylene                       |
| L. Nitrobenzene                 | NN. Fluorene                    | PPP. Benzoic Acid                | RRRR. 4-Dimethyldibenzothiophene (4MDT)   | T1. Octachlorostyrene                  |
| M. Isophorone                   | OO. 4-Nitroaniline              | QQQ. Benzyl alcohol              | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | U1. Famphur                            |
| N. 2-Nitrophenol                | PP. 4,6-Dinitro-2-methylphenol  | RRR. Pyridine                    | TTTT. 1-Methyldibenzothiophene (1MDT)     | V1. 1,4-phenylenediamine               |
| O. 2,4-Dimethylphenol           | QQ. N-Nitrosodiphenylamine      | SSS. Benzidine                   | UUUU 2,3,4,6-Tetrachlorophenol            | W1. Methapyrilene                      |
| P. Bis(2-chloroethoxy)methane   | RR. 4-Bromophenyl-phenylether   | TTT. 1-Methylnaphthalene         | VVVV. 1,2,4,5-Tetrachlorobenzene          | X1. Pentachloroethane                  |
| Q. 2,4-Dichlorophenol           | SS. Hexachlorobenzene           | UUU.Benzo(b)thiophene            | WWWW 2-Picoline                           | Y1. 3,3'-Dimethylbenzidine             |
| R. 1,2,4-Trichlorobenzene       | TT. Pentachlorophenol           | VVV.Benzonaphthothiophene        | XXXX. 3-Methylcholanthrene                | Z1. o-Toluidine                        |
| S. Naphthalene                  | UU. Phenanthrene                | WWW.Benzo(e)pyrene               | YYYY. a,a-Dimethylphenethylamine          | A2. 1-Naphthylamine                    |
| T. 4-Chloroaniline              | VV. Anthracene                  | XXX. 2,6-Dimethylnaphthalene     | ZZZZ. Hexachloropropene                   | B2. 4-Aminobiphenyl                    |
| U. Hexachlorobutadiene          | WW. Carbazole                   | YYY. 2,3,5-Trimethylnaphthalene  | A1. N-Nitrosodiethylamine                 | C2. 4-Nitroquinoline-1-oxide           |
| V. 4-Chloro-3-methylphenol      | XX. Di-n-butylphthalate         | ZZZ. Perylene                    | B1. N-Nitrosodi-n-butylamine              | D2. Hexachloropene                     |
| W. 2-Methylnaphthalene          | YY. Fluoranthene                | AAAA. Dibenzothiophene           | C1. N-Nitrosomethylethylamine             | E2. Bis (2-chloro-1-methylethyl) ether |
| X. Hexachlorocyclopentadiene    | ZZ. Pyrene                      | BBBB. Benzo(a)fluoranthene       | D1. N-Nitrosomorpholine                   | F2. Bifenthrin                         |
| Y. 2,4,6-Trichlorophenol        | AAA. Butylbenzylphthalate       | CCCC. Benzo(b)fluorene           | E1. N-Nitrosopyrrolidine                  | G2. Cyfluthrin                         |
| Z. 2,4,5-Trichlorophenol        | BBB. 3,3'-Dichlorobenzidine     | DDDD. cis/trans-Decalin          | F1. Phenacetin                            | H2. Cypermethrin                       |
| AA. 2-Chloronaphthalene         | CCC. Benzo(a)anthracene         | EEEE. 1,1'-Biphenyl              | G1. 2-Acetylaminofluorene                 | I2. Permethrin (cis/trans)             |
| BB. 2-Nitroaniline              | DDD. Chrysene                   | FFFF. Retene                     | H1. Pronamide                             | J2. 5-Nitro-o-toluidine                |

LDC #: 54723A2a

#### VALIDATION FINDINGS WORKSHEET Surrogate Recovery

# Page Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270  $\mathcal{L}$ )

Y N/A

(N//

ΥN

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Were percent recoveries (%R) for surrogates within QC limits? YN X1/A

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

| # | Sample ID                             | Surrogate | %R (Limits) |                  | Qualifications |
|---|---------------------------------------|-----------|-------------|------------------|----------------|
|   | 4                                     | TPH_      | 135         | (50-13-)         | no qua         |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               | V              |
|   |                                       |           | L           | ()               |                |
|   | MB 580-395333                         | <u> </u>  | 136         | $( \downarrow )$ |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       | ·         |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()_              |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   |                                       |           |             | ()               |                |
|   | · · · · · · · · · · · · · · · · · · · |           |             | ()               |                |
|   |                                       |           |             | ()               |                |

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl

(2FP) = 2-Fluorophenol (TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

(TPH) = Terphenyl - d14

LDC #: 5472 3A22

## **VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)**

\_of / Page: Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A M/A

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

| <u> </u> | $\frac{N}{W}$ were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? |          |                    |                     |   |              |                    |                |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|----------|--------------------|---------------------|---|--------------|--------------------|----------------|--|
| #        | LCS/LCSD ID                                                                                                              | Compound | LCS<br>%R (Limits) | LCSD<br>%R (Limits) |   | RPD (Limits) | Associated Samples | Qualifications |  |
|          | 1cs10                                                                                                                    | N        | ( )                | (                   | ) | 38 (20)      | all                | John /P ND     |  |
|          | 580-395                                                                                                                  | 333 K    | ()                 | (                   | ) | 23 (20)      | V                  | V              |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    | ,              |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          |                    | (                   | ) | ()           |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( ' )        |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ()           |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ()                 |                     |   | ()           |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |
|          |                                                                                                                          |          | ( )                | (                   | ) | ( )          |                    |                |  |

## VALIDATION FINDINGS WORKSHEET **Target Analyte Quantitation**

Reviewer: FT

#### METHOD: GCMS VOA EPA SW 846 Method 8260D

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

 $\frac{Y}{Y}$ Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID                             | Compound                                                            | Lab RL is higher than QAPP RL | Qualifications |
|---|------|---------------------------------------|---------------------------------------------------------------------|-------------------------------|----------------|
|   |      | all                                   | All analytes reported as Tentatively<br>Identified Compounds (TICs) |                               | NJ/A (V)       |
|   |      |                                       |                                                                     |                               |                |
|   |      | 2                                     | lab inhorated a                                                     | nalyte                        | T/A det (V)    |
|   |      |                                       | reported as TIC                                                     | )                             | · · · · · ·    |
|   |      |                                       | ζ                                                                   |                               |                |
|   |      | · · · · · · · · · · · · · · · · · · · |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |
|   |      |                                       |                                                                     |                               |                |

Comments: See sample calculation verification worksheet for recalculations

#### LDC #: \_54723A2a

# Validation Findings Worksheet Initial Calibration Calculation Verification

#### Method: 8270E

| Calibration |                   |          |          | (Y)      | (X)   | (X^2) |
|-------------|-------------------|----------|----------|----------|-------|-------|
| Date        | Instrument/Column | Compound | Standard | Response | Conc. | Conc. |
| 6/30/2022   | GCMS              | BBB      | 1        | 0.052    | 0.4   | 0.16  |
|             | TACO40            |          | 2        | 0.167    | 1     | 1     |
|             |                   |          | 3        | 0.475    | 2     | 4     |
|             |                   |          | 4        | 1.152    | 4     | 16    |
|             |                   |          | 5        | 2.778    | 10    | 100   |
|             |                   |          | 6        | 5.160    | 20    | 400   |
|             |                   |          | 7        | 9.924    | 40    | 1600  |
|             |                   |          | 8        | 23.160   | 100   | 10000 |
|             |                   |          | 9        | 43.480   | 200   | 40000 |

| Regression Output                  | Calcu       | lated       | Reported    |             |  |
|------------------------------------|-------------|-------------|-------------|-------------|--|
| Constant                           | с           | 0.0961      | С           | -6.1910     |  |
| Std Err of Y Est                   |             |             |             |             |  |
| R Squared                          |             | 0.9998843   |             | 0.9920000   |  |
| Degrees of Freedom                 |             |             |             |             |  |
|                                    | а           | b           | a           | b           |  |
| X Coefficient(s)                   | 2.48329E-01 | -1.5802E-04 | 2.71400E-01 | -3.0000E-06 |  |
| Std Err of Coef.                   |             |             |             |             |  |
| Correlation Coefficient            |             | 0.999942    |             |             |  |
| Coefficient of Determination (r^2) |             | 0.999884    |             |             |  |

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

| Page:_1_  | of1 |
|-----------|-----|
| Reviewer: | FT  |

#### Method: SVOA 8270E

|             |        |          |          |          | weighted      |
|-------------|--------|----------|----------|----------|---------------|
| Calibration |        |          |          | (Y)      | (X)           |
| Date        | System | Compound | Standard | Response | Concentration |
| 6/30/2022   | GCMS   | SS       | 1        | 0.04365  | 0.1           |
|             | TACO40 |          | 2        | 0.05402  | 0.2           |
|             |        |          | 3        | 0.1517   | 0.5           |
|             |        |          | 4        | 0.29     | 1             |
|             |        |          | 5        | 0.5892   | 2             |
|             |        |          | 6        | 1.442    | 5             |
|             |        |          | 7        | 2.735    | 10            |
|             |        |          | 8        | 5.414    | 20            |
|             |        |          | 9        | 13.42    | 50            |
|             |        |          | 10       | 26.35    | 100           |

| Regression Outp                    | ut       | Reported |
|------------------------------------|----------|----------|
| Constant                           | 0.068234 | 1.553700 |
| Std Err of Y Est                   |          |          |
| R Squared                          | 0.999915 | 1.000000 |
| Degrees of Freedom                 |          |          |
| X Coefficient(s)                   | 0.263809 | 0.266600 |
| Std Err of Coef.                   |          |          |
| Correlation Coefficient            | 0.999958 |          |
| Coefficient of Determination (r^2) | 0.999915 | 1.000000 |

#### ....

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: \_\_1\_\_ of \_\_1\_\_ Reviewer: \_\_\_\_FT\_\_\_

#### METHOD: GCMS 8270E

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

Where:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards %RSD = 100 \* (S/X)

Т

Ax = Area of compound Cx = Concentration of compound S = Standard deviation of the RRFs X = Mean of the RRFs Ais = Area of associated internal standard Cis = Concentration of internal Standard

|   |             |             |          |               |              |            | · · · · · · · · · · · · · · · · · · · |          |              |
|---|-------------|-------------|----------|---------------|--------------|------------|---------------------------------------|----------|--------------|
|   |             |             |          | Reported      | Recalculated | Reported   | Recalculated                          | Reported | Recalculated |
|   |             | Calibration |          |               |              | AverageRRF | Average RRF                           | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound | (RRF 500 std) | (RRF500 std) | (Initial)  | (Initial)                             |          |              |
|   | ICAL        | 6/30/2022   | A        | 1.1113        | 1.1113       | 1.1448     | 1.1448                                | 6.7      | 6.7          |
|   | TACO40      |             | U        | 0.2434        | 0.2434       | 0.2392     | 0.2392                                | 4.9      | 4.9          |
|   |             |             | LL       | 1.0230        | 1.0230       | 1.0401     | 1.0401                                | 4.7      | 4.7          |
|   |             |             | SS       | see curve     |              |            |                                       |          |              |
|   |             |             | BBB      | see curve     |              |            |                                       |          |              |
|   |             |             |          |               |              |            |                                       |          |              |

LDC #: 5472342a

## VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

**METHOD:** GC/MS BNA (EPA SW 846 Method 8270  $\mathcal{E}$ ) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF  $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ 

Where: ave. RRF = initial calibration average RRF A, = Area of target analyte

RRF = continuing calibration RRF

 $C_{x} = Concentration of target analyte$ 

A<sub>is</sub> = Area of associated internal standard

Cis = Concentration of internal standard

|   |             |                     |                                    |                          | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|---------------------|------------------------------------|--------------------------|-------------|--------------|----------|--------------|
| # | Standard ID | Calibration<br>Date | Target Analyte (Internal Standard) | Average RRF<br>(Initial) | RRF<br>(CC) | RRF<br>(CC)  | %D       | %D           |
| 1 | CON         | 7/2/27/             | (1st IS)                           | 1.14.18                  | 1.321       | 1.32         | 15.4     | 15.4         |
|   |             |                     | <b>↓</b> (2 <sup>nd</sup> IS)      | 0.2392                   | 0.2400      | 0.2400       | 0.4      | 0.4          |
|   |             |                     | 11 (3 <sup>rd</sup> IS)            | 1.0401                   | 1.084       | 1.084        | 4.3      | 4,3          |
|   |             |                     | 55 (L) (4 <sup>th</sup> IS)        | 1000                     | 1070        | 1070         | 6.6      | 6.6          |
|   |             |                     | <b>₽₽(0</b> ) (5 <sup>th</sup> IS) | 2000                     | 21100       | 21100        | 5.3      | 5.3          |
|   |             |                     | (6 <sup>th</sup> IS)               |                          |             |              |          |              |
| 2 |             |                     | (1st IS)                           |                          |             |              |          |              |
|   |             |                     | (2 <sup>nd</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (3 <sup>rd</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (4 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             | l I                 | (5 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (6 <sup>th</sup> IS)               |                          |             |              |          |              |
| 3 |             |                     | (1st IS)                           |                          |             |              |          |              |
|   |             |                     | (2 <sup>nd</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (3 <sup>rd</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (4 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (5 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             | ]                   | (6 <sup>th</sup> IS)               |                          |             |              |          |              |

Comments: Refer to Continuing Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 54723A2a

#### VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1\_\_of\_\_1\_ Reviewer:\_\_\_FT\_\_\_

## METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 E)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 出ン

|                      | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5      | 1000.0              | 872.2              | 87                              | 87                                  | U                     |
| 2-Fluorobiphenyl     |                     | 7269               | 73                              | 13                                  | 3                     |
| Terphenyl-d14        |                     | 305.3              | 114                             | 114                                 |                       |
| Phenol-d5            |                     | 305.33             | 3/                              | 31                                  |                       |
| 2-Fluorophenol       |                     | 485.4              | 49                              | 49                                  |                       |
| 2,4,6-Tribromophenol |                     | 847.4              | 85                              | 8                                   |                       |

#### Sample ID:\_\_\_\_

|                      | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5      |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl     |                     |                    |                                 |                                     |                       |
| Terphenyl-d14        |                     |                    |                                 |                                     |                       |
| Phenol-d5            |                     |                    |                                 |                                     |                       |
| 2-Fluorophenol       |                     |                    |                                 |                                     |                       |
| 2,4,6-Tribromophenol |                     |                    | . <u>.</u>                      |                                     |                       |

#### LDC #: 54723A2a VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

Page: 1 of 1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

(Ax)(Cis)(Fv)(Df) (A<sub>is</sub>)(RRF)(Vs or Ws)(%S/100) SSC =

%Recovery = (SSC/SA)\*100

Df= Dilution factor

C<sub>IS</sub> = Concentration of internal standard Fv =Final volume of extract

Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} \* 2) / (SSCLCS + SSCLCSD))\*100

980-395333 LCS/LCSD samples:

|                            | SI        | pike | Spike       |               | ı        | LCS.<br>Percent Recovery               |          | SD                                    |          |              |
|----------------------------|-----------|------|-------------|---------------|----------|----------------------------------------|----------|---------------------------------------|----------|--------------|
| Compound                   | Ас<br>(И9 | ided | Conce       | Concentration |          |                                        |          | Percent Recovery                      |          | RPD          |
|                            |           |      |             |               | Reported | Recalc                                 | Reported | Recaic                                | Reported | Recalculated |
| Phenol                     | 2.0       | 2.0  | 1.0)        | 0.964         | 51       | 51                                     | 48       | 48                                    | s's      | 5            |
| N-Nitroso-di-n-propylamine | _         |      |             |               |          |                                        |          |                                       |          |              |
| 4-Chloro-3-methylphenol    |           |      |             |               |          |                                        |          |                                       |          |              |
| Acenaphthene               |           |      |             |               |          |                                        |          |                                       |          |              |
| Pentachlorophenol          | 4.0       |      | 1.45        | 1.55          | 36       | 36                                     | 39       | 39                                    | 7        | 7            |
| Pyrene                     |           |      |             |               |          |                                        |          |                                       |          |              |
|                            |           |      |             |               |          |                                        |          |                                       |          |              |
|                            |           |      |             |               |          |                                        |          |                                       |          |              |
|                            | · ·       | 1    |             |               |          |                                        |          |                                       |          |              |
|                            |           |      |             |               |          |                                        |          |                                       |          |              |
|                            |           |      |             |               |          |                                        |          |                                       |          |              |
|                            |           |      | <u>    </u> |               |          | ······································ |          | · · · · · · · · · · · · · · · · · · · | <u> </u> |              |

Where:  $A_x$ = Area of the target analyte A<sub>IS</sub>= Area for the specific internal standard

LDC #: 54723A2a

#### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 D)

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

| Conce          | ntratio | $n = \frac{(A_{i})(I_{i})(V_{i})(DF)(2.0)}{(A_{is})(RRF)(V_{o})(V_{i})(%S)}$   |
|----------------|---------|--------------------------------------------------------------------------------|
| A <sub>x</sub> | =       | Area of the characteristic ion (EICP) for the target<br>analyte to be measured |
| $A_{is}$       | =       | Area of the characteristic ion (EICP) for the specific internal standard       |
| l <sub>s</sub> | =       | Amount of internal standard added in nanograms (ng)                            |
| V₀             | =       | Volume or weight of sample extract in milliliters (ml) or grams (g).           |
| Vi             | =       | Volume of extract injected in microliters (ul)                                 |
| V,             | =       | Volume of the concentrated extract in microliters (ul)                         |
| Df             | =       | Dilution Factor.                                                               |

%S = Percent solids, applicable to soil and solid matrices only.

2.0 = Factor of 2 to account for GPC cleanup

5/1000

Example:

=

Sample I.D. 100 580 - 395 332 A

 $Conc. = \frac{(91836)(100.0)(2)}{(15826)(1.1448)(1000)}$ 

1.0138 ug/L

| # | Sample ID | Target Analyte | Reported<br>Concentration | Calculated<br>Concentration | Qualification |
|---|-----------|----------------|---------------------------|-----------------------------|---------------|
|   | les       | A              | 1-0 ]                     | 1.0138                      |               |
|   |           |                |                           |                             |               |
|   |           |                | ······                    |                             |               |
|   |           |                |                           |                             |               |
|   |           |                |                           |                             |               |
|   |           |                |                           |                             |               |
|   |           |                |                           |                             |               |
|   |           |                |                           |                             |               |
|   |           |                |                           |                             |               |

## LDC Report# 54723A2b

# Laboratory Data Consultants, Inc. Data Validation Report

| <b>Project/Site Name:</b> Red Hill Olly Waste Disposal Facility, CTO 18F0 |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

| LDC Report Date: | August 24   | 2022 |
|------------------|-------------|------|
| LDO Report Date. | / ugusi 27, |      |

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

|                       | Laboratory Sample |        | Collection |
|-----------------------|-------------------|--------|------------|
| Sample Identification | Identification    | Matrix | Date       |
| HU135                 | 580-115203-1      | Water  | 06/22/22   |
| HU126**               | 580-115203-3**    | Water  | 06/22/22   |
| HU110                 | 580-115203-5      | Water  | 06/22/22   |
| HU119                 | 580-115203-7      | Water  | 06/22/22   |

#### \*\*Indicates sample underwent Stage 4 validation

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

## III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

# IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

# V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

# VI. Field Blanks

No field blanks were identified in this SDG.

#### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### X. Field Duplicates

No field duplicates were identified in this SDG.

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

#### XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-115203-1

No Sample Data Qualified in this SDG

#### VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date Page Reviewer 2nd Reviewer

SDG #: 580-115203-1 Laboratory: Eurofins, Tacoma, WA

LDC #: 54723A2b

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|                | Validation Area                                                |                     | Comments                                                           |
|----------------|----------------------------------------------------------------|---------------------|--------------------------------------------------------------------|
| ١.             | Sample receipt/Technical holding times                         | AIN                 |                                                                    |
| 11.            | GC/MS Instrument performance check                             |                     |                                                                    |
| Ш.             | Initial calibration/ICV                                        | $\Delta / \Delta$   | 0/0 p50 = 15, 12 101 = 20                                          |
| IV.            | Continuing calibration                                         |                     | CUV = 20/52                                                        |
| V.             | Laboratory Blanks                                              | A                   |                                                                    |
| VI.            | Field blanks                                                   | 2                   |                                                                    |
| VII.           | Surrogate spikes                                               | Δ                   |                                                                    |
| VIII.          | Matrix spike/Matrix spike duplicates                           | N                   | CS .                                                               |
| IX.            | Laboratory control samples                                     | A                   | Lasiv                                                              |
| Х.             | Field duplicates                                               | N                   |                                                                    |
| XI.            | Internal standards                                             | Δ                   |                                                                    |
| XII.           | Target analyte quantitation                                    | 4                   | Not reviewed for Stage 2B validation.                              |
| <b>"</b> XIII. | Target analyte identification                                  | 4                   | Not reviewed for Stage 2B validation.                              |
| XIV.           | System performance                                             | Δ                   | Not reviewed for Stage 2B validation.                              |
| XV.            | Overall assessment of data                                     | A                   |                                                                    |
| Note:          | A = Acceptable ND = No<br>N = Not provided/applicable R = Rin: | o compound:<br>sate | s detected D = Duplicate SB=Source blank<br>TB = Trip blank OTHER: |

| Rinsate     |
|-------------|
| Field blank |
|             |

TB = Trip blank EB = Equipment blank OTHER:

ĩ

| ** Indicates sample underwent Stage 4 validation |  |  |  |  |  |  |  |
|--------------------------------------------------|--|--|--|--|--|--|--|
|                                                  |  |  |  |  |  |  |  |

|            | Client ID     |   | Lab ID       | Matrix                                        | Date     |          |  |  |  |  |
|------------|---------------|---|--------------|-----------------------------------------------|----------|----------|--|--|--|--|
| 7          | HU135         |   | 580-115203-1 | Water                                         | 06/22/22 |          |  |  |  |  |
| <b>t</b> 2 | HU126**       |   |              | 580-115203-3**                                | Water    | 06/22/22 |  |  |  |  |
| 3          | HU110         |   |              | 580-115203-5                                  | Water    | 06/22/22 |  |  |  |  |
| 4          | HU119         |   |              | 580-115203-7                                  | Water    | 06/22/22 |  |  |  |  |
| 5          |               |   |              |                                               |          |          |  |  |  |  |
| 6          |               |   |              |                                               |          |          |  |  |  |  |
| 7          |               |   |              |                                               |          |          |  |  |  |  |
| 8          |               |   |              |                                               |          |          |  |  |  |  |
| 9          |               |   |              |                                               |          |          |  |  |  |  |
| Notes:     |               |   |              |                                               |          |          |  |  |  |  |
|            | MB 580- 39533 | 3 |              |                                               |          |          |  |  |  |  |
|            | •             |   |              |                                               |          |          |  |  |  |  |
|            |               |   |              | <u>, , , , , , , , , , , , , , , , , , , </u> |          |          |  |  |  |  |
|            | ·····         |   |              |                                               |          |          |  |  |  |  |

#### Method: Semivolatiles (EPA SW 846 Method 8270 €) 51M

| Validation Area                                                                                                                                                                             | Yes | No | NA | Findings/Comments |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|
| I. Technical holding times                                                                                                                                                                  |     |    |    |                   |
| Were all technical holding times met?                                                                                                                                                       | /   |    |    |                   |
| Was cooler temperature criteria met?                                                                                                                                                        | /   |    |    |                   |
| II. GC/MS Instrument performance check                                                                                                                                                      | •   |    |    |                   |
| Were the DFTPP performance results reviewed and found to be within the specified criteria?                                                                                                  | /   |    |    |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                                | /   |    |    |                   |
| Illa. Initial calibration                                                                                                                                                                   |     |    |    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                                  | <   |    |    | ·                 |
| Were all percent relative standard deviations (%RSD) $\leq$ 15% and relative response factors (RRF) within method criteria?                                                                 | <   |    |    |                   |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990?                                                            | /   |    |    |                   |
| IIIb. Initial Calibration Verification                                                                                                                                                      |     |    |    |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                                                                               | /   |    |    |                   |
| Were all percent differences (%D) ≤ 20%?                                                                                                                                                    |     |    |    |                   |
| IV. Continuing calibration                                                                                                                                                                  | -   |    |    |                   |
| Was a continuing calibration standard analyzed at least once every 12 hours for<br>each instrument?                                                                                         | /   |    |    |                   |
| Were all percent differences (%D) $\leq$ 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) $\leq$ 50% for closing calibration verification? | /   |    |    |                   |
| V. Laboratory Blanks                                                                                                                                                                        |     |    |    |                   |
| Was a laboratory blank associated with every sample in this SDG?                                                                                                                            | /   |    |    |                   |
| Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?                                                                                             | _   |    |    |                   |
| Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.                                                                              |     | /  | -  |                   |
| VI. Field blanks                                                                                                                                                                            |     |    |    |                   |
| Were field blanks were identified in this SDG?                                                                                                                                              |     | /  | -  |                   |
| Were target analytes detected in the field blanks?                                                                                                                                          |     |    |    | -                 |
| VII. Surrogate spikes                                                                                                                                                                       |     |    |    |                   |
| Were all surrogate percent recovery (%R) within QC limits?                                                                                                                                  | _   |    |    |                   |
| If 2 or more base neutral or acid surrogates were outside QC limits, was a<br>reanalysis performed to confirm %R?                                                                           |     |    | /  |                   |
| If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?                                                                                                |     |    | -  | -                 |
| VIII. Matrix spike/Matrix spike duplicates                                                                                                                                                  |     |    |    | /                 |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?                                                                                                               |     |    | /  |                   |

LDC #: 54723 A2b

# VALIDATION FINDINGS CHECKLIST

| Validation Area                                                                                                                          | Yes         | No | NA | Findings/Comments |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|----|-------------------|
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                 |             |    | /  |                   |
| IX. Laboratory control samples                                                                                                           |             |    |    |                   |
| Was an LCS analyzed per extraction batch?                                                                                                | $\angle$    |    |    |                   |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                         | /           | ſ  |    |                   |
| X. Field duplicates                                                                                                                      |             | -  |    |                   |
| Were field duplicate pairs identified in this SDG?                                                                                       |             | /  | r  |                   |
| Were target analytes detected in the field duplicates?                                                                                   |             |    | /  |                   |
| XI. Internal standards                                                                                                                   |             |    |    |                   |
| Were internal standard area counts within -50% to +100% of the associated calibration standard?                                          | /           |    |    |                   |
| Were retention times within <u>+</u> 30 seconds of the associated calibration standard?                                                  |             |    |    |                   |
| XII. Target analyte quantitation                                                                                                         |             |    |    |                   |
| Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?                                                                                      |             |    |    |                   |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?      | $\setminus$ |    |    |                   |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and<br>dry weight factors applicable to level IV validation? |             |    |    |                   |
| XIII. Target analyte identification                                                                                                      |             |    |    |                   |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                           | ~           |    |    |                   |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                | <           |    |    |                   |
| Were chromatogram peaks verified and accounted for?                                                                                      | <           |    |    |                   |
| Were manual integrations reviewed and found acceptable?                                                                                  | <           |    |    |                   |
| Did the laboratory provide before and after integration printouts?                                                                       |             |    |    |                   |
| XIV. System performance                                                                                                                  | •           |    |    |                   |
| System performance was found to be acceptable.                                                                                           | /           |    |    |                   |
| XV. Overall assessment of data                                                                                                           |             |    |    |                   |
| Overall assessment of data was found to be acceptable.                                                                                   |             |    |    |                   |

ni Ng Ng Sana a

# VALIDATION FINDINGS WORKSHEET

#### METHOD: GC/MS SVOA

|                                 |                                 |                                  | The second s |                                        |
|---------------------------------|---------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|
| A. Phenol                       | CC. Dimethylphthalate           | EEE. Bis(2-ethylhexyl)phthalate  | GGGG. C30-Hopane                                                                                               | 11. Methyl methanesulfonate            |
| B. Bis (2-chloroethyl) ether    | DD. Acenaphthylene              | FFF. Di-n-octylphthalate         | HHHH. 1-Methylphenanthrene                                                                                     | J1. Ethyl methanesulfonate             |
| C. 2-Chlorophenol               | EE. 2,6-Dinitrotoluene          | GGG. Benzo(b)fluoranthene        | IIII. 1,4-Dioxane                                                                                              | K1. o,o',o"-Triethylphosphorothioate   |
| D. 1,3-Dichlorobenzene          | FF. 3-Nitroaniline              | HHH. Benzo(k)fluoranthene        | JJJJ. Acetophenone                                                                                             | L1. n-Phenylene diamine                |
| E. 1,4-Dichlorobenzene          | GG. Acenaphthene                | III. Benzo(a)pyrene              | KKKK. Atrazine                                                                                                 | M1. 1,4-Naphthoquinone                 |
| F. 1,2-Dichlorobenzene          | HH. 2,4-Dinitrophenol           | JJJ. Indeno(1,2,3-cd)pyrene      | LLLL. Benzaldehyde                                                                                             | N1. N-Nitro-o-toluidine                |
| G. 2-Methylphenol               | II. 4-Nitrophenol               | KKK. Dibenz(a,h)anthracene       | MMMM. Caprolactam                                                                                              | O1. 1,3,5-Trinitrobenzene              |
| H. 2,2'-Oxybis(1-chloropropane) | JJ. Dibenzofuran                | LLL. Benzo(g,h,i)perylene        | NNNN. 2,6-Dichlorophenol                                                                                       | P1. Pentachlorobenzene                 |
| I. 4-Methylphenol               | KK. 2,4-Dinitrotoluene          | MMM. Bis(2-Chloroisopropyl)ether | 0000. 1,2-Diphenylhydrazine                                                                                    | Q1. 4-Aminobiphenyl                    |
| J. N-Nitroso-di-n-propylamine   | LL. Diethylphthalate            | NNN. Aniline                     | PPPP. 3-Methylphenol                                                                                           | R1. 2-Naphthylamine                    |
| K. Hexachloroethane             | MM. 4-Chlorophenyl-phenyl ether | OOO. N-Nitrosodimethylamine      | QQQQ. 3&4-Methylphenol                                                                                         | S1. Triphenylene                       |
| L. Nitrobenzene                 | NN. Fluorene                    | PPP. Benzoic Acid                | RRRR. 4-Dimethyldibenzothiophene (4MDT)                                                                        | T1. Octachlorostyrene                  |
| M. Isophorone                   | OO. 4-Nitroaniline              | QQQ. Benzyl alcohol              | SSSS. 2/3-Dimethyldibenzothiophene (4MDT)                                                                      | U1. Famphur                            |
| N. 2-Nitrophenol                | PP. 4,6-Dinitro-2-methylphenol  | RRR. Pyridine                    | TTTT. 1-Methyldibenzothiophene (1MDT)                                                                          | V1. 1,4-phenylenediamine               |
| O. 2,4-Dimethylphenol           | QQ. N-Nitrosodiphenylamine      | SSS. Benzidine                   | UUUU 2,3,4,6-Tetrachlorophenol                                                                                 | W1. Methapyrilene                      |
| P. Bis(2-chloroethoxy)methane   | RR. 4-Bromophenyl-phenylether   | TTT. 1-Methylnaphthalene         | VVVV. 1,2,4,5-Tetrachlorobenzene                                                                               | X1. Pentachloroethane                  |
| Q. 2,4-Dichlorophenol           | SS. Hexachlorobenzene           | UUU.Benzo(b)thiophene            | WWWW 2-Picoline                                                                                                | Y1. 3,3'-Dimethylbenzidine             |
| R. 1,2,4-Trichlorobenzene       | TT. Pentachlorophenol           | VVV.Benzonaphthothiophene        | XXXX. 3-Methylcholanthrene                                                                                     | Z1. o-Toluidine                        |
| S. Naphthalene                  | UU. Phenanthrene                | WWW.Benzo(e)pyrene               | YYYY. a,a-Dimethylphenethylamine                                                                               | A2. 1-Naphthylamine                    |
| T. 4-Chloroaniline              | VV. Anthracene                  | XXX. 2,6-Dimethylnaphthalene     | ZZZZ. Hexachloropropene                                                                                        | B2. 4-Aminobiphenyl                    |
| U. Hexachlorobutadiene          | WW. Carbazole                   | YYY. 2,3,5-Trimethylnaphthalene  | A1. N-Nitrosodiethylamine                                                                                      | C2. 4-Nitroquinoline-1-oxide           |
| V. 4-Chloro-3-methylphenol      | XX. Di-n-butylphthalate         | ZZZ. Perylene                    | B1. N-Nitrosodi-n-butylamine                                                                                   | D2. Hexachloropene                     |
| W. 2-Methylnaphthalene          | YY. Fluoranthene                | AAAA. Dibenzothiophene           | C1. N-Nitrosomethylethylamine                                                                                  | E2. Bis (2-chloro-1-methylethyl) ether |
| X. Hexachlorocyclopentadiene    | ZZ. Pyrene                      | BBBB. Benzo(a)fluoranthene       | D1. N-Nitrosomorpholine                                                                                        | F2. Bifenthrin                         |
| Y. 2,4,6-Trichlorophenol        | AAA. Butylbenzylphthalate       | CCCC. Benzo(b)fluorene           | E1. N-Nitrosopyrrolidine                                                                                       | G2. Cyfluthrin                         |
| Z. 2,4,5-Trichlorophenol        | BBB. 3,3'-Dichlorobenzidine     | DDDD. cis/trans-Decalin          | F1. Phenacetin                                                                                                 | H2. Cypermethrin                       |
| AA. 2-Chloronaphthalene         | CCC. Benzo(a)anthracene         | EEEE. 1,1'-Biphenyl              | G1. 2-Acetylaminofluorene                                                                                      | I2. Permethrin (cis/trans)             |
| BB. 2-Nitroaniline              | DDD. Chrysene                   | FFFF. Retene                     | H1. Pronamide                                                                                                  | J2. 5-Nitro-o-toluidine                |

%RSD = 100 \* (S/X)

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: \_\_1\_\_ of \_\_1\_\_ Reviewer: \_\_\_\_FT\_\_\_

#### METHOD: GCMS 8270D SIM

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards Where:

- Ax = Area of compound Cx = Concentration of compound
- S = Standard deviation of the RRFs
- X = Mean of the RRFs
- Ais = Area of associated internal standard
- Cis = Concentration of internal Standard

|   |             |             |          |                  |                   | · · · · · · · · · · · · · · · · · · · |              |          |              |
|---|-------------|-------------|----------|------------------|-------------------|---------------------------------------|--------------|----------|--------------|
|   |             |             |          | Reported         | Recalculated      | Reported                              | Recalculated | Reported | Recalculated |
|   |             | Calibration |          |                  |                   | AverageRRF                            | Average RRF  | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound | (RRF 100ug/Lstd) | (RRF 100ug/L std) | (Initial)                             | (Initial)    |          |              |
|   | ICAL        | 6/30/2022   | S        | 1.1129           | 1.1129            | 1.0772                                | 1.0772       | 10.6     | 10.6         |
|   |             |             | DD       | 1.8997           | 1.8997            | 1.9330                                | 1.9330       | 12.0     | 12.0         |
|   | TACO50      |             | vv       | 1.1915           | 1.1915            | 1.1640                                | 1.1640       | 7.7      | 7.7          |
|   |             |             | DDD      | 1.5208           | 1.5208            | 1.4993                                | 1.4993       | 1.5      | 1.5          |
|   |             |             |          | 1.1223           | 1.1223            | 1.1141                                | 1.1141       | 12.1     | 12.1         |



#### VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

#### METHOD: GC/MS BNA (EPA SW 846 Method 8270 ビ)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF  $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ 

Where: ave. RRF = initial calibration average RRF  $A_x$  = Area of target analyte  $C_x$  = Concentration of target analyte

RRF = continuing calibration RRF

A<sub>is</sub> = Area of associated internal standard

C<sub>is</sub> = Concentration of internal standard

|   |             |                     |                                    |                          | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|---------------------|------------------------------------|--------------------------|-------------|--------------|----------|--------------|
| # | Standard ID | Calibration<br>Date | Target Analyte (Internal Standard) | Average RRF<br>(Initial) | RRF<br>(CC) | RRF<br>(CC)  | %D       | %D           |
| 1 | ٥.٥٦/       | 7/0/22              | <b>5</b> (1st IS)                  | 1.0772                   | 0.9898      | 6.9898       | 8.)      | 8.)          |
|   |             | 101-0               | <b>ゆう</b> (2 <sup>nd</sup> IS)     | 1.9330                   | 1.734       | 1,734        | 10.3     | 10.3         |
|   |             | 1755                | (3 <sup>rd</sup> IS)               | 1-1640                   | 1.082       | 1.082        | 7.1      | 7.)          |
|   |             |                     | 000 (4 <sup>th</sup> IS)           | 1.4993                   | 1.368       | 1.368        | 8.8      | 8.8          |
|   |             |                     | )() (5 <sup>th</sup> IS)           | 1.114)                   | 1.053       | 1.053        | 5.5      | 5.5          |
|   |             |                     | (6 <sup>th</sup> IS)               |                          |             |              |          |              |
| 2 |             |                     | (1st IS)                           |                          |             |              |          |              |
|   |             |                     | (2 <sup>nd</sup> IS)               |                          | -           |              |          |              |
|   |             |                     | (3 <sup>rd</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (4 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (5 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (6 <sup>th</sup> IS)               |                          |             |              |          |              |
| 3 |             |                     | (1st IS)                           |                          |             |              |          |              |
|   |             |                     | (2 <sup>nd</sup> IS)               |                          |             | ·            |          |              |
|   |             |                     | (3 <sup>rd</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (4 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (5 <sup>th</sup> IS)               |                          |             |              |          |              |
|   |             |                     | (6 <sup>th</sup> IS)               |                          |             |              |          |              |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:\_947 23 A2b

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

| Page:     | <u>1of_</u> | 1 |
|-----------|-------------|---|
| Reviewer: | FT          |   |

#### METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 F)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 2

|                           | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|---------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5 W-d10     | 1000                | 655.8              | 66                              | 66                                  | U                     |
| 2-Fluorobiphenyl -17- d10 | 1                   | 935.1              | 94                              | 94                                  | 0                     |
| Terphenyl-d14             |                     |                    | 101                             | 10)                                 | V                     |
| Phenol-d5                 |                     |                    |                                 |                                     |                       |
| 2-Fluorophenol            |                     |                    |                                 |                                     |                       |
| 2,4,6-Tribromophenol      |                     |                    |                                 |                                     |                       |

#### Sample ID:\_\_\_\_\_

|                      | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Nitrobenzene-d5      |                     |                    |                                 |                                     |                       |
| 2-Fluorobiphenyl     |                     |                    |                                 |                                     |                       |
| Terphenyl-d14        |                     |                    |                                 |                                     |                       |
| Phenol-d5            |                     |                    |                                 |                                     |                       |
| 2-Fluorophenol       |                     |                    |                                 |                                     |                       |
| 2,4,6-Tribromophenol |                     |                    |                                 |                                     |                       |

Page: 1\_of 1\_

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

(Ax)(Cis)(Fv)(Df) SSC = (A<sub>is</sub>)(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)\*100

Where: A<sub>x</sub>= Area of the target analyte

A<sub>is</sub>= Area for the specific internal standard  $C_{is} = Concentration of internal standard$ Fv =Final volume of extract Df= Dilution factor

Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} \* 2) / (SSCLCS + SSCLCSD))\*100

10-10

|                            | SI SI     | pike              | s    | pike          | q        | <u>:s</u>        | <u></u>  | SD               |                                       | /I CSD       |  |
|----------------------------|-----------|-------------------|------|---------------|----------|------------------|----------|------------------|---------------------------------------|--------------|--|
| Compound                   | Ас<br>(ис | Added<br>( いみ レ ) |      | Concentration |          | Percent Recovery |          | Percent Recovery |                                       | RPD          |  |
|                            |           |                   |      |               | Reported | Recalc           | Reported | Recalc           | Reported                              | Recalculated |  |
| Phenol                     |           |                   |      |               |          |                  |          |                  | · · · · · · · · · · · · · · · · · · · |              |  |
| N-Nitroso-di-n-propylamine |           |                   |      |               |          |                  | -        |                  |                                       |              |  |
| 4-Chloro-3-methylphenol    |           |                   |      |               |          |                  |          |                  |                                       |              |  |
| Acenaphthene               | 2.0       | 2.0               | 1.66 | 1.70          | 83       | 83               | 25       | প্নহ             | 2                                     | 2            |  |
| Pentachlorophenol          |           |                   |      |               |          | ·                |          |                  | -                                     |              |  |
| Pyrene                     | 2.0       | 2.0               | 1.82 | 1.51          | 91       | 91               | 90       | 90               | 0                                     | 0            |  |
|                            |           |                   |      |               |          | _                | •        |                  |                                       |              |  |
|                            |           |                   |      |               |          |                  |          |                  |                                       |              |  |
|                            |           |                   |      |               |          |                  |          |                  |                                       |              |  |
|                            |           |                   |      |               |          |                  |          |                  |                                       |              |  |
|                            |           |                   |      |               |          |                  |          |                  |                                       |              |  |

LDC #: 5472 3A2b

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:     | 1  | _of | 1 |
|-----------|----|-----|---|
| Reviewer: | FT |     |   |

#### METHOD: GC/MS BNA (EPA SW 846 Method 8270 )

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

| Concei         | ntratio | $n = \frac{(A_{i})(I_{i})(V_{i})(DF)(2.0)}{(A_{is})(RRF)(V_{o})(V_{i})(%S)}$   | Example:                        |  |
|----------------|---------|--------------------------------------------------------------------------------|---------------------------------|--|
| A <sub>x</sub> | =       | Area of the characteristic ion (EICP) for the target<br>analyte to be measured | Sample I.D. $\# Z$ , $\gamma V$ |  |
| $A_{is}$       | =       | Area of the characteristic ion (EICP) for the specific<br>internal standard    |                                 |  |
| l <sub>s</sub> | =       | Amount of internal standard added in nanograms (ng)                            | Conc. = (7598) (160.0) (2)      |  |
| V <sub>o</sub> | =       | Volume or weight of sample extract in milliliters (ml) or grams (g).           | (23215) (1.164) (972)           |  |
| V              | =       | Volume of extract injected in microliters (ul)                                 | =                               |  |
| Vt             | =       | Volume of the concentrated extract in microliters (ul)                         | 0.056                           |  |
| Df             | =       | Dilution Factor.                                                               |                                 |  |
| %S             | 3       | Percent solids, applicable to soil and solid matrices<br>only.                 |                                 |  |
| 2.0            | =       | Factor of 2 to account for GPC cleanup $PHN$<br>2/912                          |                                 |  |

| # | Sample ID | / Target Analyte       | Reported<br>Concentration<br>( | Calculated<br>Concentration<br>() | Qualification |
|---|-----------|------------------------|--------------------------------|-----------------------------------|---------------|
|   | # 2       | $\checkmark\checkmark$ | 0.056                          |                                   |               |
|   |           |                        |                                |                                   |               |
|   |           |                        |                                |                                   | ·             |
|   |           |                        |                                |                                   |               |
|   |           |                        |                                |                                   |               |
|   |           |                        |                                |                                   |               |
|   |           |                        |                                |                                   |               |
|   |           |                        |                                |                                   |               |

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: October 3, 2022

Parameters: Metals

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU135                 | 580-115203-1                        | Water  | 06/22/22           |
| HU126**               | 580-115203-3**                      | Water  | 06/22/22           |
| HU110                 | 580-115203-5                        | Water  | 06/22/22           |
| HU119                 | 580-115203-7                        | Water  | 06/22/22           |

\*\*Indicates sample underwent Stage 4 validation

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).
# I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

#### II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

#### **III. ICP Interference Check Sample Analysis**

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

#### **IV. Laboratory Blanks**

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID        | Analyte             | Maximum<br>Concentration | Associated<br>Samples           |
|-----------------|---------------------|--------------------------|---------------------------------|
| PB (prep blank) | Potassium           | 197 ug/L                 | All samples in SDG 580-115203-1 |
| ICB/CCB         | Potassium<br>Sodium | 0.229 ug/L<br>0.179 ug/L | All samples in SDG 580-115203-1 |

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

#### V. Field Blanks

No field blanks were identified in this SDG.

#### VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

#### **VIII. Serial Dilution**

Serial dilution was not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### X. Field Duplicates

No field duplicates were identified in this SDG.

#### XI. Target Analyte Quantitation

All target analyte quantitation met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

#### Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Field Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

#### VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

LDC #: <u>54723A4b</u> **VA** SDG #: <u>580-115203-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u> Date: <u>9|28|2</u>2 Page:\_\_\_\_of\_\_\_ Reviewer:\_\_<del>\_\_\_\_10\_\_</del> 2nd Reviewer:\_\_\_\_\_

#### METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                                                                                                      |                                  |                  | Comme                                                    | ents                  |          |
|-------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|----------------------------------------------------------|-----------------------|----------|
| I.    | Sample receipt/Technical holding times                                                                               | AA                               |                  |                                                          |                       |          |
| ١١.   | Instrument Calibration                                                                                               | A                                |                  |                                                          |                       |          |
| III.  | ICP Interference Check Sample (ICS) Analysis                                                                         | A                                |                  |                                                          |                       |          |
| IV.   | Laboratory Blanks                                                                                                    | SW                               |                  |                                                          |                       |          |
| V.    | Field Blanks                                                                                                         | N                                |                  |                                                          |                       |          |
| VI.   | Matrix Spike/Matrix Spike Duplicates                                                                                 | N                                | Cis              |                                                          |                       |          |
| VII.  | Duplicate sample analysis                                                                                            | N                                |                  | -                                                        |                       |          |
| VIII. | Serial Dilution                                                                                                      | N                                |                  |                                                          |                       |          |
| IX.   | Laboratory control samples                                                                                           | A                                | LOSILOST         | )                                                        |                       |          |
| Х.    | Field Duplicates                                                                                                     | N                                |                  |                                                          |                       |          |
| XI.   | Target Analyte Quantitation                                                                                          | A                                | Not reviewed for | Stage 2B validation.                                     |                       |          |
|       | Overall Assessment of Data                                                                                           | A                                |                  |                                                          |                       |          |
| Note: | A = AcceptableND = NoN = Not provided/applicableR = RinSW = See worksheetFB = Finsample underwent Stage 4 validation | o compounds<br>sate<br>eld blank | s detected       | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank | SB=Source b<br>OTHER: | lank     |
|       | Client ID                                                                                                            |                                  |                  | Lab ID                                                   | Matrix                | Date     |
| 1     | HU135                                                                                                                |                                  |                  | 580-115203-1                                             | Water                 | 06/22/22 |
| 2     | HU126**                                                                                                              |                                  |                  | 580-115203-3**                                           | Water                 | 06/22/22 |
| 3     | HU110                                                                                                                |                                  |                  | 580-115203-5                                             | Water                 | 06/22/22 |
| 4     | HU119                                                                                                                |                                  |                  | 580-115203-7                                             | Water                 | 06/22/22 |
| 5     |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 6     |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 7     |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 8     |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 9     |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 10    |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 11    |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 12    |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 13    |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 14    |                                                                                                                      |                                  |                  |                                                          |                       |          |
| 15    |                                                                                                                      |                                  |                  |                                                          |                       |          |
| Notes | :                                                                                                                    |                                  |                  |                                                          |                       |          |

| METHOD: Trace Metals (EPA SW 846 Methods       | 6010         | /6020 | 0/7000) |                                       |
|------------------------------------------------|--------------|-------|---------|---------------------------------------|
| Validation Area                                | Yes          | No    | NA      | Comments                              |
| I. Technical holding times                     |              |       |         |                                       |
| Were all technical holding times met?          |              |       |         |                                       |
| Were all water samples preserved to a pH of    |              |       |         |                                       |
| <2.                                            | v            |       |         |                                       |
| II. ICP-MS Tune                                |              |       |         |                                       |
| Were mass resolutions within 0.1 amu for all   |              |       | ./      |                                       |
| isotopes in the tuning solution?               |              |       |         |                                       |
| Were %RSDs of isoptoes in the tuning           |              |       |         |                                       |
| solution ≤5%?                                  |              |       | v       |                                       |
| III. Calibration                               |              | ·     | _       | · · · · · · · · · · · · · · · · · · · |
| Were all instruments calibrated daily?         | $\checkmark$ |       |         |                                       |
| Were the proper standards used?                | $\checkmark$ |       |         |                                       |
| Were all initial and continuing calibration    |              |       |         |                                       |
| verifications within the 90-110% (80-120% for  |              |       |         |                                       |
| mercury) QC limits?                            |              |       |         |                                       |
| Were the low level standard checks within 70-  | ./           |       |         |                                       |
| 130%? <u><u>80-1</u>20<sup>°</sup>h</u>        | V            |       |         |                                       |
| Were all initial calibration correlation       | 1            |       |         |                                       |
| coefficients within limits as specifed by the  |              | Į     |         |                                       |
| method?                                        |              |       |         |                                       |
| IV. Blanks                                     |              |       |         |                                       |
| Was a method blank associated with every       | ./           |       |         |                                       |
| sample in this SDG?                            | V            |       |         |                                       |
| Was there contamination in the method          | 1            |       |         |                                       |
| blanks?                                        | v            |       |         |                                       |
| Was there contamination in the initial and     | $\checkmark$ |       |         |                                       |
| continuing calibration blanks?                 |              |       |         |                                       |
| V. Interference Check Sample                   |              |       |         |                                       |
| Were the interference check samples            | ./           |       |         |                                       |
| performed daily?                               |              |       |         |                                       |
| Were the AB solution recoveries within 80-     | $\checkmark$ |       |         |                                       |
| 120%?                                          |              |       |         |                                       |
| VI. Matrix Spike/Matrix Spike Duplicates/Lab   | orato        | ry Du | plicate | S                                     |
| Were MS/MSD recoveries within the QC           |              |       |         |                                       |
| limits? (If the sample concentration exceeded  |              | ]     |         |                                       |
| the spike concentration by a factor of 4, no   |              |       |         |                                       |
| action was taken.)                             |              |       |         |                                       |
| Were the MS/MSD or laboratory duplicate        |              |       | 1       |                                       |
| relative percent differences (RPDs) within the |              |       |         |                                       |
| QC limits?                                     |              |       |         |                                       |
| VII. Laboratory Control Samples                |              |       |         |                                       |
| SDG?                                           | $\bigvee$    |       |         |                                       |

LDC #: 54723A4b

#### VALIDATION FINDINGS CHECKLIST

.

| Were the LCS recoveries and RPDs (if           | $\checkmark$ |              |                         |                                        |
|------------------------------------------------|--------------|--------------|-------------------------|----------------------------------------|
| applicable) within QC limits?                  |              | /(020        | (7000)                  | ······································ |
| METHOD: Trace Metals (EPA SW 846 Methods       | 5 6010       | /6020,       | //000)                  | Common anto                            |
| Validation Area                                | res          | INO          | NA                      | Comments                               |
| VIII. Internal Standards                       | r            | <b></b>      |                         |                                        |
| Were all percent recoveries within the 30-     |              |              |                         |                                        |
| 120% (60-125% for EPA Method 200.8) QC         |              |              | $ $ $\vee$ $ $          | е.                                     |
| limits?                                        |              |              |                         |                                        |
| If the recoveries were outside the limits, was |              |              |                         |                                        |
| a reanalysis performed?                        |              |              | v                       |                                        |
| IX. Serial Dilution                            |              |              | <i>(</i>                |                                        |
| Were all percent differences <10%?             |              |              | $\checkmark$            |                                        |
| Was there evidence of negative interference?   |              |              | ./                      |                                        |
| If yes, professional judgement will be used to |              |              | Ň                       |                                        |
| qualify the data.                              |              |              |                         |                                        |
| X. Target Analyte Quantitation                 |              |              |                         |                                        |
| Were all reporting limits adjusted to reflect  | $\mathbf{X}$ |              |                         |                                        |
| sample dilutions?                              | V            |              |                         |                                        |
| Were all soil samples dry weight corrected?    |              |              | $\overline{\mathbf{V}}$ |                                        |
| XI. Overall Assessment of Data                 |              |              |                         |                                        |
| Was the overall assessment of the data found   | 1            |              |                         |                                        |
| to be acceptable?                              | $\sim$       |              |                         |                                        |
| XII. Field Duplicates                          |              |              |                         |                                        |
| Were field duplicates identifed in this SDG?   |              | $\checkmark$ |                         |                                        |
| Were target analytes detected in the field     |              |              | $\mathbf{\cdot}$        |                                        |
| duplicates?                                    |              |              | V                       |                                        |
| XIII. Field Blanks                             |              |              |                         |                                        |
| Were field blanks identified in this SDG?      |              | $\checkmark$ |                         |                                        |
| Were target analytes detected in the field     |              |              |                         |                                        |
| blanks?                                        |              |              |                         |                                        |

All circled elements are applicable to each sample.

| Sample ID   | Matrix    |                                                                                                           |
|-------------|-----------|-----------------------------------------------------------------------------------------------------------|
| 174         | W         | AI, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn) Hg, Ni, K) Se, Ag (Na), TI, V, Zn, Mo, B, Sn, Ti, |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
| · · · · · · |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             | - <u></u> | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
|             | 21        | Analysis Method                                                                                           |
| ICP         |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
| ICP-MS      |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |
| GFAA        |           | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,  |

Comments: Mercury by CVAA if performed

#### VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u>

Page:<u>1\_</u>of<u>1</u> Reviewer:<u>ATL</u>

**METHOD:** Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>ug/L</u>\_\_\_\_ Soil preparation factor applied: <u>NA</u> Associated Samples: <u>all</u>

| Analyte | Maximum<br>PB <sup>ª</sup><br>(mg/Kg) | Maximum<br>PBª<br>(ug/L) | Maximum<br>ICB/CCB <sup>a</sup><br>(mg/L) | Action<br>Level |  |  |  |  |  |
|---------|---------------------------------------|--------------------------|-------------------------------------------|-----------------|--|--|--|--|--|
| к       |                                       | 197                      |                                           | 985             |  |  |  |  |  |
| к       |                                       |                          | 0.229                                     | 1145            |  |  |  |  |  |
| Na      |                                       |                          | 0.179                                     | 895             |  |  |  |  |  |
|         |                                       |                          |                                           |                 |  |  |  |  |  |
|         |                                       |                          |                                           |                 |  |  |  |  |  |
|         |                                       |                          |                                           |                 |  |  |  |  |  |

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

# VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification



#### METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source

|             |                                             |         |                                  | . 11                             | Becalculated | Beported |                     |
|-------------|---------------------------------------------|---------|----------------------------------|----------------------------------|--------------|----------|---------------------|
| Standard ID | Type of Analysis                            | Element | mg(L<br>Found <del>(ug/L</del> ) | MGIL<br>True ( <del>ug/L</del> ) | %R           | %R       | Acceptable<br>(Y/N) |
| ICVL        | ICP (Low Level calibration)                 | K       | 3.474                            | 3.30                             | 105          | 105      | У                   |
|             | ICP/MS (Low Level calibration)              |         |                                  |                                  |              |          |                     |
| ICV         | ICP (Initial calibration)                   | Mg      | 39.37                            | 40.000                           | 98           | 98       | Ý                   |
|             | ICP/MS (Initial calibration)                |         |                                  |                                  |              |          |                     |
|             | CVAA (Initial calibration)                  |         |                                  |                                  |              |          |                     |
| CCV         | ICP (Continuing calibration) $G 29 C 21:02$ | Cav     | 96.27                            | 100,00                           | 96           | 96       | У                   |
|             | ICP/MS (Continuing calibration)             |         |                                  |                                  |              |          |                     |
|             | CVAA (Continuing calibration)               |         | ·                                |                                  |              |          |                     |

| ICP-MS<br>TUNE | Calculation | Mass | Actual<br>(Mean Counts / Axis) | Required (Counts / Axis) | Recalculated<br>%RSD | Acceptable<br>(Y/N) |
|----------------|-------------|------|--------------------------------|--------------------------|----------------------|---------------------|
|                | Mass Axis   |      |                                | ± 0.1 AMU                | NA                   |                     |
|                | %RSD        |      |                                | ≤ 5% RSD                 |                      |                     |

Comments:

2018CALCLC.wpd



# VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet



#### METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 %R = Found\_x 100
 Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

 True
 True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

| RPD = <u> S-D </u> x 100 | Where, | S = Original sample concentration  |
|--------------------------|--------|------------------------------------|
| (S+D)/2                  |        | D = Duplicate sample concentration |

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = <u>|I-SDR|</u> x 100 Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5)

| Sample ID | Type of Analysis          | Element | HG/L<br>Found / S / I<br>(units) | HG[L<br>True / D / SDR (units) | Recalculated | Reported | Acceptable<br>(Y/N) |
|-----------|---------------------------|---------|----------------------------------|--------------------------------|--------------|----------|---------------------|
| ICSAB     | ICP interference check    | Nov     | 10.98 mg/L                       | 10.000 mg/L                    | 110          | 110      | Ý                   |
| LCS       | Laboratory control sample | Mn      | 1032                             | 1000.00                        | 103          | 103      | У                   |
|           | Matrix spike              |         | (SSR-SR)                         |                                |              |          |                     |
|           | Duplicate                 |         |                                  |                                |              |          |                     |
|           | Post digestion spike      |         |                                  |                                |              |          |                     |
|           | ICP serial dilution       |         |                                  |                                |              |          |                     |

Comments: \_\_\_\_\_

#### VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

| Page:     | L_of |
|-----------|------|
| Reviewer: | ATU  |

#### METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

X/N\_<u>N/A</u> N N/A Y/ Ý) N N/A

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments and within the linear range of the ICP? Are all detection limits below the CRDL?

 $\mathcal{M}_{\mathcal{W}}$  were recalculated and verified using the following Detected analyte results for \_\_\_\_\_ equation:

Concentration = (RD)(FV)(Dil) (In. Vol.)

Recalculation:

2,222 × 1000 = 2222

Raw data concentration RD ≒ FV Final volume (ml) = Initial volume (ml) or weight (G) In. Vol. = Dil Dilution factor \_

Calculated Reported Concentration Concentration Acceptable Sample ID Analyte # (mall) (uall) (Y/N) 2 Mn 29 2200 'n . . • . .

lote:

.

.

# Laboratory Data Consultants, Inc. Data Validation Report

| Proiect/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18 | F0176 |
|--------------------|-----------------------------------------------|-------|
|                    |                                               |       |

| LDC Report Date: October 3, 20 |
|--------------------------------|
|--------------------------------|

Parameters: Wet Chemistry

Validation Level:Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

|                       | Laboratory Sample |         | Collection |
|-----------------------|-------------------|---------|------------|
| Sample Identification | Identification    | Matrix  | Date       |
| HU135                 | 580-115203-1      | Water   | 06/22/22   |
| HU126**               | 580-115203-3**    | Water   | 06/22/22   |
| HU110                 | 580-115203-5      | Water   | 06/22/22   |
| HU119                 | 580-115203-7      | Water   | 06/22/22   |
| HU135MS               | 580-115203-1MS    | · Water | 06/22/22   |
| HU135MSD              | 580-115203-1MSD   | Water   | 06/22/22   |
| HU135DUP              | 580-115203-1DUP   | Water   | 06/22/22   |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B Dissolved Organic Carbon by EPA SW 846 Method 9060A Nitrate/Nitrite as Nitrogen by EPA Method 353.2 Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

# II. Initial Calibration

All criteria for the initial calibration of each method were met.

# **III.** Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

# IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

# V. Field Blanks

No field blanks were identified in this SDG.

#### VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

| Spike ID<br>(Associated Samples) | Analyte                     | %R (Limits) | Flag             | A or P |
|----------------------------------|-----------------------------|-------------|------------------|--------|
| HU135MS<br>(HU135)               | Nitrate/Nitrite as nitrogen | 89 (90-110) | J- (all detects) | A      |

Relative percent differences (RPD) were within QC limits.

# VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

#### VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### **IX. Field Duplicates**

No field duplicates were identified in this SDG.

#### X. Target Analyte Quantitation

All target analyte quantitation met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to MS %R, data were qualified as estimated in one sample.

#### Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Data Qualification Summary - SDG 580-115203-1

| Sample | Analyte                     | Flag             | A or P | Reason                |
|--------|-----------------------------|------------------|--------|-----------------------|
| HU135  | Nitrate/Nitrite as nitrogen | J- (all detects) | A      | Matrix spike (%R) (q) |

Red Hill Bulk Storage Facility, CTO 18F0126

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

| · ` | VAL | .IDA | TION | I CON | IPLE | TENE | SS W | /ORKS | HEET |
|-----|-----|------|------|-------|------|------|------|-------|------|
|-----|-----|------|------|-------|------|------|------|-------|------|

Stage 2B/4

Date: 9/28/22 Page: \_\_of \_\_\_ Reviewer: 44 2nd Reviewer: 44

# METHOD: (Analyte) Alkalinity (SM2320B), DOC (EPA SW-846 Method 9060A), Nitrate/Nitrite-N (EPA Method 353.2), TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |     | Comments                              |
|-------|----------------------------------------|-----|---------------------------------------|
| ١.    | Sample receipt/Technical holding times | AIA |                                       |
|       | Initial calibration                    | A   |                                       |
| Ш.    | Calibration verification               | A   |                                       |
| IV    | Laboratory Blanks                      | A   |                                       |
| v     | Field blanks                           | N   |                                       |
| VI.   | Matrix Spike/Matrix Spike Duplicates   | SW  | (5,6)                                 |
| VII.  | Duplicate sample analysis              | A   | 7                                     |
| VIII. | Laboratory control samples             | Â   | LCSILCSD                              |
| IX.   | Field duplicates                       | Ň   |                                       |
| Х.    | Target Analyte Quantitation            | A   | Not reviewed for Stage 2B validation. |
| XI.   | Overall assessment of data             | A   |                                       |

Note: A = Acceptable N = Not provided/applicable

LDC #: 54723A6

SDG #: 580-115203-1

Laboratory: Eurofins, Tacoma, WA

ND = No compounds detected R = RinsateFB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

SW = See worksheet FB = Fie \*\* Indicates sample underwent Stage 4 validation

|      | Client ID | Lab ID          | Matrix | Date     |
|------|-----------|-----------------|--------|----------|
| 1    | HU135     | 580-115203-1    | Water  | 06/22/22 |
| 2    | HU126**   | 580-115203-3**  | Water  | 06/22/22 |
| 3    | HU110     | 580-115203-5    | Water  | 06/22/22 |
| 4    | HU119     | 580-115203-7    | Water  | 06/22/22 |
| 5    | HU135MS   | 580-115203-1MS  | Water  | 06/22/22 |
| 6    | HU135MSD  | 580-115203-1MSD | Water  | 06/22/22 |
| 7    | HU135DUP  | 580-115203-1DUP | Water  | 06/22/22 |
| 8    |           |                 |        |          |
| 9    |           |                 |        |          |
| 10   |           |                 |        |          |
| 11   |           |                 |        |          |
| 12   |           |                 |        |          |
| 13   |           |                 |        |          |
| 14   |           |                 |        |          |
| Note | s:        |                 |        |          |



-

| METHOD: Inorganics                            |              | r            |           |                                       |
|-----------------------------------------------|--------------|--------------|-----------|---------------------------------------|
| Validation Area                               | Yes          | No           | NA        | Comments                              |
| I. Technical holding times                    |              |              |           |                                       |
| Were all technical holding times met?         |              |              |           |                                       |
| II. Calibration                               |              |              |           |                                       |
| Were all instruments calibrated at the        | $\checkmark$ |              |           |                                       |
| required frequency?                           |              |              |           |                                       |
| Were the proper number of standards           | $\checkmark$ |              |           |                                       |
| used?                                         |              |              |           |                                       |
| Were all initial and continuing calibration   | 1            |              |           |                                       |
| verifications within the OC limits?           | V            |              |           |                                       |
| Were all initial calibration correlation      |              |              |           |                                       |
| coefficients within limits as specifed by the | $\checkmark$ |              |           |                                       |
| method?                                       |              |              |           |                                       |
| Were balance checks performed as              |              |              |           |                                       |
| required?                                     |              |              | $\bigvee$ |                                       |
| III. Blanks                                   | L            | L            | 1         |                                       |
| Was a method blank associated with every      |              |              |           |                                       |
| was a method blank associated with every      | $\checkmark$ |              |           |                                       |
| sample in this SDG?                           |              |              |           |                                       |
| Was there contamination in the method         |              | $\checkmark$ |           |                                       |
| blanks?                                       |              |              |           |                                       |
| Was there contamination in the initial and    |              | $\checkmark$ |           |                                       |
| continuing calibration blanks?                |              |              |           |                                       |
| IV. Matrix Spike/Matrix Spike Duplicates/L    | aborat       | ory Dup      | licates   |                                       |
| Were MS/MSD recoveries within the QC          |              |              |           |                                       |
| limits? (If the sample concentration          |              | ./           |           |                                       |
| exceeded the spike concentration by a         |              |              |           |                                       |
| factor of 4, no action was taken.)            |              |              |           |                                       |
| Were the MS/MSD or laboratory duplicate       |              |              |           |                                       |
| relative percent differences (RPDs) within    | $\checkmark$ |              |           |                                       |
| the QC limits?                                |              |              |           | · · · · · · · · · · · · · · · · · · · |
| V. Laboratory Control Samples                 |              |              |           |                                       |
| Was a LCS analyzed for each batch in the      |              |              |           |                                       |
| SDG?                                          | V            |              |           |                                       |
| Were the LCS recoveries and RPDs (if          | 1            |              |           |                                       |
| applicable) within QC limits?                 | V            |              |           |                                       |
| X. Target Analyte Quantitation                |              |              |           | <b>.</b>                              |
| Were all reporting limits adjusted to reflect | 1            |              |           |                                       |
| sample dilutions?                             | $\checkmark$ |              |           |                                       |
| Were all soil samples dry weight corrected?   |              |              |           |                                       |
| XI. Overall Assessment of Data                |              |              |           |                                       |
| Was the overall assessment of the data        | 1            |              | 1         |                                       |
| found to be acceptable?                       | V            |              |           |                                       |



| METHOD: Inorganics                                     |                       |              |              |          |  |  |  |  |  |
|--------------------------------------------------------|-----------------------|--------------|--------------|----------|--|--|--|--|--|
| Validation Area                                        | Yes                   | No           | NA           | Comments |  |  |  |  |  |
| XII. Field Duplicates                                  | XII. Field Duplicates |              |              |          |  |  |  |  |  |
| Were field duplicates identifed in this SDG?           |                       | $\checkmark$ |              |          |  |  |  |  |  |
| Were target analytes detected in the field duplicates? |                       |              | $\checkmark$ |          |  |  |  |  |  |
| XIII. Field Blanks                                     |                       |              |              |          |  |  |  |  |  |
| Were field blanks identified in this SDG?              |                       |              |              |          |  |  |  |  |  |
| Were target analytes detected in the field blanks?     |                       |              | $\checkmark$ |          |  |  |  |  |  |

# VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

| Page:_  | 1   | _of_ | 1 |
|---------|-----|------|---|
| Reviewe | er: | AT   | l |

All circled methods are applicable to each sample.

| Ir        |                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID | Parameter                                                                                                                                                   |
| 1-74      | PH TDS CI F NO3 NO2 SO4 O-PO4 AIRCN NH3 TKN (TO2 Cr6+ CIO4 (NBIND2-N) (DC)                                                                                  |
|           |                                                                                                                                                             |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
| QC        | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
| 57        | PH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub> $\overline{NO_3/NO_2-N}$ |
| 5,6       | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub> $(DOC)$                  |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                       |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> _O-PO <sub>4</sub> _Alk_CN_NH <sub>3</sub> TKN_TOC_Cr6+ClO <sub>4</sub>                       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                       |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> _O-PO <sub>4</sub> _Alk_CN_NH <sub>3</sub> TKN_TOC_Cr6+ClO <sub>4</sub> _                     |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                          |

Comments:\_\_\_\_\_

#### VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis



METHOD: Inorganics, Method <u>See cover</u>

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y'N N/A

lab limits Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125 (85-115% for Method 300.0)? If the sample concentration exceeded the spike Y( N) N/A concentration by a factor of 4 or more, no action was taken.

#### LEVEL IV ONLY: Ŷ)N N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

| # | Date   | Matrix Spike ID | Matrix | Analyte   | %R          | Associated Samples | Qualifications           |
|---|--------|-----------------|--------|-----------|-------------|--------------------|--------------------------|
|   |        | 5               | w      | NO3/NO2-N | 89 (90-110) | 1                  | J-/UJ/A (detect) Code: q |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
| _ |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   | 10.100 |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             | ·                  |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        |                 |        |           |             |                    |                          |
|   |        | *               |        |           |             |                    |                          |

Comments:

LDC #: 54723A6

#### Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Method: Inorganics, Method <u>See Cover</u>

The correlation coefficient (r) for the calibration of DC was recalculated.Calibration date: 06/30/22

Where,

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

|                                                              |           | FOUND    | TRUE         |       | Recalculated        | Reported            | Acceptable |
|--------------------------------------------------------------|-----------|----------|--------------|-------|---------------------|---------------------|------------|
| Type of analysis                                             | Analyte   | Standard | Conc. (mg/L) | Area  | r or r <sup>2</sup> | r or r <sup>2</sup> | (Y/N)      |
| Initial calibration                                          |           | s1       | 0.0          | 0     |                     |                     |            |
|                                                              |           | s2       | 1            | 2.768 | 0.99999             | 1.00000             |            |
|                                                              | TUC       | s3       | 5            | 12.6  |                     |                     | Y          |
|                                                              |           | s4       | 10           | 25.33 |                     |                     |            |
|                                                              |           | s5       | 25           | 62.6  |                     |                     |            |
|                                                              |           | s6       | 50           | 124.6 |                     |                     |            |
| CM<br>Calibration verification                               | N03/N02-N | 2,495    | 2,500        |       | 100                 | 100                 | Y          |
| $\frac{CCU(\mathcal{G}/30C01:02)}{Calibration verification}$ | TOC       | 25.757   | 25.000       |       | 103                 | 103                 | Ŷ          |
| $\frac{CCV(6 30e22;53)}{Calibration verification}$           | DOC       | 24.356   | 25,000       |       | 97                  | 97                  | Ŷ          |

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.\_\_\_\_\_

# VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet



METHOD: Inorganics, Method \_\_\_\_\_\_

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 Where, Found = True

Found = concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

| RPD = <u> S-D </u> x 100 | Where, | S = | Original sample concentration  |
|--------------------------|--------|-----|--------------------------------|
| (S+D)/2                  |        | D = | Duplicate sample concentration |

|           |                           |            | Mall Found (S        | Mall<br>True/D | Recalculated | Reported | Accentable |
|-----------|---------------------------|------------|----------------------|----------------|--------------|----------|------------|
| Sample ID | Type of Analysis          | Element    | (units)              | (units)        | %R / RPD     | %R / RPD | (Y/N)      |
| LCS       | Laboratory control sample | Alkalinity | 98670                | 00000          | 99           | 99       | Y          |
| 5         | Matrix spike sample       | DOC        | (SSR-SR)<br>23930,73 | 25000          | 96           | 9,6      | У          |
| 7         | Duplicate sample          | N031N02-N  | 0,868                | 0.848          | 2            | 2        | Y          |

Comments: \_\_\_\_\_

TOTCLC.6

LDC #: 54723A6

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification



# METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (V N N/A) Have results been reported and calculated correctly? (V N N/A) Are results within the calibrated range of the instruments? (V N N/A) Are all detection limits below the CRQL?

Concentration =

Recalculation:

 $(22753.7 \times 0.000004774370) - 0.00628680 =$ 

Reported Calculated Concentration Concentration Acceptable # Sample ID Analyte (NOL) (mail) (Y/N) Id mgll 2 NO21NO2-N mall A. 9 12000 0 460000 9 11000 104 0926

Note:\_

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18F0176 |
|--------------------|----------------------------------------------------|
| LDC Report Date:   | October 13, 2022                                   |
| Parameters:        | Gasoline Range Organics                            |
| Validation Level:  | Stage 2B & 4                                       |
| Laboratory:        | Eurofins, Tacoma, WA                               |

Sample Delivery Group (SDG): 580-115203-1

|                       | Laboratory Sample |        | Collection |
|-----------------------|-------------------|--------|------------|
| Sample Identification | Identification    | Matrix | Date       |
| HU135                 | 580-115203-1      | Water  | 06/22/22   |
| HU134                 | 580-115203-2      | Water  | 06/22/22   |
| HU126**               | 580-115203-3**    | Water  | 06/22/22   |
| HU125                 | 580-115203-4      | Water  | 06/22/22   |
| HU110**               | 580-115203-5**    | Water  | 06/22/22   |
| HU109                 | 580-115203-6      | Water  | 06/22/22   |
| HU119                 | 580-115203-7      | Water  | 06/22/22   |
| HU118                 | 580-115203-8      | Water  | 06/22/22   |

\*\*Indicates sample underwent Stage 4 validation

•

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

# II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

# III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination ( $r^2$ ) was greater than or equal to 0.990.

Average relative response factors (RRF) were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% with the following exceptions:

| Date     | Analyte                          | %D   | Associated<br>Samples       | Flag                 | A or P |
|----------|----------------------------------|------|-----------------------------|----------------------|--------|
| 07/05/22 | Gasoline range organics (C6-C12) | 29.4 | HU126**<br>HU125<br>HU110** | UJ (all non-detects) | A      |

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% with the following exceptions:

| Date               | Analyte                          | %D   | Associated<br>Samples                     | Flag                 | A or P |
|--------------------|----------------------------------|------|-------------------------------------------|----------------------|--------|
| 07/05/22<br>(2042) | Gasoline range organics (C6-C12) | 29.4 | HU135<br>HU134<br>HU109<br>HU119<br>HU118 | UJ (all non-detects) | A      |

| Date               | Analyte                          | %D   | Associated<br>Samples       | Flag                 | A or P |
|--------------------|----------------------------------|------|-----------------------------|----------------------|--------|
| 07/05/22<br>(2244) | Gasoline range organics (C6-C12) | 25.9 | HU126**<br>HU125<br>HU110** | UJ (all non-detects) | A      |

All of the continuing calibration relative response factors (RRF) were within validation criteria.

#### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Samples HU134, HU125, HU109, and HU118 were identified as trip blanks. No contaminants were found.

# VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

# X. Field Duplicates

No field duplicates were identified in this SDG.

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

# XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D and ending CCV %D, data were qualified as estimated in eight samples.

#### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-115203-1

| Sample                                                                   | Analyte                          | Flag A or F          |   | Reason (Code)                                 |
|--------------------------------------------------------------------------|----------------------------------|----------------------|---|-----------------------------------------------|
| HU126**<br>HU125<br>HU110**                                              | Gasoline range organics (C6-C12) | UJ (all non-detects) | A | Continuing calibration (%D)<br>(c)            |
| HU135<br>HU134<br>HU109<br>HU119<br>HU118<br>HU126**<br>HU125<br>HU110** | Gasoline range organics (C6-C12) | UJ (all non-detects) | A | Continuing calibration<br>(ending CCV %D) (c) |

# Red Hill Oily Waste Disposal Facility, CTO 18F0176

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

#### VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date:  $\boxed{B^2}$   $\xrightarrow{P}$ Page:  $\_$  of  $\_$ Reviewer:  $\_$   $\overrightarrow{P}$ 2nd Reviewer:  $\_$   $\overrightarrow{P}$ 

SDG #:<u>580-115203-1</u> Laboratory:<u>Eurofins, Tacoma, WA</u>

LDC #: 54723A7

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|                    | Validation Area                                                                                                        |                                  |                     | Comments                                                 |                  |           |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|----------------------------------------------------------|------------------|-----------|--|
| I.                 | Sample receipt/Technical holding times                                                                                 | A/A                              |                     |                                                          | •                |           |  |
| ١١.                | GC/MS Instrument performance check                                                                                     |                                  |                     |                                                          |                  |           |  |
| 111.               | Initial calibration/ICV                                                                                                | A-IA                             | $1^2$ $ cy \leq 20$ |                                                          |                  |           |  |
| IV.                | Continuing calibration enling                                                                                          | SA                               |                     | CU =2                                                    | 0/2              |           |  |
| V.                 | Laboratory Blanks                                                                                                      | A                                |                     |                                                          |                  |           |  |
| VI.                | Field blanks                                                                                                           | ND                               | TB = 2              | 4, 6, 8                                                  |                  |           |  |
| VII.               | Surrogate spikes                                                                                                       |                                  |                     |                                                          |                  |           |  |
| VIII.              | Matrix spike/Matrix spike duplicates                                                                                   | N                                |                     |                                                          |                  |           |  |
| IX.                | Laboratory control samples                                                                                             | 4                                | ies iD              |                                                          |                  |           |  |
| Х.                 | Field duplicates                                                                                                       | N                                |                     |                                                          |                  |           |  |
| XI.                | Internal standards                                                                                                     | 5                                |                     | •                                                        |                  |           |  |
| XII.               | Target analyte quantitation                                                                                            | $\land$                          | Not reviewed for    | r Stage 2B validation.                                   |                  |           |  |
| XIII.              | Target analyte identification                                                                                          | $\wedge$                         | Not reviewed for    | r Stage 2B validation.                                   |                  |           |  |
| XIV.               | System performance                                                                                                     | A                                | Not reviewed for    | r Stage 2B validation.                                   |                  |           |  |
| xv.                | Overall assessment of data                                                                                             | A                                |                     |                                                          |                  |           |  |
| Note:<br>** Indica | A = AcceptableND = NN = Not provided/applicableR = RinSW = See worksheetFB = Fites sample underwent Stage 4 validation | o compounds<br>sate<br>eld blank | s detected          | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank | SB=Sou<br>OTHER: | rce blank |  |
|                    | lient ID                                                                                                               |                                  |                     | Lab ID                                                   | Matrix .         | Date      |  |
| 1 F                | IU135                                                                                                                  |                                  |                     | 580-115203-1                                             | Water            | 06/22/22  |  |
| 2 F                | 1U134 TB                                                                                                               |                                  |                     | 580-115203-2                                             | Water            | 06/22/22  |  |
| 3 F                | IU126**                                                                                                                |                                  |                     | 580-115203-3**                                           | Water            | 06/22/22  |  |
| 4 F                | 1U125 TB                                                                                                               |                                  |                     | 580-115203-4                                             | Water            | 06/22/22  |  |
| 5 H                | iU110**                                                                                                                |                                  |                     | 580-115203-5**                                           | Water            | 06/22/22  |  |
| 6 F                | IU109 TB                                                                                                               |                                  |                     | 580-115203-6                                             | Water            | 06/22/22  |  |
| 7 F                | IU119                                                                                                                  |                                  |                     | 580-115203-7                                             | Water            | 06/22/22  |  |
| 8 F                | HU118 TID                                                                                                              |                                  |                     | 580-115203-8                                             | Water            | 06/22/22  |  |
|                    | /                                                                                                                      |                                  |                     |                                                          | <u> </u>         |           |  |
| Notes:             | 0. 20 0. 20 - 20 - 1                                                                                                   |                                  |                     | I                                                        |                  |           |  |
| ⊨ <u> </u> M       | <u>6 600-39595</u>                                                                                                     |                                  |                     |                                                          |                  |           |  |
| ╞╌╌┠─              |                                                                                                                        |                                  |                     |                                                          |                  |           |  |
| ┣┣                 |                                                                                                                        |                                  |                     |                                                          |                  |           |  |
|                    |                                                                                                                        |                                  |                     |                                                          |                  |           |  |



# Method: \_\_GC \_\_HPLC

| Validation Area                                                                                                                  | Yes                      | No           | NA        | Findings/Comments |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|-----------|-------------------|--|--|--|
| I. Technical holding times                                                                                                       |                          |              |           |                   |  |  |  |
| Were all technical holding times met?                                                                                            | /                        |              |           |                   |  |  |  |
| Was cooler temperature criteria met?                                                                                             |                          |              |           |                   |  |  |  |
| Ila. Initial calibration                                                                                                         | Ila. Initial calibration |              |           |                   |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                       | /                        |              |           |                   |  |  |  |
| Were all percent relative standard deviations (%RSD) < 20%?                                                                      | •                        |              |           |                   |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990? | /                        |              |           |                   |  |  |  |
| Were the RT windows properly established?                                                                                        |                          | -            |           |                   |  |  |  |
| IIb. Initial calibration verification                                                                                            |                          |              |           |                   |  |  |  |
| Was an initial calibration verification standard analyzed after each initial<br>calibration for each instrument?                 | /                        | -            |           |                   |  |  |  |
| Were all percent differences (%D) ≤ 20%?                                                                                         | /                        |              |           |                   |  |  |  |
| III. Continuing calibration                                                                                                      |                          |              |           |                   |  |  |  |
| Was a continuing calibration analyzed daily?                                                                                     | /                        |              |           |                   |  |  |  |
| Were all percent differences (%D) <u>&lt;</u> 20%?                                                                               | 7                        | $\checkmark$ |           |                   |  |  |  |
| Were all the retention times within the acceptance windows?                                                                      | λž                       |              |           |                   |  |  |  |
| IV. Laboratory Blanks                                                                                                            |                          |              |           | · · · ·           |  |  |  |
| Was a laboratory blank associated with every sample in this SDG?                                                                 |                          |              |           |                   |  |  |  |
| Was a laboratory blank analyzed for each matrix and concentration?                                                               | $\square$                |              |           |                   |  |  |  |
| Was there contamination in the laboratory blanks?                                                                                |                          | /            |           |                   |  |  |  |
| V. Field Blanks                                                                                                                  |                          |              |           |                   |  |  |  |
| Were field blanks identified in this SDG?                                                                                        |                          |              |           |                   |  |  |  |
| Were target analytes detected in the field blanks?                                                                               |                          |              |           |                   |  |  |  |
| VI. Surrogate spikes                                                                                                             |                          |              |           |                   |  |  |  |
| Were all surrogate percent recovery (%R) within the QC limits?                                                                   | $\left[ 1 \right]$       |              |           |                   |  |  |  |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?          |                          |              | $\langle$ |                   |  |  |  |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                    |                          |              |           |                   |  |  |  |
| VII. Matrix spike/Matrix spike duplicates                                                                                        |                          |              |           |                   |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?                                                    |                          |              | /         |                   |  |  |  |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                         |                          |              | /         |                   |  |  |  |
| VIII. Laboratory control samples                                                                                                 |                          |              |           |                   |  |  |  |
| Was an LCS analyzed per analytical or extraction batch?                                                                          |                          |              |           |                   |  |  |  |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                 | /                        |              |           |                   |  |  |  |
|                                                                                                                                      | T   | [  |    |                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|--|--|
| Validation Area                                                                                                                      | Yes | No | NA | Findings/Comments |  |  |
| IX. Field duplicates                                                                                                                 |     |    |    |                   |  |  |
| Were field duplicate pairs identified in this SDG?                                                                                   |     | /  |    |                   |  |  |
| Were target analytes detected in the field duplicates?                                                                               |     |    | /  |                   |  |  |
| X. Target analyte quantitation                                                                                                       |     |    |    |                   |  |  |
| Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?                                                                                  |     |    |    |                   |  |  |
| Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |     |    |    |                   |  |  |
| XI. Target analyte identification                                                                                                    |     |    |    |                   |  |  |
| Were the retention times of reported detects within the RT windows?                                                                  |     |    |    |                   |  |  |
| Were manual integrations reviewed and found acceptable?                                                                              |     |    |    |                   |  |  |
| Did the laboratory provide before and after integration printouts?                                                                   |     |    |    |                   |  |  |
| XIII. Overall assessment of data                                                                                                     |     |    |    |                   |  |  |
| Overall assessment of data was found to be acceptable.                                                                               |     |    |    |                   |  |  |

.

. 9

· · · · · · · ·

× .

.

#### VALIDATION FINDINGS WORKSHEET Continuing Calibration

#### METHOD: <u>X</u> GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of continuing calibration calculation was performed? \_\_\_%D or \_\_\_%R

Y Were continuing calibration standards analyzed at the required frequencies?

N Did the continuing calibration standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#### Level IV Only

Y Were the retention times for all calibrated analytes within their respective acceptance windows? (C)

| #        | Date   | Standard ID | Compound                                                                                                       | %D<br>(Limit ≤ 20.0) | Associated Samples | Qualifications |
|----------|--------|-------------|----------------------------------------------------------------------------------------------------------------|----------------------|--------------------|----------------|
|          | 7/5/22 | CCV-closing | Gasoline Range Organics (C6-C12)                                                                               | 29.4                 | 1, 2, 6, 7, 8      | J-UJ/A all ND  |
|          | 2042   |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                | ·                    |                    |                |
| <b> </b> | 7/5/22 | ccv         | Gasoline Range Organics (C6-C12)                                                                               | 29.4                 | 3, 4, 5            | J-UJ/A all ND  |
| <b> </b> | 2042   |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
| ļ        |        |             | 8. A 18. A 19. |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
| <b> </b> | 7/5/22 | CCV-chorine | Gasoline Range Organics (C6-C12)                                                                               | 25.9                 | 3, 4, 5            | J-UJ/A all ND  |
| <b> </b> | 2244   |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
| ┣──      |        |             | · · · · · · · · · · · · · · · · · · ·                                                                          |                      |                    |                |
|          |        |             | · · · · · · · · · · · · · · · · · · ·                                                                          |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
| <b> </b> |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |
|          |        |             |                                                                                                                |                      |                    |                |

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:\_\_1\_\_\_of\_\_1\_\_\_ Reviewer:\_\_\_\_FT\_\_\_\_

#### Method: GRO C6-C12

| Calibration |        |              |          | (Y)      | (X)           |
|-------------|--------|--------------|----------|----------|---------------|
| Date        | System | Compound     | Standard | Response | Concentration |
| 1/10/2022   | TACO36 | GRO (C6-C12) | 1        | 16.5425  | 5             |
|             |        |              | 2        | 22.146   | 10            |
|             |        |              | 3        | 41.0075  | 25            |
|             |        |              | 4        | 72.985   | 50            |
|             |        |              | 5        | 158.84   | 100           |
|             |        |              | 6        | 704.85   | 500           |
|             |        |              |          | 141.71   | 100           |
|             |        |              | 7        | 201.06   | 150           |
|             |        |              | 8        | 423.176  | 260           |

| Regression Outp                    | ut       | Reported  |
|------------------------------------|----------|-----------|
| Constant                           | 7.886150 | 91.455000 |
| Std Err of Y Est                   |          |           |
| R Squared                          | 0.993124 | 0.991000  |
| Degrees of Freedom                 |          |           |
| X Coefficient(s)                   | 1.426118 | 1.398400  |
| Std Err of Coef.                   |          |           |
| Correlation Coefficient            | 0.996556 |           |
| Coefficient of Determination (r^2) | 0.993124 | 0.991000  |

## VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1\_of\_1\_\_ Reviewer: FT

METHOD: GC X HPLC

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

|     | Standard               | Calibration      |                            |                                | Reported           | Recalculated       | Reported             | Recalculated        |
|-----|------------------------|------------------|----------------------------|--------------------------------|--------------------|--------------------|----------------------|---------------------|
| #   | ID                     | Date             | Compound                   | Average CF(ICAL)/ CCV<br>Conc. | CF/ Conc.<br>CCV   | CF/ Conc.<br>CCV   | %D                   | %D                  |
| 1   | CCV 🔪                  | 7/5/22 11420     | GRO ( C6-C12 )             | 1.00                           | 0.870              | 0.870              | 13.0                 | 13.0                |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
|     | 00)/                   | 7/5/00 0040      |                            | 1.00                           | 0.700              | 0.700              |                      |                     |
| 2   | CCV                    | 113/22 2042      | GRU ( 00-012 )             | 1.00                           | 0.706              | 0.706              | 29.4                 | 29.4                |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
| 3   | ccv                    | 7/5/22 2244      | GRO ( C6-C12 )             | 1.00                           | 0.741              | 0.741              | 25.9                 | 25.9                |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
|     | · · · ·                |                  |                            |                                |                    |                    |                      |                     |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
| 4   |                        |                  |                            |                                |                    |                    |                      |                     |
|     |                        | 1                |                            |                                |                    |                    |                      |                     |
|     |                        |                  |                            |                                |                    |                    |                      |                     |
|     |                        |                  |                            |                                |                    | l                  |                      |                     |
| Com | ments: <u>Refer to</u> | Continuing Calil | bration findings worksheet | for list of qualifications a   | and associated sam | ples when reported | l results do not agr | ree within 10.0% or |

LDC #: 54723A7

#### VALIDATION FINDINGS WORKSHEET

Page: 1 of 1 Reviewer: FT

-

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

#### METHOD: X GC HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 \* (SSC/SA) RPD =(({SSCLCS - SSCLCSD} \* 2) / (SSCLCS + SSCLCSD))\*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: LCSD 580-395957

|                               | SI          | oike           | Spike          | Sample           | L             | cs                 | LC              | SD             | LCS/            | LCSD             |
|-------------------------------|-------------|----------------|----------------|------------------|---------------|--------------------|-----------------|----------------|-----------------|------------------|
| Compound                      | Ad<br>(ug/  | laed<br>/L)    | Conce<br>(ug/L | ntration )       | Percent       | Recovery           | Percent         | Recovery       | RI              | סי               |
|                               | LCS         | LCSD           | LCS            | LCSD             | Reported      | Recalc.            | Reported        | Recalc.        | Reported        | Recalc.          |
| GR) ( C6-C12 )                | 1000        | 1000           | 817            | 863              | 82            | 82                 | 86              | 86             | 5               | 5                |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
|                               |             |                |                |                  |               |                    |                 |                |                 |                  |
| Comments: Refer to Laboratory | Control Sam | ole/Laboratory | Control Samp   | e Duplicate find | dings workshe | et for list of qua | lifications and | associated san | nples when repo | orted results do |

| LUG #: 54723A7 | LDC #: 54723A7 | 7 |
|----------------|----------------|---|
|----------------|----------------|---|

## VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

METHOD: <u>X</u> GC HPLC

 $\frac{Y}{Y}$ Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds within 10% of the reported results?

| Concentration= $(A)(Fv)(Df)$                                                                                                 | Example:                                    |                      |              |  |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|--------------|--|--|
|                                                                                                                              | Sample ID. <u>LCS 580-395957</u>            | Compound Name        | GRO (C6-C12) |  |  |
| A= Area or height of the compound to be measured<br>Fv= Final Volume of extract<br>Df= Dilution Factor                       |                                             |                      |              |  |  |
| RF= Average response factor of the compound                                                                                  | Concentration = ((28660252/232310) (10) - ( | 91.455 ))/ (1.3984 ) | 4            |  |  |
| =<br>In the initial calibration<br>Vs= Initial volume of the sample<br>Ws= Initial weight of the sample<br>%S= Percent Solid | = 816.827 ug/L                              |                      |              |  |  |
|                                                                                                                              |                                             |                      |              |  |  |

| # | Sample ID | Compound           | Reported<br>Concentrations<br>( Ug/L ) | Recalculated Results<br>Concentrations<br>( UG/L ) | Qualifications |
|---|-----------|--------------------|----------------------------------------|----------------------------------------------------|----------------|
|   | LCS       | <u>GR (C6-C12)</u> | 817                                    | 816.827                                            |                |
|   |           |                    |                                        |                                                    |                |
|   |           |                    |                                        |                                                    |                |
|   |           |                    |                                        |                                                    |                |
|   |           |                    |                                        |                                                    |                |
|   |           |                    |                                        |                                                    |                |
|   |           |                    |                                        |                                                    |                |
|   |           |                    |                                        |                                                    |                |

Comments:

# Laboratory Data Consultants, Inc. Data Validation Report

|  | Project/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18F017 |
|--|--------------------|---------------------------------------------------|
|--|--------------------|---------------------------------------------------|

| Report Date: | August 24  | 2022 |
|--------------|------------|------|
| Report Date. | Augusi 24, | 2022 |

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU135                 | 580-115203-1                        | Water  | 06/22/22           |
| HU126**               | 580-115203-3**                      | Water  | 06/22/22           |
| HU110                 | 580-115203-5                        | Water  | 06/22/22           |
| HU119                 | 580-115203-7                        | Water  | 06/22/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

## III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID                  | Extraction         | Analyte                                                                                                                                                                                                                                                                                                                                                              | Concentration                                                                                                                                                                                                                                                                                                                                                                  | Associated<br>Samples                                       |
|---------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Blank ID<br>MB 410-270726 | Extraction<br>Date | Analyte<br>1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,89-HpCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-PeCDD<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,7,8-TCDD<br>2,3,7,8-TCDD<br>2,3,7,8-TCDF<br>OCDD<br>OCDF<br>Total HxCDD | Concentration<br>0.00000319 ug/L<br>0.00000668 ug/L<br>0.00000537 ug/L<br>0.000000571 ug/L<br>0.000000571 ug/L<br>0.000000571 ug/L<br>0.000000578 ug/L<br>0.000000555 ug/L<br>0.000000555 ug/L<br>0.000000478 ug/L<br>0.000000478 ug/L<br>0.000000478 ug/L<br>0.000000453 ug/L<br>0.000000187 ug/L<br>0.00000223 ug/L<br>0.00000223 ug/L<br>0.00000223 ug/L<br>0.00000223 ug/L | Associated<br>Samples<br>All samples in SDG<br>580-115203-1 |
|                           |                    | Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PeCDD<br>Total PeCDF<br>Total TCDD<br>Total TCDD<br>Total PCDD/PCDF<br>Total PCDD<br>Total PCDD                                                                                                                                                                                                                   | 0.00000183 ug/L<br>0.00000319 ug/L<br>0.00000104 ug/L<br>0.000000102 ug/L<br>0.000000746 ug/L<br>0.000000746 ug/L<br>0.00000187 ug/L<br>0.0000321 ug/L<br>0.0000258 ug/L<br>0.0000631 ug/L                                                                                                                                                                                     |                                                             |

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample | Analyte             | Reported<br>Concentration | Modified Final<br>Concentration |
|--------|---------------------|---------------------------|---------------------------------|
| HU135  | 1,2,3,4,6,7,8-HpCDD | 0.0000019 ug/L            | 0.0000019U ug/L                 |
|        | 1,2,3,4,6,7,8-HpCDF | 0.00000027 ug/L           | 0.0000027U ug/L                 |
|        | 1,2,3,4,7,8-HpCDF   | 0.00000054 ug/L           | 0.00000054U ug/L                |
|        | 1,2,3,4,7,8,9-HpCDF | 0.00000056 ug/L           | 0.00000054U ug/L                |
|        | 1,2,3,6,7,8-HxCDD   | 0.00000039 ug/L           | 0.00000039U ug/L                |
|        | 1,2,3,7,8,9-HxCDD   | 0.00000093 ug/L           | 0.00000039U ug/L                |
|        | 2,3,4,6,7,8-HxCDF   | 0.00000093 ug/L           | 0.00000093U ug/L                |
|        | OCDD                | 0.0000021 ug/L            | 0.0000021U ug/L                 |
|        | OCDF                | 0.0000015 ug/L            | 0.0000021U ug/L                 |
|        | Total HxCDF         | 0.0000015 ug/L            | 0.0000015J ug/L                 |
|        | Total HxCDF         | 0.0000015 ug/L            | 0.0000015J ug/L                 |
|        | Total HxCDF         | 0.00000019 ug/L           | 0.0000007J ug/L                 |
|        | Total HpCDD         | 0.0000007 ug/L            | 0.00000039J ug/L                |
|        | Total HpCDF         | 0.0000009 ug/L            | 0.0000029J ug/L                 |
|        | Total PCDF          | 0.0000029 ug/L            | 0.000029J ug/L                  |
|        | Total PCDF          | 0.0000024 ug/L            | 0.000024J ug/L                  |
|        | Total PCDF          | 0.0000045 ug/L            | 0.0000045J ug/L                 |

| Sample  | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reported<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HU126** | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDD<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>2,3,7,8-TCDD<br>OCDD<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD<br>Total PCDF                                | 0.0000015 ug/L<br>0.00000020 ug/L<br>0.00000037 ug/L<br>0.00000037 ug/L<br>0.00000045 ug/L<br>0.00000020 ug/L<br>0.00000025 ug/L<br>0.00000053 ug/L<br>0.00000053 ug/L<br>0.00000017 ug/L<br>0.0000017 ug/L<br>0.0000016 ug/L<br>0.0000016 ug/L<br>0.0000015 ug/L<br>0.0000015 ug/L<br>0.0000005 ug/L<br>0.00000076 ug/L<br>0.00000076 ug/L<br>0.0000017 ug/L<br>0.0000019 ug/L<br>0.000019 ug/L | 0.0000015U ug/L<br>0.00000020U ug/L<br>0.00000065U ug/L<br>0.00000037U ug/L<br>0.00000045U ug/L<br>0.00000045U ug/L<br>0.00000025U ug/L<br>0.00000053U ug/L<br>0.00000051U ug/L<br>0.0000017U ug/L<br>0.0000016U ug/L<br>0.0000016J ug/L<br>0.0000016J ug/L<br>0.0000016J ug/L<br>0.0000016J ug/L<br>0.00000065J ug/L<br>0.00000076J ug/L<br>0.0000017J ug/L<br>0.000019J ug/L<br>0.000019J ug/L                  |
| HU110   | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,7,8-PeCDF<br>2,3,7,8-PCDF<br>0CDD<br>0CDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total PeCDF<br>Total PeCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD | 0.0000043 ug/L<br>0.0000040 ug/L<br>0.0000011 ug/L<br>0.00000037 ug/L<br>0.00000041 ug/L<br>0.00000041 ug/L<br>0.00000043 ug/L<br>0.0000013 ug/L<br>0.00000029 ug/L<br>0.0000029 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000028 ug/L<br>0.0000081 ug/L                                          | 0.0000043U ug/L<br>0.0000040U ug/L<br>0.0000037U ug/L<br>0.0000037U ug/L<br>0.00000041U ug/L<br>0.00000044U ug/L<br>0.00000077U ug/L<br>0.00000079U ug/L<br>0.00000079U ug/L<br>0.00000038U ug/L<br>0.0000029U ug/L<br>0.0000028U ug/L<br>0.0000028U ug/L<br>0.0000028U ug/L<br>0.0000028J ug/L<br>0.0000028J ug/L<br>0.0000081J ug/L |

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                | Reported<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HU119  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,7,8-HpCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDD<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,7,8-TCDF<br>OCDD<br>OCDF<br>Total HxCDF<br>Total HxCDF<br>Total HpCDD<br>Total PeCDF<br>Total PeCDF<br>Total PeCDF<br>Total PCDD<br>Total PCDD<br>Total PCDD<br>Total PCDD | 0.0000025 ug/L<br>0.0000073 ug/L<br>0.0000083 ug/L<br>0.0000081 ug/L<br>0.0000081 ug/L<br>0.0000081 ug/L<br>0.0000063 ug/L<br>0.0000011 ug/L<br>0.0000010 ug/L<br>0.0000019 ug/L<br>0.0000015 ug/L<br>0.0000015 ug/L<br>0.0000025 ug/L<br>0.0000015 ug/L<br>0.0000015 ug/L<br>0.0000015 ug/L<br>0.0000015 ug/L<br>0.0000015 ug/L | 0.0000025U ug/L<br>0.00000073U ug/L<br>0.0000083U ug/L<br>0.0000081U ug/L<br>0.0000081U ug/L<br>0.0000063U ug/L<br>0.0000063U ug/L<br>0.0000010U ug/L<br>0.0000079U ug/L<br>0.0000079U ug/L<br>0.0000015U ug/L<br>0.0000025U ug/L<br>0.0000025U ug/L<br>0.0000025U ug/L<br>0.0000025U ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000015J ug/L<br>0.0000025J ug/L |

#### VI. Field Blanks

No field blanks were identified in this SDG.

#### VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

## XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

| Sample                          | Analyte                                                                                   | Flag            | A or P |
|---------------------------------|-------------------------------------------------------------------------------------------|-----------------|--------|
| All samples in SDG 580-115203-1 | Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC). | J (all detects) | A      |

For samples HU110 and HU119, 2,3,7,8-TCDF was not confirmed in the 2<sup>nd</sup> column since the 1<sup>st</sup> column result was less than the limit of quantitation.

Raw data were not reviewed for Stage 2B validation.

## XII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

## XIII. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

## XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in four samples.

## Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-115203-1

| Sample                             | Analyte                                                                                   | Flag            | A or P | Reason (Code)                             |
|------------------------------------|-------------------------------------------------------------------------------------------|-----------------|--------|-------------------------------------------|
| HU135<br>HU126**<br>HU110<br>HU119 | Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC). | J (all detects) | A      | Target analyte quantitation<br>(EMPC) (k) |

## Red Hill Oily Waste Disposal Facility, CTO 18F0176

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

| Sample  | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A or P | Code |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| HU135   | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDF<br>Total PCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD<br>Total PCDF                                                                                                                             | 0.0000019U ug/L<br>0.00000027U ug/L<br>0.00000054U ug/L<br>0.00000056U ug/L<br>0.0000039U ug/L<br>0.0000039U ug/L<br>0.00000093U ug/L<br>0.00000093U ug/L<br>0.0000022U ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000019J ug/L<br>0.00000067J ug/L<br>0.0000039J ug/L<br>0.0000039J ug/L<br>0.0000024J ug/L<br>0.0000045J ug/L                                                                                                                                                                                                                       | Α      | Ь    |
| HU126** | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>2,3,7,8-TCDD<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDD<br>Total HpCDF<br>Total HpCDF<br>Total PeCDF<br>Total PCDD/PCDF<br>Total PCDD<br>Total PCDD | 0.0000015U ug/L<br>0.00000065U ug/L<br>0.00000065U ug/L<br>0.00000045U ug/L<br>0.00000045U ug/L<br>0.00000045U ug/L<br>0.00000025U ug/L<br>0.00000053U ug/L<br>0.00000053U ug/L<br>0.00000051U ug/L<br>0.0000017U ug/L<br>0.0000016U ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.00000065J ug/L<br>0.00000076J ug/L<br>0.0000017J ug/L | Α      | Ь    |

| Samala | Analyta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modified Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A or P | Codo |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| Sample | Anaryte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | Code |
| HU110  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDD<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>2,3,7,8-TCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDF<br>Total PCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD                                                                                                       | 0.0000043U ug/L<br>0.0000040U ug/L<br>0.0000037U ug/L<br>0.0000037U ug/L<br>0.00000041U ug/L<br>0.00000041U ug/L<br>0.00000077U ug/L<br>0.0000013U ug/L<br>0.0000038U ug/L<br>0.0000038U ug/L<br>0.0000028U ug/L<br>0.0000028U ug/L<br>0.0000028U ug/L<br>0.0000028J ug/L<br>0.0000028J ug/L<br>0.0000028J ug/L<br>0.0000081J ug/L<br>0.0000081J ug/L<br>0.0000081J ug/L<br>0.0000029J ug/L<br>0.0000029J ug/L<br>0.0000045J ug/L<br>0.0000045J ug/L<br>0.0000039J ug/L<br>0.0000039J ug/L                                                             | Α      | Ь    |
| HU119  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>2,3,7,8-TCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PeCDF<br>Total PeCDF<br>Total PCDD<br>Total PCDF<br>Total PCDD<br>Total PCDF | 0.0000025U ug/L<br>0.00000073U ug/L<br>0.00000083U ug/L<br>0.00000081U ug/L<br>0.00000081U ug/L<br>0.0000063U ug/L<br>0.0000011U ug/L<br>0.0000011U ug/L<br>0.0000010U ug/L<br>0.00000096U ug/L<br>0.00000015U ug/L<br>0.0000025U ug/L<br>0.0000025U ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000025J ug/L<br>0.0000015J ug/L<br>0.0000015J ug/L<br>0.0000037J ug/L<br>0.0000037J ug/L<br>0.0000037J ug/L<br>0.0000025J ug/L | A      | b    |

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-115203-1

# No Sample Data Qualified in this SDG

#### VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: 9 22 22 Page: \_ of \_ \_ Reviewer: \_ \_ \_ 7 2nd Reviewer: \_ \_ \_ \_

SDG #: <u>580-115203-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 54723A21

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA SW-846 Method 8290A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|        | Validation Area                        |            | Comments                              |
|--------|----------------------------------------|------------|---------------------------------------|
| ١.     | Sample receipt/Technical holding times | A/A        |                                       |
| ١١.    | HRGC/HRMS Instrument performance check | $\land$    |                                       |
| - 111. | Initial calibration/ICV                | $A/\Delta$ | % psp ≤ 20 (N = 20/30                 |
| IV.    | Continuing calibration                 | 4          | CON = 20/30                           |
| V.     | Laboratory Blanks                      | SW         |                                       |
| VI.    | Field blanks                           | N          |                                       |
| VII.   | Matrix spike/Matrix spike duplicates   | N          |                                       |
| VIII.  | Laboratory control samples             | A          | Les 10                                |
| IX.    | Field duplicates                       | N          |                                       |
| Х.     | Labeled Compounds                      | Δ          |                                       |
| XI.    | Target analyte quantitation            | SW         | Not reviewed for Stage 2B validation. |
| XII.   | Target analyte identification          | A          | Not reviewed for Stage 2B validation. |
| XIII.  | System performance                     | 5          | Not reviewed for Stage 2B validation. |
| XIV.   | Overall assessment of data             | 5          |                                       |

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

| R = | = Rins | ate      |
|-----|--------|----------|
| FB  | = Fie  | ld blank |

ND = No compounds detected

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

\*\* Indicates sample underwent Stage 4 validation

|           | Client ID     | Lab ID         | Matrix | Date     |
|-----------|---------------|----------------|--------|----------|
| 1         | HU135         | 580-115203-1   | Water  | 06/22/22 |
| 2         | HU126**       | 580-115203-3** | Water  | 06/22/22 |
| 3         | HU110         | 580-115203-5   | Water  | 06/22/22 |
| 4         | HU119         | 580-115203-7   | Water  | 06/22/22 |
| 5         |               |                |        |          |
| 6         |               |                |        |          |
| 7         |               |                |        |          |
| 8         |               |                |        |          |
| 9         |               |                |        |          |
| 10        |               |                |        |          |
| Notes     |               |                |        |          |
|           | MB 410-270724 |                |        |          |
|           |               |                |        |          |
|           |               |                |        |          |
| $\square$ |               |                |        |          |

#### VALIDATION FINDINGS CHECKLIST

| Page: <u>_/</u> of | 2        |
|--------------------|----------|
| Reviewer: FT       |          |
| 2nd Reviewer:      | <u> </u> |

## Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

| Validation Area                                                                                                               | Yes | No | NA | Findings/Comments |
|-------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-------------------|
| I. Technical holding times                                                                                                    |     |    |    |                   |
| All technical holding times were met.                                                                                         | /   |    |    |                   |
| Cooler temperature criteria was met.                                                                                          | /   |    |    |                   |
| II. GC/MS Instrument performance check                                                                                        |     |    |    |                   |
| Was PFK exact mass 380.9760 verified?                                                                                         | _   |    |    |                   |
| Were the retention time windows established for all homologues?                                                               | /   |    |    |                   |
| Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers $\leq 25\%$ ? | /   |    |    |                   |
| Is the static resolving power at least 10,000 (10% valley definition)?                                                        | /   |    |    |                   |
| Was the mass resolution adequately check with PFK?                                                                            | /   |    |    |                   |
| Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?                                                                | /   |    |    |                   |
| Illa. Initial calibration                                                                                                     |     |    |    |                   |
| Was the initial calibration performed at 5 concentration levels?                                                              | -   |    |    |                   |
| Were all percent relative standard deviations (%RSD) < 20% for all analytes and<br>labeled compounds ?                        | -   |    |    |                   |
| Did all calibration standards meet the Ion Abundance Ratio criteria?                                                          | ~   |    |    |                   |
| Was the signal to noise ratio for each target compound $\geq$ 2.5 and for each recovery and internal standard $\geq$ 10?      | /   |    |    |                   |
| IIIb. Initial Calibration Verification                                                                                        |     |    |    |                   |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument?                 | /   |    |    |                   |
| Were all percent differences (%D) ≤ 20% for unlabeled compounds and ≤30% for labeled compounds ?                              | /   |    |    |                   |
| IV. Continuing calibration                                                                                                    |     |    |    |                   |
| Was a contiuning calibration performed at the beginning and end of each 12 hour period?                                       | -   |    |    |                   |
| Were all percent differences (%D) $\leq$ 20% for unlabeled compounds and $\leq$ 30% for labeled compounds ?                   | /   |    |    |                   |
| Did all routine calibration standards meet the Ion Abundance Ratio criteria?                                                  | /   |    |    |                   |
| Was the signal to noise ratio for each target compound and for each recovery and internal standard $\geq$ 10?                 | /   |    |    |                   |
| V. Laboratory Blanks                                                                                                          |     |    |    | -                 |
| Was a method blank associated with every sample in this SDG?                                                                  | /   |    |    |                   |
| Was a method blank performed for each matrix and whenever a sample extraction was performed?                                  | -   |    |    |                   |
| Was there contamination in the method blanks?                                                                                 |     |    |    |                   |
| VI. Field blanks                                                                                                              | -   |    |    |                   |
| Field blanks were identified in this SDG.                                                                                     |     | /  |    |                   |
| Target compounds were detected in the field blanks.                                                                           |     |    | 1  |                   |

## VALIDATION FINDINGS CHECKLIST

Page:  $v_{of} \mathcal{V}$ Reviewer: FT 2nd Reviewer: K

| VII. Matrix spike/Matrix spike duplicates                                                                                                                                                                       |           |   |                      |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|----------------------|----------|
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?                                                                                                                                   |           |   | /                    |          |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                                                        |           |   | /                    |          |
| VIII. Laboratory control samples                                                                                                                                                                                |           |   |                      |          |
| Was an LCS analyzed per extraction batch?                                                                                                                                                                       | /         |   |                      |          |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                                                | /         |   |                      |          |
| IX. Field duplicates                                                                                                                                                                                            |           |   |                      |          |
| Field duplicate pairs were identified in this SDG.                                                                                                                                                              |           | / | -                    |          |
| Target compounds were detected in the field duplicates.                                                                                                                                                         |           |   | /                    |          |
| X. Labeled Compoubds                                                                                                                                                                                            |           |   |                      |          |
| Were internal standard recoveries within the 40-135% criteria?                                                                                                                                                  | /         |   |                      |          |
| Was the minimum S/N ratio of all internal standard peaks $\geq$ 10?                                                                                                                                             | $\langle$ |   |                      |          |
| XI. Compound quantitation                                                                                                                                                                                       |           |   |                      |          |
| Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?                                                                                                                                                             |           |   |                      |          |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                                                   | /         |   |                      |          |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                                         | /         |   |                      |          |
| XII. Target compound identification                                                                                                                                                                             |           |   |                      |          |
| For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?                              | /         |   |                      |          |
| For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration? | /         |   |                      |          |
| For non-2,3,7,8 substituted congeners, were the retention times of the two<br>quantitation peaks within RT established in the performance check solution?                                                       | /         |   |                      |          |
| Did compound spectra contain all characteristic ions listed in the table attached?                                                                                                                              | 6         |   |                      |          |
| Was the Ion Abundance Ratio for the two quantitation ions within criteria?                                                                                                                                      | <         |   |                      |          |
| Was the signal to noise ratio for each target compound and labeled standard $\geq$ 2.5?                                                                                                                         | /         |   |                      |          |
| Does the maximum intensity of each specified characteristic ion coincide within <u>+</u> 2 seconds (includes labeled standards)?                                                                                | -         |   |                      |          |
| For PCDF identification, was any signal (S/N $\geq$ 2.5, at <u>+</u> seconds RT) detected in the corresponding PCDPE channel?                                                                                   | /         |   |                      |          |
| Was an acceptable lock mass recorded and monitored?                                                                                                                                                             |           |   |                      |          |
| XIII. System performance                                                                                                                                                                                        |           |   |                      |          |
| System performance was found to be acceptable.                                                                                                                                                                  | /         |   |                      |          |
| XIV. Overall assessment of data                                                                                                                                                                                 | •         | I | <b>۱</b> ـــــــــــ |          |
| Overall assessment of data was found to be acceptable.                                                                                                                                                          |           |   |                      |          |
|                                                                                                                                                                                                                 |           |   |                      | <u> </u> |

Level IV checklist\_8290 rev02.wpd

## VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

| A. 2,3,7,8-TCDD      | F. 1,2,3,4,6,7,8-HpCDD | K. 1,2,3,4,7,8-HxCDF   | P. 1,2,3,4,7,8,9-HpCDF | U. Total HpCDD |
|----------------------|------------------------|------------------------|------------------------|----------------|
| B. 1,2,3,7,8-PeCDD   | G. OCDD                | L. 1,2,3,6,7,8-HxCDF   | Q. OCDF                | V. Total TCDF  |
| C. 1,2,3,4,7,8-HxCDD | H. 2,3,7,8-TCDF        | M. 2,3,4,6,7,8-HxCDF   | R. Total TCDD          | W. Total PeCDF |
| D. 1,2,3,6,7,8-HxCDD | I. 1,2,3,7,8-PeCDF     | N. 1,2,3,7,8,9-HxCDF   | S. Total PeCDD         | X. Total HxCDF |
| E. 1,2,3,7,8,9-HxCDD | J. 2,3,4,7,8-PeCDF     | O. 1,2,3,4,6,7,8-HpCDF | T. Total HxCDD         | Y. Total HpCDF |

4

Notes:\_\_\_\_\_

LDC #: 54723A21

## VALIDATION FINDINGS WORKSHEET

## Blanks

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Y Were all samples associated with a method blank?
- Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)
- Y Was the method blank contaminated?

Blank extraction date: 6/29/22 Blank analysis date: 6/29/22 Associated samples: Ali

Conc. units: ug/L

| Compound | Blank ID       |             | Sample Identification |             |             |             |  |  |  |  |
|----------|----------------|-------------|-----------------------|-------------|-------------|-------------|--|--|--|--|
|          | MB 410 -270726 | 5x          | 1                     | 2           | 3           | 4           |  |  |  |  |
| F        | 0.00000319     | 0.000015950 | 0.0000019U            | 0.0000015U  | 0.0000043U  | 0.0000025U  |  |  |  |  |
| o        | 0.00000668     | 0.000003340 | 0.00000027U           | 0.00000020U | 0.00000040U | 0.00000073U |  |  |  |  |
| с        | 0.00000537     | 0.000002685 | -                     | 0.00000065U | 0.0000011U  | 0.00000083U |  |  |  |  |
| к        | 0.00000587     | 0.000002935 | 0.00000054U           | 0.00000037U | 0.00000037U | 0.00000081U |  |  |  |  |
| P        | 0.00000371     | 0.000001855 | 0.00000040U           | 0.00000045U | 0.00000041U | 0.00000051U |  |  |  |  |
| D        | 0.00000571     | 0.000002855 | 0.00000056U           | 0.00000043U | 0.00000044U | 0.00000081U |  |  |  |  |
| L        | 0.00000578     | 0.000002890 | -                     | 0.00000020U | 0.00000077U | 0.00000063U |  |  |  |  |
| В        | 0.00000319     | 0.000001595 | -                     | -           | -           | 0.0000011U  |  |  |  |  |
|          | 0.00000565     | 0.000002825 | 0.00000039U           | 0.00000025U | 0.00000043U | 0.0000010U  |  |  |  |  |
| E        | 0.00000478     | 0.000002390 | 0.00000093U           | 0.00000053U | 0.0000013U  | 0.00000079U |  |  |  |  |
| м        | 0.0000066      | 0.000003300 | 0.00000069U           | 0.00000048U | 0.00000079U | 0.00000096U |  |  |  |  |
| J        | 0.00000453     | 0.000002265 | -                     | 0.00000051U | 0.00000038U | 0.0000014U  |  |  |  |  |
| A        | 0.000000746    | 0.000000373 | -                     | 0.00000017U | -           | -           |  |  |  |  |
| Н        | 0.00000187     | 0.000000935 | -                     |             | 0.00000029U | 0.00000015U |  |  |  |  |
| G        | 0.0000206      | 0.000103000 | 0.000021U             | 0.000016U   | 0.000032U   | 0.000020U   |  |  |  |  |
| Q        | 0.00000223     | 0.000011150 | 0.0000022U            | 0.0000019U  | 0.0000028U  | 0.0000025U  |  |  |  |  |
| т        | 0.00000159     | 0.000007950 | 0.0000015J            | 0.0000016J  | 0.0000028J  | 0.0000024J  |  |  |  |  |
| x        | 0.00000183     | 0.000009150 | 0.0000012J            | 0.0000017J  | 0.0000023J  | 0.0000029J  |  |  |  |  |
| υ        | 0.00000319     | 0.000015950 | 0.0000019J            | 0.0000015J  | 0.0000043J  | 0.0000025J  |  |  |  |  |
| Y        | 0.0000104      | 0.00005200  | 0.0000067.1           | 0.0000065.1 | 0.0000081.1 | 0.0000012.1 |  |  |  |  |

Reviewer: FT

Page: 1\_of 1\_

|                 | MB 410 -270726 | 5x          | 1           | 2           | 3           | 4           |  |  |
|-----------------|----------------|-------------|-------------|-------------|-------------|-------------|--|--|
| S               | 0.00000319     | 0.000001595 |             | -           | -           | 0.0000011J  |  |  |
| w               | 0.00000102     | 0.000005100 | 0.00000039J | 0.00000076J | 0.00000081J | 0.0000024J  |  |  |
| R               | 0.000000746    | 0.000000373 | -           | 0.00000017J | _           | -           |  |  |
| v               | 0.00000187     | 0.000000935 | -           | -           | 0.00000029J | 0.00000015J |  |  |
| Total PCDD/PCDF | 0.0000321      | 0.000160500 | 0.000029J   | 0.000026J   | 0.000046J   | 0.000037J   |  |  |
| Total PCDD      | 0.0000258      | 0.000129000 | 0.000024J   | 0.000019J   | 0.000039J   | 0.000026J   |  |  |
| Total PCDF      | 0.0000631      | 0.000031550 | 0.0000045J  | 0.0000050J  | 0.0000070J  | 0.0000092J  |  |  |

CIRCLED 0.00000079RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within0.00000089 five times the method blank concentration were qualified as not detected, "U".

LDC # 54723A21 54723A21 MB 410-27026 AECOM Red Hill Oily

## VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation

Page: <u>lof</u> Reviewer: <u></u>

#### **METHOD:** HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/AWere the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound?Y N N/ACompound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

| #        | Date | Sample ID | Finding                               | Associated Samples | Qualifications                        |
|----------|------|-----------|---------------------------------------|--------------------|---------------------------------------|
|          |      | All       | All results qualified                 |                    | Jdet/A (K)                            |
|          |      |           | "I" by the ligboratory                |                    | · · · · · ·                           |
|          |      |           | as EMPC.                              |                    |                                       |
|          |      |           |                                       |                    | · · · · · · · · · · · · · · · · · · · |
|          |      |           |                                       |                    |                                       |
|          |      | 3,4       | H- NU 2nol column                     |                    | Text                                  |
|          |      |           | con fil mation was                    |                    | · · · · · · · · · · · · · · · · · · · |
|          |      |           | performed. Result                     |                    |                                       |
|          |      |           | liss than LOQ                         |                    |                                       |
| <u> </u> |      |           |                                       |                    |                                       |
|          |      |           |                                       |                    |                                       |
|          |      |           |                                       |                    |                                       |
|          |      |           |                                       |                    |                                       |
|          |      |           |                                       |                    |                                       |
|          |      |           | · · · · · · · · · · · · · · · · · · · |                    |                                       |
|          |      |           |                                       |                    |                                       |

Comments: See sample calculation verification worksheet for recalculations

## VALIDATION FINDINGS WORKSHEET **Initial Calibration Calculation Verification**

#### METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

#### $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards  $C_x$  = Concentration of compound, %RSD = 100 \* (S/X)

 $A_x$  = Area of Compound S= Standard deviation of the RRFs, A<sub>is</sub> = Area of associated internal standard C<sub>is</sub> = Concentration of internal standard X = Mean of the RRFs

|   |             |             |                     | Reported        | Recalculated    | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|-------------|---------------------|-----------------|-----------------|-------------|--------------|----------|--------------|
|   |             | Calibration |                     | RRF             | RRF             | Average RRF | Average RRF  | %RSD     | %RSD         |
| # | Standard ID | Date        | Compound (IS)       | (10/50/100 std) | (10/50/100 std) | (Initial)   | (Initial)    |          |              |
| 1 | ICAL        | 1/6/2022    | 2,3,7,8-TCDF        | 1.0576          | 1.0576          | 1.1309      | 1.1309       | 15.1     | 15.1         |
|   | DF18471     |             | 2,3,7,8-TCDD        | 1.0589          | 1.0589          | 1.1359      | 1.1359       | 16.7     | 16.7         |
|   |             |             | 1,2,3,6,7,8-HxCDD   | 1.0166          | 1.0166          | 1.0526      | 1.0526       | 5.1      | 5.1          |
|   |             |             | 1,2,3,4,6,7,8-HpCDD | 1.0509          | 1.0509          | 1.0671      | 1.0671       | 8.3      | 8.3          |
|   |             |             | OCDF                | 0.9190          | 0.9190          | 0.9320      | 0.9320       | 4.0      | 4.0          |



## VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:<u>1</u>of<u>1</u> Reviewer: FT

**METHOD:** HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF =  $(A_x)(C_{is})/(A_{is})(C_x)$ 

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x$  = Area of compound,  $C_x$  = Concentration of compound,  $A_{is}$  = Area of associated internal standard

C<sub>is</sub> = Concentration of internal standard

|   |             |                     |                                                           |                          | Reported    | Recalculated | Reported | Recalculated |
|---|-------------|---------------------|-----------------------------------------------------------|--------------------------|-------------|--------------|----------|--------------|
| # | Standard ID | Calibration<br>Date | Compound (Reference Internal Standard)                    | Average RRF<br>(initial) | RRF<br>(CC) | RRF<br>(CC)  | %D       | %D           |
| 1 | ce.         | 6/29/22             | 2,3,7,8-TCDF ( <sup>13</sup> C-2,3,7,8-TCDF)              | 1.1309                   | 1-015       | 1.015        | 10.2     | 102          |
|   |             | 14                  | 2,3,7,8-TCDD ( <sup>13</sup> C-2,3,7,8-TCDD)              | 1.1359                   | 1.104       | 1.104        | 2.8      | 2-8          |
|   |             | 1310                | 1,2,3,6,7,8-HxCDD ( <sup>13</sup> C-1,2,3,6,7,8-HxCDD)    | 1.0526                   | 1.01        | 1.01/        | 3.9      | 3.9          |
|   |             |                     | 1,2,3,4,6,7,8-HpCDD ( <sup>13</sup> C-1,2,4,6,7,8,-HpCDD) | 1-0671                   | 1.045       | 1.045        | 2-0      | 2,0          |
|   |             |                     |                                                           | 0.9320                   | 0.9/10/0    | 0.9/46       | 1.7      | <u></u> /·7  |
| 2 | acv         | 6/29/22             | 2,3,7,8-TCDF ( <sup>13</sup> C-2,3,7,8-TCDF)              | 1.131                    | 1.043       | 1.043        | 7.8      | 78           |
|   |             | 1258                | 2,3,7,8-TCDD ( <sup>13</sup> C-2,3,7,8-TCDD)              | 1.1359                   | 1.106       | 1.106        | 2.6      | 2.6          |
|   |             |                     | 1,2,3,6,7,8-HxCDD ( <sup>13</sup> C-1,2,3,6,7,8-HxCDD)    | 1.0526                   | 1.062       | 1.062        | 0.9      | 0,7          |
|   |             |                     | 1,2,3,4,6,7,8-HpCDD ( <sup>13</sup> C-1,2,4,6,7,8,-HpCDD) | 1.0671                   | 1.009       | 1.009        | 5.5      | 5-5          |
|   |             | <u></u>             | OCDE ( <sup>13</sup> C-OCDD)                              | 0.9320                   | 0.9189      | 0.9189       | 1.7      | 1.4/         |
| 3 |             |                     | 2,3,7,8-TCDF ( <sup>13</sup> C-2,3,7,8-TCDF)              |                          |             |              | , ,      |              |
|   |             |                     | 2,3,7,8-TCDD ( <sup>13</sup> C-2,3,7,8-TCDD)              |                          |             |              |          |              |
|   |             |                     | 1,2,3,6,7,8-HxCDD ( <sup>13</sup> C-1,2,3,6,7,8-HxCDD)    |                          |             |              |          |              |
|   |             |                     | 1,2,3,4,6,7,8-HpCDD ( <sup>13</sup> C-1,2,4,6,7,8,-HpCDD) |                          |             |              |          |              |
|   |             |                     | OCDF ( <sup>13</sup> C-OCDD)                              |                          |             |              |          |              |

Comments: <u>Refer to Routine Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>



## VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

#### METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I \* 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: LCS/D 410-270726

|                     | Sp        | ike      | Spiked Sample |               |                  |        |                  |        |          |        |
|---------------------|-----------|----------|---------------|---------------|------------------|--------|------------------|--------|----------|--------|
| Compound            | Ad<br>(ve | ded<br>) | Conce<br>( ห  | ntration<br>2 | Percent Recovery |        | Percent Recovery |        | RPD      |        |
|                     |           | LCSD     |               |               | Reported         | Recaic | Reported         | Recaic | Reported | Recalc |
| 2,3,7,8-TCDD        | 0.0002    | 0,0002   | 0.000217      | 0.000215      | 10×              | Nox    | 108              | 108    | 1        | J      |
| 1,2,3,7,8-PeCDD     | 0,00100   | 0.00100  | 0,00 20       | 0.0012        | 120              | 120    | [2]              | 12     | 1        | 1      |
| 1,2,3,4,7,8-HxCDD   | 0.00100   | 0.0010   | 0.00 111      | 0.00107       | 111              | nl     | 107              | 107    | 3        | 3      |
| 1,2,3,4,7,8,9-HpCDF | 0.00100   | 0.00100  | 0.00108       | 0.00103       | 108              | 108    | 103              | 103    | 4        | 4      |
| OCDF                | 0,002 00  | 0.00200  | 0.00222       | 0.00220       | 111              | nl     | 10               | טוו    |          | 1      |
|                     |           |          |               |               |                  |        |                  |        |          |        |
|                     |           |          |               |               |                  |        |                  |        |          |        |
|                     |           |          |               |               |                  |        |                  |        |          |        |
|                     |           |          |               |               |                  |        |                  |        |          |        |
|                     |           |          |               |               | ;                |        |                  |        |          |        |
|                     |           |          |               |               |                  |        |                  |        |          |        |
|                     |           |          |               |               |                  |        |                  |        |          |        |
|                     |           |          |               |               |                  |        |                  |        |          |        |

# Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 🔨

#### VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification



#### METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Concer         | ntration | $= \frac{(A_{*})(I_{*})(DF)}{(A_{is})(RRF)(V_{o})(\%S)}$                 |
|----------------|----------|--------------------------------------------------------------------------|
| A <sub>x</sub> | =        | Area of the characteristic ion (EICP) for the<br>compound to be measured |
| $A_{is}$       | =        | Area of the characteristic ion (EICP) for the specific internal standard |
| l <sub>s</sub> | =        | Amount of internal standard added in nanograms (ng)                      |
| V <sub>o</sub> | =        | Volume or weight of sample extract in milliliters (ml) or grams (g).     |
| RRF            | =        | Relative Response Factor (average) from the initial calibration          |
| Df             | =        | Dilution Factor.                                                         |
| %S             | =        | Percent solids, applicable to soil and solid matrices                    |

only.

Example:

Sample I.D. #2 OCDF

(1617)(200)(20) (1/1000) (3815764) (0.9320)(975.4) Conc. = \_\_\_ 

| # | Sample ID | Compound | Reported<br>Concentration<br>( ୢୣୣୣୢ୴ ) | Calculated<br>Concentration<br>(Ng L) | Qualification |
|---|-----------|----------|-----------------------------------------|---------------------------------------|---------------|
|   | #2        | oldf     | 00000019                                | 0,00000186                            |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          | <br>                                    |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         | <u> </u>                              |               |
|   |           |          |                                         |                                       |               |
|   |           |          |                                         |                                       |               |

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

| LDC Report Date: | August 24, 2022 |
|------------------|-----------------|
| Parameters:      | Methane         |

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115203-1

|                       | Laboratory Sample |        | Collection |
|-----------------------|-------------------|--------|------------|
| Sample Identification | Identification    | Matrix | Date       |
| HU135                 | 580-115203-1      | Water  | 06/22/22   |
| HU134                 | 580-115203-2      | Water  | 06/22/22   |
| HU126**               | 580-115203-3**    | Water  | 06/22/22   |
| HU125                 | 580-115203-4      | Water  | 06/22/22   |
| HU110**               | 580-115203-5**    | Water  | 06/22/22   |
| HU109                 | 580-115203-6      | Water  | 06/22/22   |
| HU119                 | 580-115203-7      | Water  | 06/22/22   |
| HU118                 | 580-115203-8      | Water  | 06/22/22   |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

Retention time windows were established as required by the method for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

## III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

Retention times in the calibration standards were within the established retention time windows for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

## IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## V. Field Blanks

Samples HU134, HU125, HU109, and HU118 were identified as trip blanks. No contaminants were found.

## VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### VIII. Field Duplicates

No field duplicates were identified in this SDG.

#### IX. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

#### X. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

#### XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

## Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-115203-1

No Sample Data Qualified in this SDG

LDC #: <u>54723A51</u> **VA** SDG #: <u>580-115203-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

# VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4



#### METHOD: GC Methane (Method RSK-175)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|                    | Validation Area                                                                                                                                                                                                                                                         |          |                                          | Comments       |        |          |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|----------------|--------|----------|--|--|
| ١.                 | Sample receipt/Technical holding times                                                                                                                                                                                                                                  | AIA      |                                          |                |        |          |  |  |
| II.                | Initial calibration/ICV                                                                                                                                                                                                                                                 | A/A      | °/. pop/ICY = 20                         |                |        |          |  |  |
| 111.               | Continuing calibration                                                                                                                                                                                                                                                  | <u>م</u> | CW = 20/20                               |                |        |          |  |  |
| IV.                | Laboratory Blanks                                                                                                                                                                                                                                                       | 6        |                                          |                | •      |          |  |  |
| V.                 | Field blanks                                                                                                                                                                                                                                                            | NN       | TB= 2, 4, 6, 8                           |                |        |          |  |  |
| VI.                | Surrogate spikes                                                                                                                                                                                                                                                        | A        |                                          |                |        |          |  |  |
| VII.               | Matrix spike/Matrix spike duplicates                                                                                                                                                                                                                                    | ν.       | 200                                      |                |        |          |  |  |
| <u></u>            | Laboratory control samples                                                                                                                                                                                                                                              | 4        | Los ID                                   |                |        |          |  |  |
| IX.                | Field duplicates                                                                                                                                                                                                                                                        | N        |                                          |                |        |          |  |  |
| <b>X</b> .         | Target analyte quantitation                                                                                                                                                                                                                                             | <u> </u> | Not reviewed for Stage 2B validation.    |                |        |          |  |  |
| XI.                | Target analyte identification                                                                                                                                                                                                                                           | Δ        | Not reviewed for Stage 2B validation. ML |                |        |          |  |  |
|                    | Overall assessment of data                                                                                                                                                                                                                                              |          |                                          |                |        | <br>     |  |  |
| Note:<br>** Indica | Iote:  A = Acceptable  ND = No compounds detected  D = Duplicate  SB=Source blank    N = Not provided/applicable  R = Rinsate  TB = Trip blank  OTHER:    SW = See worksheet  FB = Field blank  EB = Equipment blank    * Indicates sample underwent Stage 4 validation |          |                                          |                |        |          |  |  |
|                    | Client ID                                                                                                                                                                                                                                                               |          |                                          | Lab ID         | Matrix | Date     |  |  |
| 11                 | HU135                                                                                                                                                                                                                                                                   |          |                                          | 580-115203-1   | Water  | 06/22/22 |  |  |
| 21                 | HU134 TB                                                                                                                                                                                                                                                                |          |                                          | 580-115203-2   | Water  | 06/22/22 |  |  |
| 3 1                | HU126**                                                                                                                                                                                                                                                                 |          | ······                                   | 580-115203-3** | Water  | 06/22/22 |  |  |
| 4 1                | HU125 TB                                                                                                                                                                                                                                                                |          |                                          | 580-115203-4   | Water  | 06/22/22 |  |  |
| 51                 | HU110**                                                                                                                                                                                                                                                                 |          |                                          | 580-115203-5** | Water  | 06/22/22 |  |  |
| 6 <b>V</b>         | 1 HU109 TB                                                                                                                                                                                                                                                              |          |                                          | 580-115203-6   | Water  | 06/22/22 |  |  |
| 7 V                | 2 HU119                                                                                                                                                                                                                                                                 |          |                                          | 580-115203-7   | Water  | 06/22/22 |  |  |
| 87                 | <u>ини118 ТВ</u>                                                                                                                                                                                                                                                        |          |                                          | 580-115203-8   | Water  | 06/22/22 |  |  |
| 9                  |                                                                                                                                                                                                                                                                         |          |                                          |                | ·      |          |  |  |
| 10                 |                                                                                                                                                                                                                                                                         |          |                                          |                |        |          |  |  |
| 11                 |                                                                                                                                                                                                                                                                         |          |                                          |                |        |          |  |  |
| 12                 |                                                                                                                                                                                                                                                                         |          |                                          | l              |        |          |  |  |
| Notes:             | AB 440, DIDITY                                                                                                                                                                                                                                                          |          |                                          |                |        |          |  |  |
|                    | 10-21010                                                                                                                                                                                                                                                                | <u> </u> |                                          |                |        |          |  |  |
|                    |                                                                                                                                                                                                                                                                         |          | -+                                       |                |        |          |  |  |
| $\vdash$           |                                                                                                                                                                                                                                                                         |          |                                          |                |        |          |  |  |


| Validation Area                                                                                                                  | Yes       | No | NA | Findings/Comments                     |
|----------------------------------------------------------------------------------------------------------------------------------|-----------|----|----|---------------------------------------|
| I. Technical holding times                                                                                                       |           |    |    |                                       |
| Were all technical holding times met?                                                                                            | /         |    |    |                                       |
| Was cooler temperature criteria met?                                                                                             | /         |    |    |                                       |
| Ila. Initial calibration                                                                                                         |           |    |    |                                       |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                       | $\leq$    |    |    |                                       |
| Were all percent relative standard deviations (%RSD) < 20%?                                                                      | -         |    |    |                                       |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of $\geq$ 0.990? |           |    | /  |                                       |
| Were the RT windows properly established?                                                                                        |           | -  |    |                                       |
| IIb. Initial calibration verification                                                                                            |           |    |    |                                       |
| Was an initial calibration verification standard analyzed after each initial<br>calibration for each instrument?                 |           | r  |    |                                       |
| Were all percent differences (%D) ≤ 20%?                                                                                         | -         |    |    |                                       |
| III. Continuing calibration                                                                                                      |           |    |    |                                       |
| Was a continuing calibration analyzed daily?                                                                                     | $\leq$    |    |    |                                       |
| Were all percent differences (%D) < 20%?                                                                                         | $\leq$    |    |    |                                       |
| Were all the retention times within the acceptance windows?                                                                      |           |    |    | ·                                     |
| IV. Laboratory Blanks                                                                                                            |           |    |    | · · · · · · · · · · · · · · · · · · · |
| Was a laboratory blank associated with every sample in this SDG?                                                                 | /         |    |    |                                       |
| Was a laboratory blank analyzed for each matrix and concentration?                                                               | $\leq$    |    |    |                                       |
| Was there contamination in the laboratory blanks?                                                                                |           | /  | -  |                                       |
| V. Field Blanks                                                                                                                  |           |    |    |                                       |
| Were field blanks identified in this SDG?                                                                                        | /         |    |    |                                       |
| Were target analytes detected in the field blanks?                                                                               |           |    |    |                                       |
| VI. Surrogate spikes                                                                                                             |           |    |    |                                       |
| Were all surrogate percent recovery (%R) within the QC limits?                                                                   | $\square$ |    |    |                                       |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?          |           |    | ~  |                                       |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                    |           |    | /  | 「                                     |
| VII. Matrix spike/Matrix spike duplicates                                                                                        |           |    |    |                                       |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?                                                    |           |    |    |                                       |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                         |           |    | /  | r                                     |
| VIII. Laboratory control samples                                                                                                 |           |    |    |                                       |
| Was an LCS analyzed per analytical or extraction batch?                                                                          |           |    |    |                                       |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                 |           |    |    |                                       |



#### VALIDATION FINDINGS CHECKLIST

| Validation Area                                                                                                                      | Yes | No | NA, | Findings/Comments |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|-------------------|
| IX. Field duplicates                                                                                                                 |     |    |     |                   |
| Were field duplicate pairs identified in this SDG?                                                                                   |     | /  |     |                   |
| Were target analytes detected in the field duplicates?                                                                               |     |    | /   |                   |
| X. Target analyte quantitation                                                                                                       |     |    |     |                   |
| Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?                                                                                  | /   |    |     |                   |
| Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |     |    |     |                   |
| XI. Target analyte identification                                                                                                    |     |    |     |                   |
| Were the retention times of reported detects within the RT windows?                                                                  | ~   |    |     |                   |
| Were manual integrations reviewed and found acceptable?                                                                              | /   |    |     |                   |
| Did the laboratory provide before and after integration printouts?                                                                   | /   |    |     |                   |
| XIII. Overall assessment of data                                                                                                     |     |    |     |                   |
| Overall assessment of data was found to be acceptable.                                                                               |     |    |     |                   |

LDC #: 54723A5/

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

| Page: /       | ,<br>of | _/ |
|---------------|---------|----|
| Reviewer:     | FT      |    |
| 2nd Reviewer: |         |    |

## METHOD: GC \_\_\_\_\_\_ HPLC\_\_\_\_\_

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 \* (S/X)

Where: A = Area of compound C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

|   |                 |                     |                 | Reported         | Recalculated      | Reported     | Recalculated | Reported | Recalculated |
|---|-----------------|---------------------|-----------------|------------------|-------------------|--------------|--------------|----------|--------------|
| # | Standard ID     | Calibration<br>Date | Compound        | CF<br>(99.()std) | CF<br>(99.() std) | CF (initial) | CF (intial)  | %RSD     | %RSD         |
| 1 | 1 CA L<br>19506 | 5 10 2              | Methane HP Plot | 1899545          | 1899545           | 1×93853.78   | 189 3853.78  | 8.6      | 8.6          |
|   |                 |                     |                 |                  |                   |              |              |          |              |
| 2 |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
| 3 |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
| 4 |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |
|   |                 |                     |                 |                  |                   |              |              |          |              |

Comments: <u>Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 54723AS/

#### VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1\_of 1\_\_\_ Reviewer: FT

METHOD: GC \_\_\_\_\_\_HPLC \_\_\_\_\_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 \* (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

|                | Standard               | Calibration      |                            |                              | Reported                               | Recalculated       | Reported           | Recalculated       |    |
|----------------|------------------------|------------------|----------------------------|------------------------------|----------------------------------------|--------------------|--------------------|--------------------|----|
| #              | ID                     | Date             | Date                       | Target Analyte               | Average CF(Ical)/ CCV<br>Conc.         | CF/ Conc.<br>CCV   | CF/ Conc.<br>CCV   | <b>%D</b>          | %D |
| . 1            | icr                    | 628/22           | hethane                    | 59.9                         | 55.5                                   | 55.5               | 7.3                | 7.3                |    |
|                |                        | 0859 F1          |                            |                              |                                        |                    |                    |                    |    |
|                |                        | 0843             |                            |                              |                                        |                    |                    |                    |    |
| 2              | en                     | 6/28/22          | Methanes                   | 59.9                         | 53.7                                   | 53.7               | 0.3                | 10.3               |    |
| :              | ·                      | 1146             |                            |                              |                                        |                    |                    |                    |    |
|                |                        | 144)             |                            |                              |                                        |                    |                    |                    |    |
|                |                        |                  |                            |                              |                                        |                    |                    |                    |    |
| <sup>-</sup> 3 |                        | 629              |                            |                              | <b></b>                                |                    |                    |                    |    |
|                |                        | 17196            | level 111                  |                              |                                        |                    |                    |                    |    |
|                |                        |                  |                            |                              |                                        |                    |                    |                    |    |
| 4              |                        |                  |                            |                              |                                        |                    |                    |                    |    |
|                |                        |                  |                            |                              | ······································ |                    |                    |                    |    |
|                |                        |                  |                            |                              |                                        |                    |                    |                    |    |
| L              |                        |                  |                            |                              |                                        |                    |                    |                    |    |
| Com            | ments: <u>Refer to</u> | Continuing Calib | pration findings worksheet | for list of qualifications a | nd associated sam                      | ples when reported | results do not agr | ee within 10.0% of |    |

#### VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

# LDC #: <u>5472</u> 3 AS) METHOD: <u>GC</u> HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: ろ

| Surrogate | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|           |                 |                     |                    | Reported            | Recalculated        |                       |
| Propene   |                 | 19.9                | 17.0               | 86                  | 86                  | D                     |
| j         |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |

Sample ID:

| Surrogate | Column/Detector | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference |
|-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------|
|           |                 |                     |                    | Reported            | Recalculated        |                       |
|           | ·               |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |
|           |                 |                     |                    |                     |                     |                       |

|    | Surrogate Compound         |   | Surrogate Compound  |   | Surrogate Compound                |   | Surrogate Compound      |    | Surrogate Compound            |
|----|----------------------------|---|---------------------|---|-----------------------------------|---|-------------------------|----|-------------------------------|
| A  | Chlorobenzene (CBZ)        | G | Octacosane          | М | Benzo(e)Pyrene                    | S | 1-Chloro-3-Nitrobenzene | Y  | Tetrachloro-m-xylene          |
| В  | 4-Bromofluorobenzene (BFB) | н | Ortho-Terphenyl     | N | Terphenyl-D14                     | T | 3,4-Dinitrotoluene      | z  | 2-Bromonaphthalene            |
| C, | a,a,a-Trifluorotoluene     | 1 | Fluorobenzene (FBZ) | 0 | Decachlorobiphenyl (DCB)          | U | Tripentyltin            | AA | Chloro-octadecane             |
| D  | Bromochlorobenene          | J | n-Triacontane       | Ρ | 1-methyinaphthalene               | v | Tri-n-propyltin         | BB | 2,4-Dichlorophenylacetic acid |
| E  | 1,4-Dichlorobutane         | к | Hexacosane          | Q | Dichlorophenyl Acetic Acid (DCAA) | w | Tributyl Phosphate      | cc | 2,5-Dibromotoluene            |
| F  | 1,4-Difluorobenzene (DFB)  | L | Bromobenzene        | R | 4-Nitrophenol                     | x | Triphenyl Phosphate     |    |                               |

LDC #: 54723A5

#### VALIDATION FINDINGS WORKSHEET

Page: 1\_of\_1\_

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer:

FT

GC HPLC METHOD:

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 \* (SSC/SA) RPD =(({SSCLCS - SSCLCSD} \* 2) / (SSCLCS + SSCLCSD))\*100

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

410-27017 103/0 LCS/LCSD samples:

|          | Spike Spike Sample |          | LCS                |      | LCSD     |                  | LCS/LCSD |         |          |         |
|----------|--------------------|----------|--------------------|------|----------|------------------|----------|---------|----------|---------|
| Compound | ( hg               | V,       | ( ng / ) Percent F |      | Recovery | Percent Recovery |          | RPD     |          |         |
|          | LCS                | LCSD     |                    | LCSD | Reported | Recalc.          | Reported | Recalc. | Reported | Recalc. |
| Methane  | 59.9               | 59.9     | 5-9                | 54.9 | 94       | 91               | 92       | 92      | 2        | 72      |
| ·        |                    |          | 56.                |      |          |                  | •        |         |          | F)      |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          | ·                |          |         |          | ·       |
|          |                    |          |                    |      |          |                  | ·        |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          | ·                  |          |                    |      | ·        |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    |          |                    |      |          |                  |          |         |          |         |
|          |                    | <u> </u> | L                  |      |          |                  |          |         |          |         |

### VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: \_1\_of\_1\_ Reviewer: <u>FT</u>

LDC #: 54723AS) METHOD: GC\_HPLC

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

| Co<br>A=                                                                                                                                                                                                                                                                                                       | ncen<br>Are | tration= <u>(A)(Fv)(Df)</u><br>(RF)(Vs or Ws)(%S/100<br>ea or height of the target analyte to b | Example:<br>)<br>Sample ID<br>pe measured | Les 410-27017                         | Methane                                              |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|------------------------------------------------------|----------------|
| <ul> <li>Fv= Final Volume of extract</li> <li>Df= Dilution Factor</li> <li>RF= Average response factor of the target analyte         <ul> <li>In the initial calibration</li> </ul> </li> <li>Vs= Initial volume of the sample</li> <li>Ws= Initial weight of the sample</li> <li>%S= Percent Solid</li> </ul> |             |                                                                                                 | analyte Concentra                         | ation =                               | 10633428 1<br>1893853.78<br>56.147 ng/L              | =              |
|                                                                                                                                                                                                                                                                                                                | #           | Sample ID                                                                                       | Target analyte                            | Reported<br>Concentrations<br>( Ugy ) | Recalculated Results<br>Concentrations<br>( u.g. L ) | Qualifications |
|                                                                                                                                                                                                                                                                                                                | -           | les                                                                                             | Methane                                   | Sb.)                                  | 52.147                                               |                |
|                                                                                                                                                                                                                                                                                                                |             |                                                                                                 |                                           |                                       |                                                      |                |
| ╞                                                                                                                                                                                                                                                                                                              |             |                                                                                                 |                                           |                                       |                                                      |                |
|                                                                                                                                                                                                                                                                                                                |             |                                                                                                 |                                           |                                       |                                                      |                |
|                                                                                                                                                                                                                                                                                                                |             |                                                                                                 |                                           |                                       |                                                      |                |

Comments:

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

| LDC Report Date: | August 24, 2022 |
|------------------|-----------------|
|------------------|-----------------|

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115250-1

|                       | Laboratory Sample |        | Collection |
|-----------------------|-------------------|--------|------------|
| Sample Identification | Identification    | Matrix | Date       |
| HU137                 | 580-115250-1      | Water  | 06/23/22   |
| HU136                 | 580-115250-2      | Water  | 06/23/22   |
| HU139                 | 580-115250-3      | Water  | 06/23/22   |
| HU138                 | 580-115250-4      | Water  | 06/23/22   |
| HU142                 | 580-115250-5      | Water  | 06/23/22   |
| HU129                 | 580-115250-6      | Water  | 06/23/22   |
| HU143                 | 580-115250-7      | Water  | 06/23/22   |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

#### I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

#### II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

| Date     | Analyte       | %D   | Associated<br>Samples              | Flag                 | A or P |
|----------|---------------|------|------------------------------------|----------------------|--------|
| 06/22/22 | Bromomethane  | 22.4 | All samples in SDG<br>580-115250-1 | UJ (all non-detects) | A      |
| 07/01/22 | Chloromethane | 28.9 | All samples in SDG<br>580-115250-1 | UJ (all non-detects) | A      |

#### **IV. Continuing Calibration**

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

| Date     | Analyte      | %D   | Associated<br>Samples              | Flag                 | A or P |
|----------|--------------|------|------------------------------------|----------------------|--------|
| 06/28/22 | Bromomethane | 57.1 | All samples in SDG<br>580-115250-1 | UJ (all non-detects) | A      |

All of the continuing calibration relative response factors (RRF) were within validation criteria.

#### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID      | Analysis<br>Date | Analyte<br>TIC (RT in minutes)                                                                                                                                                                                                                                                        | Concentration                                                                                                                                            | Associated<br>Samples              |
|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| MB 580-395127 | 06/27/22         | 1,2,4-Trichlorobenzene<br>Ethylbenzene<br>Hexachlorobutadiene<br>Naphthalene<br>Styrene<br>Xylenes, total<br>o-Xylene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-lsopropyltoluene (13.54)<br>1,3,5-Trichlorobenzene (14.65)<br>1,2,3-Trichlorobenzene (15.53) | 0.211 ug/L<br>0.0813 ug/L<br>0.431 ug/L<br>0.211 ug/L<br>0.205 ug/L<br>0.205 ug/L<br>0.264 ug/L<br>0.153 ug/L<br>0.162 ug/L<br>0.0729 ug/L<br>0.222 ug/L | All samples in SDG<br>580-115250-1 |

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample | Analyte                        | Reported      | Modified Final |
|--------|--------------------------------|---------------|----------------|
|        | TIC (RT in minutes)            | Concentration | Concentration  |
| HU137  | Ethylbenzene                   | 0.078 ug/L    | 0.078J+ ug/L   |
|        | Naphthalene                    | 0.36 ug/L     | 0.50U ug/L     |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |
| HU136  | Ethylbenzene                   | 0.079 ug/L    | 0.079J+ ug/L   |
|        | Naphthalene                    | 0.37 ug/L     | 0.50U ug/L     |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-Isopropyltoluene (13.54)     | 0.16 ug/L     | 0.16U ug/L     |
| HU139  | Ethylbenzene                   | 0.077 ug/L    | 0.077J+ ug/L   |
|        | Naphthalene                    | 0.36 ug/L     | 0.50U ug/L     |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.50)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |

| Sample | Analyte                        | Reported      | Modified Final |
|--------|--------------------------------|---------------|----------------|
|        | TIC (RT in minutes)            | Concentration | Concentration  |
| HU138  | Ethylbenzene                   | 0.079 ug/L    | 0.079J+ ug/L   |
|        | Naphthalene                    | 0.36 ug/L     | 0.50U ug/L     |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |
| HU142  | Ethylbenzene                   | 0.078 ug/L    | 0.078J+ ug/L   |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |
| HU129  | Ethylbenzene                   | 0.079 ug/L    | 0.079J+ ug/L   |
|        | Naphthalene                    | 0.36 ug/L     | 0.50U ug/L     |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-lsopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |
| HU143  | Ethylbenzene                   | 0.077 ug/L    | 0.077J+ ug/L   |
|        | Styrene                        | 0.21 ug/L     | 0.50U ug/L     |
|        | Isopropylbenzene (12.51)       | 0.26 ug/L     | 0.26U ug/L     |
|        | 1,3,5-Trimethylbenzene (12.99) | 0.15 ug/L     | 0.15U ug/L     |
|        | p-Isopropyltoluene (13.54)     | 0.15 ug/L     | 0.15U ug/L     |

#### VI. Field Blanks

Samples HU136, HU138, and HU129 were identified as trip blanks. No contaminants were found with the following exceptions:

| Blank ID | Collection<br>Date | Analyte                                | Concentration                        | Associated<br>Samples |
|----------|--------------------|----------------------------------------|--------------------------------------|-----------------------|
| HU136    | 06/23/22           | Ethylbenzene<br>Naphthalene<br>Styrene | 0.079 ug/L<br>0.37 ug/L<br>0.21 ug/L | HU137                 |
| HU138    | 06/23/22           | Ethylbenzene<br>Naphthalene<br>Styrene | 0.079 ug/L<br>0.36 ug/L<br>0.21 ug/L | HU139                 |
| HU129    | 06/23/22           | Ethylbenzene<br>Naphthalene<br>Styrene | 0.079 ug/L<br>0.36 ug/L<br>0.21 ug/L | HU142<br>HU143        |

Sample HU143 was identified as an equipment blank. No contaminants were found with the following exceptions:

| Blank ID | Collection<br>Date | Analyte                 | Concentration           | Associated<br>Samples |
|----------|--------------------|-------------------------|-------------------------|-----------------------|
| HU143    | 06/23/22           | Ethylbenzene<br>Styrene | 0.077 ug/L<br>0.21 ug/L | HU137<br>HU139        |

Sample HU142 was identified as a field blank. No contaminants were found with the following exceptions:

| Blank ID | Collection<br>Date | Analyte                 | Concentration           | Associated<br>Samples |
|----------|--------------------|-------------------------|-------------------------|-----------------------|
| HU142    | 06/23/22           | Ethylbenzene<br>Styrene | 0.078 ug/L<br>0.21 ug/L | HU137<br>HU139        |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions:

| Sample | Analyte      | Reported<br>Concentration | Modified Final<br>Concentration |
|--------|--------------|---------------------------|---------------------------------|
| HU137  | Ethylbenzene | 0.078 ug/L                | 0.078J+ ug/L                    |
|        | Naphthalene  | 0.36 ug/L                 | 0.50U ug/L                      |
|        | Styrene      | 0.21 ug/L                 | 0.50U ug/L                      |
| HU139  | Ethylbenzene | 0.077 ug/L                | 0.077J+ ug/L                    |
|        | Naphthalene  | 0.36 ug/L                 | 0.50U ug/L                      |
|        | Styrene      | 0.21 ug/L                 | 0.50U ug/L                      |
| HU142  | Ethylbenzene | 0.078 ug/L                | 0.078J+ ug/L                    |
|        | Styrene      | 0.12 ug/L                 | 0.50U ug/L                      |
| HU143  | Ethylbenzene | 0.077 ug/L                | 0.077J+ ug/L                    |
|        | Styrene      | 0.21 ug/L                 | 0.50U ug/L                      |

#### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### X. Field Duplicates

No field duplicates were identified in this SDG.

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

| Sample                          | Analyte                                                | Flag            | A or P |
|---------------------------------|--------------------------------------------------------|-----------------|--------|
| All samples in SDG 580-115250-1 | All laboratory calibrated analytes<br>reported as TICs | J (all detects) | A      |

Raw data were not reviewed for Stage 2B validation.

#### XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

#### XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D, ending CCV %D, and TIC quantitation, data were qualified as estimated in seven samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in seven samples.

Due to trip blank contamination, data were qualified as not detected or estimated in four samples.

Due to equipment and field blank contamination, data were qualified as not detected or estimated in two samples.

#### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-115250-1

| Sample                                                               | Analyte                                             | Flag                 | A or P | Reason (Code)                                                 |
|----------------------------------------------------------------------|-----------------------------------------------------|----------------------|--------|---------------------------------------------------------------|
| HU137<br>HU136<br>HU139<br>HU138<br>HU142<br>HU129<br>HU143          | Bromomethane<br>Chloromethane                       | UJ (all non-detects) | A      | Initial calibration<br>verification (%D) (c)                  |
| HU137<br>HU136<br>HU139<br>HU138<br>HU142<br>HU142<br>HU129<br>HU143 | Bromomethane                                        | UJ (all non-detects) | A      | Continuing calibration<br>(ending CCV %D) (c)                 |
| HU137<br>HU136<br>HU139<br>HU138<br>HU142<br>HU142<br>HU129<br>HU143 | All laboratory calibrated analytes reported as TICs | J (all detects)      | A      | Tentatively Identified<br>Compounds (TIC)<br>quantitation (v) |

### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

| Sample | Analyte<br>TIC (RT in minutes)                                                                                                     | Modified Final<br>Concentration                                                    | A or P | Code |
|--------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|------|
| HU137  | Ethylbenzene<br>Naphthalene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) | 0.078J+ ug/L<br>0.50U ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.15U ug/L | A      | b    |
| HU136  | Ethylbenzene<br>Naphthalene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) | 0.079J+ ug/L<br>0.50U ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.16U ug/L | A      | b    |
| HU139  | Ethylbenzene<br>Naphthalene<br>Styrene<br>Isopropylbenzene (12.50)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) | 0.077J+ ug/L<br>0.50U ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.15U ug/L | A      | b    |

| Sample | Analyte<br>TIC (RT in minutes)                                                                                                                    | Modified Final<br>Concentration                                                    | A or P | Code |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|------|
| HU138  | Ethylbenzene<br>Naphthalene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54)                | 0.079J+ ug/L<br>0.50U ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.16U ug/L | A      | b    |
| HU142  | Ethylbenzene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54)                               | 0.078J+ ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.15U ug/L               | A      | b    |
| HU129  | Ethylbenzene<br>Naphthalene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54)                | 0.079J+ ug/L<br>0.50U ug/L<br>0.50U ug/L<br>0.26U ug/L<br>0.15U ug/L<br>0.16U ug/L | A      | Ь    |
| HU143  | p-Isopropyitoluene (13.54)<br>Ethylbenzene<br>Styrene<br>Isopropylbenzene (12.51)<br>1,3,5-Trimethylbenzene (12.99)<br>p-Isopropyltoluene (13.54) |                                                                                    | A      | b    |

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-115250-1

| Sample | Analyte                                | Modified Final<br>Concentration          | A or P | Code |
|--------|----------------------------------------|------------------------------------------|--------|------|
| HU137  | Ethylbenzene<br>Naphthalene<br>Styrene | 0.078J+ ug/L<br>0.50U ug/L<br>0.50U ug/L | A      | t, f |
| HU139  | Ethylbenzene<br>Naphthalene<br>Styrene | 0.077J+ ug/L<br>0.50U ug/L<br>0.50U ug/L | A      | t, f |
| HU142  | Ethylbenzene<br>Styrene                | 0.078J+ ug/L<br>0.50U ug/L               | A      | t    |
| HU143  | Ethylbenzene<br>Styrene                | 0.077J+ ug/L<br>0.50U ug/L               | A      | t    |

| VALIDATION | COMPLETENESS | WORKSHEET |
|------------|--------------|-----------|
|            |              |           |

Stage 2B

SDG #:<u>580-115250-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 54723B1a

Date: 8 2 7 7 Page: \_ of \_ Reviewer: \_\_\_\_\_7 2nd Reviewer: \_\_\_\_\_7

#### METHOD: GC/MŞ Volatiles (EPA SW-846 Method 8260D) ナ ていじ

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |       | Comments                 |
|-------|----------------------------------------|-------|--------------------------|
| ١.    | Sample receipt/Technical holding times | A/A   |                          |
| ١١.   | GC/MS Instrument performance check     | A     | ·                        |
| 111.  | Initial calibration/ICV                | A 15W | 0/0 PSD = 15, 12 IN = 20 |
| IV.   | Continuing calibration / e Ming        | 500   | $CUV \neq 20 SV$         |
| V.    | Laboratory Blanks                      | SW    |                          |
| VI.   | Field blanks                           | SW    |                          |
| VII.  | Surrogate spikes                       | 4     |                          |
| VIII. | Matrix spike/Matrix spike duplicates   | N     |                          |
| IX.   | Laboratory control samples             | A     | Les 1P                   |
| Х.    | Field duplicates                       | N     |                          |
| XI.   | Internal standards                     | A     |                          |
| XII.  | Target analyte quantitation / TIC      | (~N   |                          |
| XIII. | Target analyte identification          | N     |                          |
| XIV.  | System performance                     | N     |                          |
| XV.   | Overall assessment of data             |       |                          |

Note:

A = Acceptable
 N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

|          | Client ID      | Lab ID       | Matrix | Date     |
|----------|----------------|--------------|--------|----------|
| 11       | HU137          | 580-115250-1 | Water  | 06/23/22 |
| 271      | HU136 TO       | 580-115250-2 | Water  | 06/23/22 |
| 3 1      | HU139          | 580-115250-3 | Water  | 06/23/22 |
| <b>‡</b> | HU138 TO       | 580-115250-4 | Water  | 06/23/22 |
| 51       | HU142 FB       | 580-115250-5 | Water  | 06/23/22 |
| †<br>6   | ни129 ТВ       | 580-115250-6 | Water  | 06/23/22 |
| ţ        | HU143 EB       | 580-115250-7 | Water  | 06/23/22 |
| 8        |                |              |        |          |
| 9        |                |              |        |          |
| Notes    |                |              |        |          |
| 1        | MB 580-395127  |              |        |          |
|          | MB 586-39615 A | •            |        |          |
|          |                |              |        |          |
|          |                |              |        |          |

# TARGET COMPOUND WORKSHEET

#### METHOD: VOA

...

|                              |                                 |                                            |                                   | · · · · · · · · · · · · · · · · · · · |
|------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|---------------------------------------|
| A. Chioromethane             | AA. Tetrachloroethene           | AAA. 1,3,5-Trimethylbenzene                | AAAA. Ethyl tert-butyl ether      | A1. 1,3-Butadiene                     |
| B. Bromomethane              | BB. 1,1,2,2-Tetrachloroethane   | BBB. 4-Chlorotoluene                       | BBBB. tert-Amyl methyl ether      | B1. Hexane                            |
| C. Vinyl choride             | CC. Toluene                     | CCC. tert-Butylbenzene                     | CCCC. 1-Chlorohexane              | C1. Heptane                           |
| D. Chloroethane              | DD. Chlorobenzene               | DDD. 1,2,4-Trimethylbenzene                | DDDD. Isopropyl alcohol           | D1. Propylene                         |
| E. Methylene chloride        | EE. Ethylbenzene                | EEE. sec-Butylbenzene                      | EEEE. Acetonitrile                | E1. Freon 11                          |
| F. Acetone                   | FF. Styrene                     | FFF. 1,3-Dichlorobenzene                   | FFFF. Acrolein                    | F1. Freon 12                          |
| G. Carbon disulfide          | GG. Xylenes, total              | GGG. p-lsopropyltoluene                    | GGGG. Acrylonitrile               | G1. Freon 113                         |
| H. 1,1-Dichloroethene        | HH. Vinyl acetate               | HHH. 1,4-Dichlorobenzene                   | HHHH. 1,4-Dioxane                 | H1. Freon 114                         |
| I. 1,1-Dichloroethane        | II. 2-Chloroethylvinyl ether    | III. n-Butylbenzene                        | IIII. Isobutyl alcohol            | I1. 2-Nitropropane                    |
| J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane     | JJJ. 1,2-Dichlorobenzene                   | JJJJ. Methacrylonitrile           | J1. Dimethyl disulfide                |
| K. Chloroform                | KK. Trichlorofluoromethane      | KKK. 1,2,4-Trichlorobenzene                | KKKK. Propionitrile               | K1. 2,3-Dimethyl pentane              |
| L. 1,2-Dichloroethane        | LL. Methyl-tert-butyl ether     | LLL. Hexachlorobutadiene                   | LLLL. Ethyl ether                 | L1. 2,4-Dimethyl pentane              |
| M. 2-Butanone                | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene                           | MMMM. Benzyl chloride             | M1. 3,3-Dimethyl pentane              |
| N. 1,1,1-Trichloroethane     | NN. Methyl ethyl ketone         | NNN. 1,2,3-Trichlorobenzene                | NNNN. lodomethane                 | N1. 2-Methylpentane                   |
| O. Carbon tetrachloride      | OO. 2,2-Dichloropropane         | OOO. 1,3,5-Trichlorobenzene                | 0000.1,1-Difluoroethane           | O1. 3-Methylpentane                   |
| P. Bromodichloromethane      | PP. Bromochloromethane          | PPP. trans-1,2-Dichloroethene              | PPPP. Tetrahydrofuran             | P1. 3-Ethylpentane                    |
| Q. 1,2-Dichloropropane       | QQ. 1,1-Dichloropropene         | QQQ. cis-1,2-Dichloroethene                | QQQQ. Methyl acetate              | Q1. 2,2-Dimethylpentane               |
| R. cis-1,3-Dichloropropene   | RR. Dibromomethane              | RRR. m,p-Xylenes                           | RRRR. Ethyl acetate               | R1. 2,2,3- Trimethylbutane            |
| S. Trichloroethene           | SS. 1,3-Dichloropropane         | SSS. o-Xylene                              | SSSS. Cyclohexane                 | S1. 2,2,4-Trimethylpentane            |
| T. Dibromochloromethane      | TT. 1,2-Dibromoethane           | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methyl cyclohexane          | T1. 2-Methylhexane                    |
| U. 1,1,2-Trichloroethane     | UU. 1,1,1,2-Tetrachloroethane   | UUU. 1,2-Dichlorotetrafluoroethane         | UUUU. Allyl chloride              | U1. Nonanal                           |
| V. Benzene                   | VV. Isopropylbenzene            | VVV. 4-Ethyltoluene                        | VVVV. Methyl methacrylate         | V1. 2-Methylnaphthalene               |
| W. trans-1,3-Dichloropropene | WW. Bromobenzene                | WWW. Ethanol                               | WWWW. Ethyl methacrylate          | W1. Methanol                          |
| X. Bromoform                 | XX. 1,2,3-Trichloropropane      | XXX. Di-isopropyl ether                    | XXXX. cis-1,4-Dichloro-2-butene   | X1. 1,2,3-Trimethylbenzene            |
| Y. 4-Methyi-2-pentanone      | YY. n-Propylbenzene             | YYY. tert-Butanol                          | YYYY. trans-1,4-Dichloro-2-butene | Y1. 2-Propanol                        |
| Z. 2-Hexanone                | ZZ. 2-Chlorotoluene             | ZZZ. tert-Butyl alcohol                    | ZZZZ. Pentachloroethane           | Z1.                                   |

LDC #: 5472 38/2

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:\_\_\_of\_\_\_ Reviewer:\_\_\_\_FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D)

| Plea<br>Y N<br>Y K | Lease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".         N.N/A       Was an initial calibration verification standard analyzed after each ICAL for each instrument?         N/A       Were all %D within the validation criteria of ≤20 %D? |             |          |                                    |                                        |                                       |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|------------------------------------|----------------------------------------|---------------------------------------|--|--|--|--|--|
| #                  | Date                                                                                                                                                                                                                                                                                                        | Standard ID | Compound | Finding %D<br>(Limit: 20.0% / 30%) | Associated Samples                     | Qualifications                        |  |  |  |  |  |
|                    | 622                                                                                                                                                                                                                                                                                                         | 101         | В        | 27.4                               | <u>(IA</u>                             | J+/UJ/A ND                            |  |  |  |  |  |
|                    | 2024                                                                                                                                                                                                                                                                                                        |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
| <b> </b>           |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    | 7122                                                                                                                                                                                                                                                                                                        | 101/        | A        | 28,9                               | All                                    | 1+ /11/A ND                           |  |  |  |  |  |
|                    | 0308                                                                                                                                                                                                                                                                                                        |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
| -                  |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    | <u> </u>                                                                                                                                                                                                                                                                                                    |             |          |                                    | ······································ |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    | ·····                                  |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        | · · · · · · · · · · · · · · · · · · · |  |  |  |  |  |
| <b> </b>           | +                                                                                                                                                                                                                                                                                                           |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
| ┣—                 |                                                                                                                                                                                                                                                                                                             |             |          |                                    |                                        |                                       |  |  |  |  |  |
| L                  | 1                                                                                                                                                                                                                                                                                                           |             | 1        |                                    |                                        |                                       |  |  |  |  |  |

LDC #: 547238 a

#### VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

| Page:_    | 6f |
|-----------|----|
| Reviewer: | FT |

(2)

METHOD: GC/MS VOA (EPA SW 846 Method 8260  $\, \mathcal{O} \,$  )

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". fr 1N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? VN N/A

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Y NNA Were all %D and RRFs within the validation criteria of  $\leq 20$  %D and  $\geq 0.05$  RRF?

| #        | Date  | Standard ID  | Compound | Finding %D<br>(Limit: <u>&lt;</u> 20.0%) | Finding RRF<br>(Limit: <u>≥</u> 0.05) | Associated Samples                     | Qualifications |
|----------|-------|--------------|----------|------------------------------------------|---------------------------------------|----------------------------------------|----------------|
|          | 62822 | cen- closing | В        | 57.1 ( 50.0                              | /                                     | A1)                                    | J+/UJ/A ND     |
|          | 0107  | •            |          | •                                        |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
| <u> </u> |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              | 48       |                                          |                                       |                                        |                |
|          |       |              |          |                                          | ·······                               | 5x                                     |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       | ······································ |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        | •              |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |
|          |       |              |          |                                          |                                       |                                        |                |

LDC #: 5472 38/2

#### VALIDATION FINDINGS WORKSHEET **Blanks**

ſb

A\)



#### METHOD: GC/MS VOA (EPA SW 846 Method 8260 D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>IN N/A</u> Was a method blank associated with every sample in this SDG?

Y N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Y N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

| Blan | k analysi | s date: | َ جا | 21       | 22  |
|------|-----------|---------|------|----------|-----|
| Conc | . units:  | uall    |      | <b>·</b> | L I |

| Compound | Blank ID |       | Sample Identification |            |         |          |            |            |            |  |
|----------|----------|-------|-----------------------|------------|---------|----------|------------|------------|------------|--|
|          | MB 580-3 | 95127 | ١                     | 2          | 3       | 4        | 5          | 6          | 7          |  |
| ĸĸĸ      | 0.211    |       |                       |            |         |          |            |            |            |  |
| EE       | 0.0813   |       | 0.0781+               | 0.079 5+   | 0.0771+ | 0,079 Jt | 0.078 Jt   | 0.0791+    | 0.0771+    |  |
| LLL      | 0.107    |       |                       |            |         |          |            |            |            |  |
| MMM      | 0.43)    |       | 0.36 0.50             | 0.77 0.504 | 0.76    | 0.36     |            | 0.36 0.900 |            |  |
| FF       | 0.211    |       | 0.21/1                | 0.21       | 0.21 V  | 0.21     | 0.21 0.904 | 0.21 0.504 | 0.21/0.500 |  |
| 66       | 0.205    |       |                       |            |         |          |            | 1          | 1          |  |
| 555      | 0.205    |       |                       |            |         |          |            |            |            |  |

Associated Samples:

Blank analysis date: 121/22

| (   | Conc. units: val       |               | Asso                  | ciated Samples: | <u> </u>     |              |              |              |            |    |
|-----|------------------------|---------------|-----------------------|-----------------|--------------|--------------|--------------|--------------|------------|----|
|     | ()<br>Compound         | Blank ID      | Sample Identification |                 |              |              |              |              |            |    |
|     |                        | V             | 1                     | 2               | 3            | 4            | 6            | 6            | 7          |    |
| TIG | × ×                    | 0.264 (12.5)  | 0.26 (12.51)          | 0.26 (12.51)    | 0.26 (12.90) | 0.26 /12.51) | 0.26 (12.51) | 0.26 (12.51) | 0.26 (12.5 | )  |
|     | 1,3,5 - Trimethylbmzen | 0.153(12.99)  | 0.15 (1299)           | 0.15 (12.99)    | 0.15 (1299)  | 0.15 (12.99) | 0.15 (12.99) | 0.15 (12.99) | 0.15 (12.9 | 1  |
|     | <u>666</u>             | 0.162 (13.51) | 0.15 (13.54)          | 0.16 (13.54)    | 0.15 (13.54) | 0.16 (13.54) | 0.15 (13.54  | 0.16 (13.54) | 0.15 (13.5 | 1) |
|     | NNN                    | 0.0729(14.45) |                       |                 |              |              |              |              |            |    |
|     | NNN                    | 0,222 (15.57) |                       |                 |              |              |              |              |            |    |
|     |                        |               |                       |                 |              |              |              |              |            |    |
|     |                        |               |                       |                 |              |              |              |              |            |    |

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were gualified as not detected, "U". Other contaminants within five times the method blank concentration were also gualified as not detected, "U".

| LDC#: <u>5472</u> 3B)の                                                                                                             | VALIDAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ION FINDI<br>Field E                         | NGS WOR<br>Blanks                             | KSHEET       |      |                 | Rev      | Page:/of/ |                                              |   |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------|------|-----------------|----------|-----------|----------------------------------------------|---|
| METHOD: GC/MS VOA (EP<br><u>M N N/A</u> Were field b<br><u>V N N/A</u> Were target<br>Blank units: パレー Asso<br>Sampling date: 623レ | CC/MS VOA (EPA SW 846 Method 8260 D)<br>Were field blanks identified in this SDG?<br>Were target compounds detected in the field blanks?<br>ts:L Associated sample units:ug L<br>date:L 23 L 2<br>t = L 23 |                                              |                                               |              |      |                 |          |           | (£)                                          |   |
| Field blank type: (circle one                                                                                                      | e) Field Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / Rinsate / Tri                              | p Blank / Oth                                 | er: <u> </u> | Asso | ciated Samp     | les:     | )<br>     |                                              |   |
| Compound                                                                                                                           | Blank ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                               |              | S;   | ample Identific | ation    |           | <u>,                                    </u> |   |
|                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                            |                                               |              |      |                 | <u> </u> |           |                                              |   |
| ee                                                                                                                                 | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.078 1+                                     |                                               |              |      |                 |          |           |                                              |   |
| иим                                                                                                                                | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36 0.504                                   |                                               |              |      |                 |          |           |                                              |   |
| FF                                                                                                                                 | 0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21/0.504                                   |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 | ļ        |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 | L        |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 | L        |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              | ·    |                 |          |           |                                              |   |
| Blank units: <u></u>                                                                                                               | <b>Division of Second States</b><br>$\mathcal{V}$<br>(Second States) Field Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>le units: يور</b><br>ا<br>/ Rinsate / Tri | <u>↓                                     </u> | er: TB       | Asso | ciated Samp     | les:     | 3 #       | =)(+)                                        | _ |
| Compound                                                                                                                           | Blank ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                               |              | Sa   | ample Identific | ation    |           |                                              |   |
|                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                            |                                               |              |      |                 |          |           |                                              |   |
| हि                                                                                                                                 | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0771+                                      |                                               |              |      |                 |          |           |                                              |   |
| MMM                                                                                                                                | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-36/0,504                                   |                                               |              |      |                 |          |           |                                              |   |
| FF                                                                                                                                 | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21/1                                       |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 |          |           |                                              |   |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                               |              |      |                 |          |           |                                              |   |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

| LDC #: <u>5472</u> 3B)a                                                                                          | <i>,</i>                                      | VALIDATION FINDINGS WORKSHEET<br>Field Blanks |               |               |           |                 | Page:of<br>Reviewer: FT |     |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------|---------------|-----------|-----------------|-------------------------|-----|--|
| METHOD: GC/MS VOA (EP<br><u>Y N N/A</u> Were field b<br><u>Y N N/A</u> Were target<br>Blank units: <u>y</u> Asso | )<br>?<br>e field blanks?<br>}_L              | ?                                             |               |               |           | (f)             |                         |     |  |
| Field blank type: (circle one                                                                                    | ) Field Blank                                 | / Rinsate / Tri                               | p Blank / Oth | er: <u>TP</u> | Asso      | ciated Samp     | les:                    | 57  |  |
| Compound                                                                                                         | Blank ID                                      |                                               |               |               | S         | ample Identific | ation                   |     |  |
|                                                                                                                  | 6                                             | 5                                             | 7             |               |           |                 |                         |     |  |
| FE                                                                                                               | 0.079                                         | 0.0785                                        | + 110.0       |               |           |                 |                         |     |  |
| ммм                                                                                                              | 0.36                                          |                                               |               |               |           |                 |                         |     |  |
| FF                                                                                                               | 0.21                                          | 0.21 0.504                                    | 0.21/0.004    |               |           |                 |                         |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 | <u> </u>                |     |  |
| ·                                                                                                                |                                               |                                               | ·····         |               |           |                 |                         |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 |                         |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 |                         |     |  |
|                                                                                                                  |                                               |                                               | 1.            |               |           |                 |                         |     |  |
| Sampling date: 623<br>Field blank type: (circle one                                                              | $\underline{\gamma} \gamma$<br>e) Field Blank | / Rinsate / Tri                               | p Blank / Oth | er: FB        | Asso      | ciated Samp     | les:                    | (f) |  |
| Compound                                                                                                         | Blank ID                                      |                                               |               |               | S         | ample Identific | ation                   |     |  |
|                                                                                                                  | 5                                             | 1                                             | 3             |               | 1         |                 |                         |     |  |
| EE                                                                                                               | 0.078                                         | 0.0181+                                       | 0.0775+       |               | 0.0173+   |                 |                         |     |  |
| FF                                                                                                               | 0.21                                          | 0.21 0.50M                                    | 0.21/0.50     |               | 0.21/0.50 | И               |                         |     |  |
|                                                                                                                  |                                               |                                               | l             |               | 1         |                 |                         |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 | L                       |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 |                         |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 |                         |     |  |
|                                                                                                                  |                                               |                                               |               |               |           |                 | ļ                       |     |  |
|                                                                                                                  |                                               |                                               |               | 1             |           |                 | <u> </u>                |     |  |

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

| DC #: <u>5472</u> 3 B)                                                      | (EDA SW 846 M                                                                    | othed 9260 I                                                       |                                 | ION FINDII<br><u>Field B</u> | NGS WOR<br>lanks | KSHEET           |       |          | Rev | Page: <u> </u> |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------|------------------|------------------|-------|----------|-----|----------------|
| N N/A Were fie<br>N N/A Were tai<br>Blank units: 44 A<br>Sampling date: 412 | (EPA SW 646 M<br>eld blanks identifie<br>rget compounds<br>ssociated samp<br>シーン | ethod 3260 12<br>ed in this SDG<br>detected in the<br>le units: up | ')<br>?<br>e field blanks'<br>} | ?                            |                  |                  |       | (f)      |     |                |
| Compound                                                                    | One) Field Blank                                                                 |                                                                    | ip Blank / Oth                  | er: ED                       | Asso             | ample Identific  | es:   | <u> </u> |     |                |
| Compound                                                                    | 1                                                                                | 1                                                                  | N                               |                              | <u> </u>         |                  |       |          |     | T              |
| EE                                                                          | 0.077                                                                            | 0.0785+                                                            | 0.0775+                         |                              |                  |                  |       |          |     |                |
| FF                                                                          | 0.21                                                                             | 0.21 0.504                                                         | 0.21/0.900                      |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    | 1                               |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
| *** <u></u>                                                                 |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
| ank units: A<br>ampling date:                                               | Associated samp                                                                  | ole units:                                                         |                                 |                              |                  |                  |       |          |     |                |
| eld blank type: (circle                                                     | one) Field Blank                                                                 | / Rinsate / Tri                                                    | p Blank / Oth                   | er:                          | Asso             | ciated Sampl     | es:   |          |     |                |
| Compound                                                                    | Biank ID                                                                         |                                                                    |                                 | r                            | S                | ample Identifica | ation |          | r   | ·····          |
|                                                                             |                                                                                  |                                                                    |                                 | <br>                         |                  | <br>             | <br>  |          |     | <u> </u>       |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     |                |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     | <u> </u>       |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  | <br>             |       |          |     | <u> </u>       |
|                                                                             |                                                                                  |                                                                    |                                 |                              |                  |                  |       |          |     | 1              |

Page:\_\_\_of\_\_\_/

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

1

#### LDC #: 54723B1a

#### VALIDATION FINDINGS WORKSHEET **Target Analyte Quantitation**



Reviewer: FT

#### METHOD: GCMS VOA EPA SW 846 Method 8260D

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y</u> Y Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Compound                                                                                     | Lab RL is higher than QAPP RL | Qualifications |
|---|------|-----------|----------------------------------------------------------------------------------------------|-------------------------------|----------------|
|   |      | all       | All laboratory calibrated analytes<br>reported as Tentatively Identified<br>Compounds (TICs) |                               | Jdet/A (V)     |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
| - |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |
|   |      |           |                                                                                              |                               |                |

Comments: See sample calculation verification worksheet for recalculations

### LDC Report# 54723B2a

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18F0176 |
|--------------------|----------------------------------------------------|
| LDC Report Date:   | October 18, 2022                                   |
| Parameters:        | Semivolatiles                                      |
| Validation Level:  | Stage 2B                                           |
| Laboratory:        | Eurofins, Tacoma, WA                               |

Sample Delivery Group (SDG): 580-115250-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU137                 | 580-115250-1                        | Water  | 06/23/22           |
| HU139                 | 580-115250-3                        | Water  | 06/23/22           |
| HU142                 | 580-115250-5                        | Water  | 06/23/22           |
| HU143                 | 580-115250-7                        | Water  | 06/23/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

### I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

#### II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

#### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Sample HU143 was identified as an equipment blank. No contaminants were found.

Sample HU142 was identified as a field blank. No contaminants were found.

#### VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                           | Analyte                                 | RPD<br>(Limits)      | Flag | A or P |
|----------------------------------------------------------|-----------------------------------------|----------------------|------|--------|
| LCS/LCSD 580-395333<br>(All samples in SDG 580-115250-1) | Hexachlorobutadiene<br>Hexachloroethane | 38 (≤20)<br>23 (≤20) | NA   | -      |

#### X. Field Duplicates

No field duplicates were identified in this SDG.

#### XI. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XII. Target Analyte and Tentatively Identified Compounds Quantitation

All tentatively identified compound quantitations met validation criteria with the following exceptions:

| Sample                          | Analyte                                    | Flag             | A or P |
|---------------------------------|--------------------------------------------|------------------|--------|
| All samples in SDG 580-115250-1 | All tentatively identified compounds (TIC) | NJ (all detects) | A      |

Raw data were not reviewed for Stage 2B validation.

#### XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

#### XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

#### XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to TICs, data were qualified as presumptive and estimated in four samples.

#### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-115250-1

| Sample                           | Analyte                                    | Flag             | A or P | Reason (Code)                             |
|----------------------------------|--------------------------------------------|------------------|--------|-------------------------------------------|
| HU137<br>HU139<br>HU142<br>HU143 | All tentatively identified compounds (TIC) | NJ (all detects) | A      | Target analyte<br>quantitation (TICs) (v) |

#### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

#### No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG
| LDC #:_  | 54723B <b>4</b> a      | VA |
|----------|------------------------|----|
| SDG #:_  | 580-115250-1           |    |
| Laborato | ory: Eurofins, Tacoma, | WA |

2

#### VALIDATION COMPLETENESS WORKSHEET Stage 2B

Date: <u>8</u> 21 7 Page: <u>1</u> of <u>1</u> Reviewer: <u>1</u> 2nd Reviewer: <u>1</u>

#### METHOD: GC/MS Semivolatiles (EPA SW-846 Method 8270E)

+ T10

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

| /     | Validation Area                        |      | Comments                                       |
|-------|----------------------------------------|------|------------------------------------------------|
| ١.    | Sample receipt/Technical holding times | A /A |                                                |
| ١١.   | GC/MS Instrument performance check     | Δ    |                                                |
| 111.  | Initial calibration/ICV                | A/A  | $0/0$ psp $\leq 15$ ( $^{\gamma}$ Ky $\leq 20$ |
| IV.   | Continuing calibration ending          | K    | ew = 20/52                                     |
| V.    | Laboratory Blanks                      | A    |                                                |
| VI.   | Field blanks                           | ND   | FB=3 EB=4                                      |
| VII.  | Surrogate spikes                       | SVA  |                                                |
| VIII. | Matrix spike/Matrix spike duplicates   | N    | <u>ک</u>                                       |
| IX.   | Laboratory control samples             | SW   | LOSIP                                          |
| Х.    | Field duplicates                       | N    |                                                |
| XI.   | Internal standards                     | . 4  |                                                |
| XII.  | Target analyte quantitation / TC       | N-2  |                                                |
| XIII. | Target analyte identification          | N    |                                                |
| XIV.  | System performance                     | N    |                                                |
| XV.   | Overall assessment of data             |      |                                                |

Note:

e: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

|       | Client ID |       |      | <br>        | Lab ID       | Matrix | Date     |
|-------|-----------|-------|------|-------------|--------------|--------|----------|
| 1     | HU137     |       |      |             | 580-115250-1 | Water  | 06/23/22 |
| ī     | HU139     |       | <br> |             | 580-115250-3 | Water  | 06/23/22 |
| ริ    | HU142     | FB    | <br> |             | 580-115250-5 | Water  | 06/23/22 |
| 4     | HU143     | ED    | <br> | <br>        | 580-115250-7 | Water  | 06/23/22 |
| 5     |           |       | <br> | <br>        |              |        |          |
| 6     |           |       | <br> | <br>        |              |        |          |
| 7     |           |       | <br> | <br><u></u> |              |        |          |
| 8     |           |       | <br> |             |              |        |          |
| 9     |           |       | <br> | <br>        |              |        |          |
| Notes | :         |       | <br> | <br>        |              |        |          |
|       | MB 580- ? | 95333 |      |             |              |        |          |

| MB 580-395333 |  |  |  |
|---------------|--|--|--|
|               |  |  |  |
|               |  |  |  |
|               |  |  |  |

# VALIDATION FINDINGS WORKSHEET

#### METHOD: GC/MS SVOA

| A. Phenol                       | CC. Dimethylphthalate           | EEE. Bis(2-ethylhexyl)phthalate  | GGGG. C30-Hopane                          | I1. Methyl methanesulfonate            |
|---------------------------------|---------------------------------|----------------------------------|-------------------------------------------|----------------------------------------|
| B. Bis (2-chloroethyl) ether    | DD. Acenaphthylene              | FFF. Di-n-octylphthalate         | HHHH. 1-Methylphenanthrene                | J1. Ethyl methanesulfonate             |
| C. 2-Chlorophenol               | EE. 2,6-Dinitrotoluene          | GGG. Benzo(b)fluoranthene        | IIII. 1,4-Dioxane                         | K1. o,o',o"-Triethylphosphorothioate   |
| D. 1,3-Dichlorobenzene          | FF. 3-Nitroaniline              | HHH. Benzo(k)fluoranthene        | JJJJ. Acetophenone                        | L1. n-Phenylene diamine                |
| E. 1,4-Dichlorobenzene          | GG. Acenaphthene                | III. Benzo(a)pyrene              | KKKK. Atrazine                            | M1. 1,4-Naphthoquinone                 |
| F. 1,2-Dichlorobenzene          | HH. 2,4-Dinitrophenol           | JJJ. Indeno(1,2,3-cd)pyrene      | LLLL. Benzaldehyde                        | N1. N-Nitro-o-toluidine                |
| G. 2-Methylphenol               | II. 4-Nitrophenol               | KKK. Dibenz(a,h)anthracene       | MMMM. Caprolactam                         | O1. 1,3,5-Trinitrobenzene              |
| H. 2,2'-Oxybis(1-chloropropane) | JJ. Dibenzofuran                | LLL. Benzo(g,h,i)perylene        | NNNN. 2,6-Dichlorophenol                  | P1. Pentachlorobenzene                 |
| I. 4-Methylphenol               | KK. 2,4-Dinitrotoluene          | MMM. Bis(2-Chloroisopropyl)ether | 0000. 1,2-Diphenylhydrazine               | Q1. 4-Aminobiphenyl                    |
| J. N-Nitroso-di-n-propylamine   | LL. Diethylphthalate            | NNN. Aniline                     | PPPP. 3-Methylphenol                      | R1. 2-Naphthylamine                    |
| K. Hexachloroethane             | MM. 4-Chlorophenyl-phenyl ether | OOO. N-Nitrosodimethylamine      | QQQQ. 3&4-Methylphenol                    | S1. Triphenylene                       |
| L. Nitrobenzene                 | NN. Fluorene                    | PPP. Benzoic Acid                | RRRR. 4-Dimethyldibenzothiophene (4MDT)   | T1. Octachlorostyrene                  |
| M. Isophorone                   | OO. 4-Nitroaniline              | QQQ. Benzyl alcohol              | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | U1. Famphur                            |
| N. 2-Nitrophenol                | PP. 4,6-Dinitro-2-methylphenol  | RRR. Pyridine                    | TTTT. 1-Methyldibenzothiophene (1MDT)     | V1. 1,4-phenylenediamine               |
| O. 2,4-Dimethylphenol           | QQ. N-Nitrosodiphenylamine      | SSS. Benzidine                   | UUUU 2,3,4,6-Tetrachlorophenol            | W1. Methapyrilene                      |
| P. Bis(2-chloroethoxy)methane   | RR. 4-Bromophenyl-phenylether   | TTT. 1-Methylnaphthalene         | VVVV. 1,2,4,5-Tetrachlorobenzene          | X1. Pentachloroethane                  |
| Q. 2,4-Dichlorophenol           | SS. Hexachlorobenzene           | UUU.Benzo(b)thiophene            | WWWW 2-Picoline                           | Y1. 3,3'-Dimethylbenzidine             |
| R. 1,2,4-Trichlorobenzene       | TT. Pentachlorophenol           | VVV.Benzonaphthothiophene        | XXXX. 3-Methylcholanthrene                | Z1. o-Toluidine                        |
| S. Naphthalene                  | UU. Phenanthrene                | WWW.Benzo(e)pyrene               | YYYY. a,a-Dimethylphenethylamine          | A2. 1-Naphthylamine                    |
| T. 4-Chloroaniline              | VV. Anthracene                  | XXX. 2,6-Dimethylnaphthalene     | ZZZZ. Hexachloropropene                   | B2. 4-Aminobiphenyl                    |
| U. Hexachlorobutadiene          | WW. Carbazole                   | YYY. 2,3,5-Trimethylnaphthalene  | A1. N-Nitrosodiethylamine                 | C2. 4-Nitroquinoline-1-oxide           |
| V. 4-Chloro-3-methylphenol      | XX. Di-n-butylphthalate         | ZZZ. Perylene                    | B1. N-Nitrosodi-n-butylamine              | D2. Hexachloropene                     |
| W. 2-Methylnaphthalene          | YY. Fluoranthene                | AAAA. Dibenzothiophene           | C1. N-Nitrosomethylethylamine             | E2. Bis (2-chloro-1-methylethyl) ether |
| X. Hexachlorocyclopentadiene    | ZZ. Pyrene                      | BBBB. Benzo(a)fluoranthene       | D1. N-Nitrosomorpholine                   | F2. Bifenthrin                         |
| Y. 2,4,6-Trichlorophenol        | AAA. Butyibenzylphthalate       | CCCC. Benzo(b)fluorene           | E1. N-Nitrosopyrrolidine                  | G2. Cyfluthrin                         |
| Z. 2,4,5-Trichlorophenol        | BBB. 3,3'-Dichlorobenzidine     | DDDD. cis/trans-Decalin          | F1. Phenacetin                            | H2. Cypermethrin                       |
| AA. 2-Chloronaphthalene         | CCC. Benzo(a)anthracene         | EEEE. 1,1'-Biphenyl              | G1. 2-Acetylaminofluorene                 | l2. Permethrin (cis/trans)             |
| BB. 2-Nitroaniline              | DDD. Chrysene                   | FFFF. Retene                     | H1. Pronamide                             | J2. 5-Nitro-o-toluidine                |

# LDC #: 5472 384a

#### VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:\_\_\_\_6f\_\_/ Reviewer:\_\_\_\_FT\_\_\_

#### METHOD: GC/MS BNA (EPA SW 846 Method 8270 5)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

YON/A Were percent recoveries (%R) for surrogates within QC limits?

Y N MA Y N NA If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

| #        | Sample ID    | Surrogate | %R (Limits | )                                     | Qualifications |
|----------|--------------|-----------|------------|---------------------------------------|----------------|
|          | MB 58-395333 | ТРН       | 136        | ( 50-134 )                            | NU qual        |
|          |              |           |            | ()                                    | <u> </u>       |
| {        |              |           |            | ()                                    |                |
|          |              |           |            | ()                                    |                |
|          |              |           |            | ()                                    |                |
|          |              |           |            | ()                                    |                |
|          |              |           |            | ()                                    |                |
|          |              |           |            | ()_                                   |                |
|          |              |           |            | ()                                    |                |
|          |              |           |            | ()                                    |                |
|          |              |           |            | ()                                    |                |
| ļ        |              |           |            | )                                     |                |
| <u> </u> |              |           |            | ()                                    |                |
|          |              | ·         | (          | )                                     |                |
|          |              |           | (          | )                                     |                |
|          |              |           |            | )                                     |                |
|          |              |           |            | <u>)</u>                              |                |
|          |              | ·<br>     |            | · · · · · · · · · · · · · · · · · · · |                |
| <u> </u> |              |           |            | ·                                     |                |
| ļ        |              |           | - <u>(</u> | )<br>)                                |                |
|          |              |           | (          | )                                     |                |
|          |              |           | <u> </u>   | )                                     |                |
|          |              |           | (          | )                                     |                |
| ļ        |              |           | ((         | )                                     |                |
|          |              |           | <u> </u>   | )                                     |                |
|          |              |           |            | )                                     |                |

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14 (2FP) = 2-Fluorophenol (TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4 LDC #: 5472 3 Bya

V

Ń/N/A

# VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

| Page:     | lof |
|-----------|-----|
| Reviewer: | FT  |

#### METHOD: GC/MS BNA (Method & 7,70)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N<u>N/A</u> Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

| `'-{<br>{ |             |          |                    |                     |              |                    | (w)            |
|-----------|-------------|----------|--------------------|---------------------|--------------|--------------------|----------------|
| #         | LCS/LCSD ID | Compound | LCS<br>%R (Limits) | LCSD<br>%R (Limits) | RPD (Limits) | Associated Samples | Qualifications |
|           | 10          | N        | ( )                | ( )                 | 38 (20)      | All                | Jour 1P ND     |
|           | 580-39533   | > K      | ( )                | ( )                 | 23 (20)      | J                  | J.,            |
|           |             |          | ( )                | ( )                 | ( )          | <b>.</b>           | <b>_</b>       |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          |                    |                     |              |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          | <u></u>            |                |
|           |             |          | ( )                | ( )                 | ( )          | <u></u>            |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          |                    | <u>()</u>           |              |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          | ( )                | ( )                 | ( )          |                    |                |
|           |             |          |                    | ( )                 | ()           |                    |                |

# VALIDATION FINDINGS WORKSHEET **Target Analyte Quantitation**

#### METHOD: GCMS VOA EPA SW 846 Method 8260D

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

<u>Y</u> Y Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

| # | Date | Sample ID | Compound                                                            | Lab RL is higher than QAPP RL | Qualifications |
|---|------|-----------|---------------------------------------------------------------------|-------------------------------|----------------|
|   |      | all       | All analytes reported as Tentatively<br>Identified Compounds (TICs) |                               | NJ/A (V)       |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |
|   |      |           |                                                                     |                               |                |

Comments: See sample calculation verification worksheet for recalculations

# LDC Report# 54723B2b

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18F0176 |
|--------------------|----------------------------------------------------|
| LDC Report Date:   | October 18, 2022                                   |
| Parameters:        | Polynuclear Aromatic Hydrocarbons                  |
| Validation Level:  | Stage 2B                                           |
| Laboratory:        | Eurofins, Tacoma, WA                               |

Sample Delivery Group (SDG): 580-115250-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU137                 | 580-115250-1                        | Water  | 06/23/22           |
| HU139                 | 580-115250-3                        | Water  | 06/23/22           |
| HU142                 | 580-115250-5                        | Water  | 06/23/22           |
| HU143                 | 580-115250-7                        | Water  | 06/23/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

# II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

# III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

# IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

# V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

# VI. Field Blanks

Sample HU143 was identified as an equipment blank. No contaminants were found.

Sample HU142 was identified as a field blank. No contaminants were found.

# VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

# VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

# IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

# X. Field Duplicates

No field duplicates were identified in this SDG.

# XI. Internal Standards

All internal standard areas and retention times were within QC limits.

# XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

# XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

# XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

# XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-115250-1

No Sample Data Qualified in this SDG

| LDC #: <u>54723B2b</u>        | VALIDATION COMPLETENESS WORKSHEET |
|-------------------------------|-----------------------------------|
| SDG #: 580-115250-1           | Stage 2B                          |
| Laboratory: Eurofins, Tacoma, | WA                                |

| Date:         | 8      | 121  | 222 |
|---------------|--------|------|-----|
| Page:_        | $\Box$ | of_/ | _   |
| Reviewer:     |        | F    | _   |
| 2nd Reviewer: | Ì      | Ъ́   | _   |

#### METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validatio                     | on Area       |     | Comments                                       |
|-------|-------------------------------|---------------|-----|------------------------------------------------|
| Ι.    | Sample receipt/Technical      | holding times | A/A |                                                |
| 11.   | GC/MS Instrument perfor       | mance check   | 4   | ,                                              |
| 111.  | Initial calibration/ICV       | - •           | 410 | $0/0$ pop $\leq 15$ , $1^{2}$ $10^{2} \leq 20$ |
| IV.   | Continuing calibration        | lending       | Δ   | eur = 20/50                                    |
| V.    | Laboratory Blanks             | - 1           | Ą   |                                                |
| VI.   | Field blanks                  |               | ND  | FB=3 EB=4                                      |
| VII.  | Surrogate spikes              |               | 4   |                                                |
| VIII. | Matrix spike/Matrix spike     | duplicates    | И   | Con                                            |
| IX.   | Laboratory control sample     | es            |     | Lesin                                          |
| Х.    | Field duplicates              |               | N   |                                                |
| XI.   | Internal standards            |               | Δ   |                                                |
| XII.  | Target analyte quantitatio    | 'n            | N   |                                                |
| XIII. | Target analyte identification | on            | N   |                                                |
| XIV.  | System performance            |               | N   |                                                |
| XV.   | Overall assessment of da      | ta            |     |                                                |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

| D = Duplicate        |
|----------------------|
| TB = Trip blank      |
| EB = Equipment blank |

SB=Source blank OTHER:

| Client ID |                                        | Lab ID       | Matrix | Date     |
|-----------|----------------------------------------|--------------|--------|----------|
| 1 HU137   |                                        | 580-115250-1 | Water  | 06/23/22 |
| 2 HU139   | ······································ | 580-115250-3 | Water  | 06/23/22 |
| 3 HU142   | FB                                     | 580-115250-5 | Water  | 06/23/22 |
| 4 HU143   | EB                                     | 580-115250-7 | Water  | 06/23/22 |
|           |                                        |              |        |          |
|           |                                        |              |        |          |
| ,         |                                        |              |        |          |
|           |                                        |              |        |          |
|           |                                        |              |        |          |

| MB 580-395333 | ) |  |  |  |
|---------------|---|--|--|--|
|               |   |  |  |  |
|               |   |  |  |  |
|               |   |  |  |  |

# LDC Report# 54723B4b

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: October 3, 2022

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115250-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU137                 | 580-115250-1                        | Water  | 06/23/22           |
| HU139                 | 580-115250-3                        | Water  | 06/23/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

# **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

# II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

#### III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

#### IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID | Analyte                                                  | Maximum<br>Concentration                                               | Associated<br>Samples           |
|----------|----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|
| ICB/CCB  | Calcium<br>Magnesium<br>Manganese<br>Potassium<br>Sodium | 0.0794 mg/L<br>0.0615 mg/L<br>0.00280 mg/L<br>0.391 mg/L<br>0.319 mg/L | All samples in SDG 580-115250-1 |

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

# V. Field Blanks

No field blanks were identified in this SDG.

# VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

# VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

#### VIII. Serial Dilution

Serial dilution was not performed for this SDG.

#### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### X. Field Duplicates

No field duplicates were identified in this SDG.

#### XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

#### XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Field Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

| LDC #:_ | 54723B4b              | VA          |
|---------|-----------------------|-------------|
| SDG #:  | 580-115250-1          |             |
| Laborat | ory: Eurofins, Tacoma | <u>, WA</u> |

#### VALIDATION COMPLETENESS WORKSHEET Stage 2B

Date: 9 Page: Reviewer 2nd Reviewer

#### METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|             | Validation Area                              |    | Comments                              |
|-------------|----------------------------------------------|----|---------------------------------------|
| Ι.          | Sample receipt/Technical holding times       | AA |                                       |
| 11.         | Instrument Calibration                       | A  |                                       |
| III.        | ICP Interference Check Sample (ICS) Analysis | A  | · · · · · · · · · · · · · · · · · · · |
| IV.         | Laboratory Blanks                            | SW |                                       |
| <u>v.</u>   | Field Blanks                                 | N  |                                       |
| <u></u> VI. | Matrix Spike/Matrix Spike Duplicates         | N  | CIS                                   |
| VII.        | Duplicate sample analysis                    | N_ |                                       |
| VIII.       | Serial Dilution                              | N  |                                       |
| IX.         | Laboratory control samples                   | A  | losicsD                               |
| <u> </u>    | Field Duplicates                             | N  |                                       |
| XI.         | Target Analyte Quantitation                  | N  |                                       |
|             | Overall Assessment of Data                   | A_ |                                       |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank

OTHER:

Т Т

|      | Client ID | Lab ID       | Matrix | Date     |
|------|-----------|--------------|--------|----------|
| 1    | HU137     | 580-115250-1 | Water  | 06/23/22 |
| 2    | HU139     | 580-115250-3 | Water  | 06/23/22 |
| 3    |           |              |        |          |
| 4    |           |              |        |          |
| 5    |           |              |        |          |
| 6    |           |              |        |          |
| 7    |           |              |        |          |
| 8    |           |              |        |          |
| 9    |           |              |        |          |
| 10   |           |              |        |          |
| 11   |           |              |        |          |
| 12   |           |              |        |          |
| 13   |           |              |        |          |
| 14   |           |              |        |          |
| 15   |           |              |        |          |
| Note | ;         |              |        |          |



| Page:_     | _of |
|------------|-----|
| Reviewer:_ | ATV |

All circled elements are applicable to each sample.

| Sample ID | Motrix   | *<br>Target Analyte List (TAL)                                                                           |
|-----------|----------|----------------------------------------------------------------------------------------------------------|
|           | Matrix , |                                                                                                          |
| 1,2       | W        | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na) Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | AI, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, TI, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
|           |          | Analysis Method                                                                                          |
| ICP       |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
| ICP-MS    |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |
| GFAA      |          | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, |

Comments: Mercury by CVAA if performed

#### VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:<u>1\_</u>of<u>1</u> Reviewer:<u>ATL\_\_\_\_</u>

**METHOD:** Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>ug/L</u>\_\_\_\_ Soil preparation factor applied: <u>NA</u> Associated Samples: <u>all</u>

| Analyte | Maximum<br>PBª<br>(mg/Kg) | Maximum<br>PBª<br>(mg/L) | Maximum<br>ICB/CCB <sup>a</sup><br>(mg/L) | Action<br>Level |  |  |  |  |  |  |  |
|---------|---------------------------|--------------------------|-------------------------------------------|-----------------|--|--|--|--|--|--|--|
| Ca      |                           |                          | 0.0794                                    | 397             |  |  |  |  |  |  |  |
| Mg      |                           |                          | 0.0615                                    | 307.5           |  |  |  |  |  |  |  |
| Mn      |                           |                          | 0.00280                                   | 14              |  |  |  |  |  |  |  |
| к       |                           |                          | 0.391                                     | 1955            |  |  |  |  |  |  |  |
| Na      |                           |                          | 0.319                                     | 1595            |  |  |  |  |  |  |  |
|         |                           |                          |                                           |                 |  |  |  |  |  |  |  |

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

#### LDC Report Date: October 3, 2022

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115250-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU137                 | 580-115250-1                        | Water  | 06/23/22           |
| HU139                 | 580-115250-3                        | Water  | 06/23/22           |
| HU137MS               | 580-115250-1MS                      | Water  | 06/23/22           |
| HU137DUP              | 580-115250-1DUP                     | Water  | 06/23/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B Dissolved Organic Carbon by Environmental Protection Agency (EPA),SW 846 Method 9060A Nitrate/Nitrite as Nitrogen by EPA Method 353.2 Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

# II. Initial Calibration

All criteria for the initial calibration were met.

# III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

# IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

# V. Field Blanks

No field blanks were identified in this SDG.

# VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

# VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

# VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

# **IX. Field Duplicates**

No field duplicates were identified in this SDG.

# X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

# XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

1

## Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

| LDC #: <u>54723B6</u>         | VALIDATION COMPLETENESS WORKSHEET |    |
|-------------------------------|-----------------------------------|----|
| SDG #: 580-115250-1           | Stage 2B                          |    |
| Laboratory: Eurofins, Tacoma, | WA                                | Re |

Date: <u>4|28|2</u>2 Page: <u>1 of 1</u> Reviewer: <u>411</u> 2nd Reviewer: <u>1</u>

# METHOD: (Analyte) Alkalinity (SM2320B), DOC (EPA SW-846 Method 9060A), Nitrate/Nitrite-N (EPA Method 353.2), TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |    | Comments |
|-------|----------------------------------------|----|----------|
| ١.    | Sample receipt/Technical holding times | AA |          |
| 11    | Initial calibration                    | A  |          |
|       | Calibration verification               | A  |          |
| IV    | Laboratory Blanks                      | A  |          |
| v     | Field blanks                           | N  |          |
| VI.   | Matrix Spike/Matrix Spike Duplicates   | A  | 3        |
| VII.  | Duplicate sample analysis              | A  | 4        |
| VIII. | Laboratory control samples             | A  | LCS/LCSD |
| IX.   | Field duplicates                       | N  |          |
| Х.    | Target Analyte Quantitation            | N  |          |
| XI.   | Overall assessment of data             | A  |          |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

|      | Client ID | Lab ID          | Matrix | Date     |
|------|-----------|-----------------|--------|----------|
| 1    | HU137     | 580-115250-1    | Water  | 06/23/22 |
| 2    | HU139     | 580-115250-3    | Water  | 06/23/22 |
| 3    | HU137MS   | 580-115250-1MS  | Water  | 06/23/22 |
| 4    | HU137DUP  | 580-115250-1DUP | Water  | 06/23/22 |
| 5    |           |                 |        |          |
| 6    |           |                 |        |          |
| 7    |           |                 |        |          |
| 8    |           |                 |        |          |
| 9    |           |                 |        |          |
| 10   |           |                 |        |          |
| 11   |           |                 |        |          |
| 12   |           |                 |        |          |
| 13   |           | · · · · ·       |        |          |
| 14   |           |                 |        |          |
| Note | S:        |                 |        |          |

All circled methods are applicable to each sample.

| Sample ID | Parameter                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2       | pH TDS CI F NO3 NO2 SO4 O-PO4 (AIK) CN NH3 TKN (TOO Cr6+ CIO4 (NO3/ NO2-N) (DOC)                                                                                 |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
| QC        | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
| 3,4       | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub> ( $\overline{NO_3(NO_2-N)}$ ) |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
| ·         | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                            |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> _O-PO <sub>4</sub> _Alk_CN_NH <sub>3</sub> TKN_TOC_Cr6+ClO <sub>4</sub>                            |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                            |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                            |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                            |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                            |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>                               |

Comments:\_

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18F0176 |
|--------------------|----------------------------------------------------|
| LDC Report Date:   | October 13, 2022                                   |
| Parameters:        | Gasoline Range Organics                            |
| Validation Level:  | Stage 2B                                           |
| Laboratory:        | Eurofins, Tacoma, WA                               |

Sample Delivery Group (SDG): 580-115250-1

|                       | Laboratory Sample |        | Collection |
|-----------------------|-------------------|--------|------------|
| Sample Identification | Identification    | Matrix | Date       |
| HU137                 | 580-115250-1      | Water  | 06/23/22   |
| HU136                 | 580-115250-2      | Water  | 06/23/22   |
| HU139                 | 580-115250-3      | Water  | 06/23/22   |
| HU138                 | 580-115250-4      | Water  | 06/23/22   |
| HU142                 | 580-115250-5      | Water  | 06/23/22   |
| HU129                 | 580-115250-6      | Water  | 06/23/22   |
| HU143                 | 580-115250-7      | Water  | 06/23/22   |

.

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

# **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).
# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

# II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

# III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination ( $r^2$ ) was greater than or equal to 0.990.

Average relative response factors (RRF) were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

# IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

# V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

#### VI. Field Blanks

Samples HU136, HU138, and HU129 were identified as trip blanks. No contaminants were found.

Sample HU143 was identified as an equipment blank. No contaminants were found.

Sample HU142 was identified as a field blank. No contaminants were found.

### VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

### VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

| LCS ID<br>(Associated Samples)                             | Analyte                          | LCS<br>%R (Limits) | LCSD<br>%R (Limits) | Flag                 | A or P |
|------------------------------------------------------------|----------------------------------|--------------------|---------------------|----------------------|--------|
| LCS/LCSD 580-39617<br>(All samples in SDG<br>580-115250-1) | Gasoline range organics (C6-C12) | 74 (78-122)        | _                   | UJ (all non-detects) | Ρ      |

Relative percent differences (RPD) were within QC limits.

# X. Field Duplicates

No field duplicates were identified in this SDG.

# XI. Internal Standards

All internal standard areas and retention times were within QC limits.

# XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

# XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

# XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

# XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

. .

Due to LCS/LCSD %R, data were qualified as estimated in seven samples.

### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-115250-1

| Sample                                                      | Analyte                          | Flag                 | A or P | Reason (Code)                          |
|-------------------------------------------------------------|----------------------------------|----------------------|--------|----------------------------------------|
| HU137<br>HU136<br>HU139<br>HU138<br>HU142<br>HU142<br>HU143 | Gasoline range organics (C6-C12) | UJ (all non-detects) | Ρ      | Laboratory control samples<br>(%R) (I) |

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

| LDC #: <u>54723B7</u>       | _ VALIDATION COMPLETENESS WORKSHEET | Date: 8/21/27 |
|-----------------------------|-------------------------------------|---------------|
| SDG #: 580-115250-1         | _ Stage 2B                          | Page:of       |
| Laboratory: Eurofins, Tacom | a, WA                               | Reviewer:     |
| -                           |                                     | 2nd Reviewer: |

# METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |             | Comments                                 |
|-------|----------------------------------------|-------------|------------------------------------------|
| ١.    | Sample receipt/Technical holding times | A /A        |                                          |
| ١١.   | GC/MS Instrument performance check     | 4           |                                          |
|       | Initial calibration/ICV                | A A         | $(^{\nu})$ $ \psi  \leq 20$              |
| IV.   | Continuing calibration                 | A           | $cov \neq 20/20$                         |
| V.    | Laboratory Blanks                      |             | ·                                        |
| VI.   | Field blanks                           | ND          | TB= 7, 4, 6 FB=5 EB=7                    |
| VII.  | Surrogate spikes                       | A           | •                                        |
| VIII. | Matrix spike/Matrix spike duplicates   | N           |                                          |
| IX.   | Laboratory control samples             | SVA/        | kes ip                                   |
| Х.    | Field duplicates                       | N           |                                          |
| XI.   | Internal standards                     | A           |                                          |
| XII.  | Target analyte quantitation            | N           |                                          |
| XIII. | Target analyte identification          | N           | · · ·                                    |
| XIV.  | System performance                     | N           |                                          |
| XV.   | Overall assessment of data             | 4           |                                          |
|       | A = Acceptable ND = N                  | o compounds | s detected D = Duplicate SB=Source blank |

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

| D = Duplicate        |
|----------------------|
| TB = Trip blank      |
| EB = Equipment blank |

SB=Source blank OTHER:

|    | Client ID | Lab ID       | Matrix | Date     |
|----|-----------|--------------|--------|----------|
| 1  | HU137     | 580-115250-1 | Water  | 06/23/22 |
| 2  | HU136 TB  | 580-115250-2 | Water  | 06/23/22 |
| 3  | HU139     | 580-115250-3 | Water  | 06/23/22 |
| 4  | HU138 TB  | 580-115250-4 | Water  | 06/23/22 |
| 5  | HU142 FB  | 580-115250-5 | Water  | 06/23/22 |
| 6_ | HU129 TO  | 580-115250-6 | Water  | 06/23/22 |
| 7  | HU143 EP> | 580-115250-7 | Water  | 06/23/22 |
| 8  |           |              |        |          |
| a  |           |              |        |          |

Notes:

|               |  | <br> | _ |  |
|---------------|--|------|---|--|
| MB 580-396176 |  |      |   |  |
|               |  |      |   |  |
|               |  |      |   |  |
|               |  |      |   |  |

/

# VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

#### METHOD: X GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? <u>Y</u> N

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

#### Level IV/D Only

Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Υ (1)

| # | LCS/LCSD ID     | Compound                         | LCS<br>%R (Limits) | LCSD<br>%R (Limits) | RPD (Limits) | Associated Samples | Qualifications         |
|---|-----------------|----------------------------------|--------------------|---------------------|--------------|--------------------|------------------------|
|   | LCS/D 580-39617 | Gasoline Range Organics (C6-C12) | 74(78-122)         | ()                  | ()           | all                | J-UJ/A <b>⊳</b> all ND |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ()                  | L)           |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ()                 | ( )                 |              |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ()           |                    |                        |
|   |                 |                                  | ( )                | ()                  | ()           |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    | ·                      |
|   |                 |                                  | ()                 | ( )                 | ()           |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                |                     |              |                    |                        |
|   |                 |                                  | ( )                | ()                  | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ()                 | ( )                 | ( )          |                    |                        |
|   |                 |                                  | ( )                | ( )                 | ( )          |                    |                        |
|   |                 |                                  |                    |                     |              |                    |                        |

# Laboratory Data Consultants, Inc. Data Validation Report

| Project/Site Name: | Red Hill Oily Waste Disposal Facility, CTO 18F0176 |
|--------------------|----------------------------------------------------|
|--------------------|----------------------------------------------------|

### LDC Report Date: August 24, 2022

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115250-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU137                 | 580-115250-1                        | Water  | 06/23/22           |
| HU139                 | 580-115250-3                        | Water  | 06/23/22           |
| HU142                 | 580-115250-5                        | Water  | 06/23/22           |
| HU143                 | 580-115250-7                        | Water  | 06/23/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

### III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

#### **IV. Continuing Calibration**

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound associated to samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

### V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

| Blank ID      | Extraction<br>Date | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Associated<br>Samples              |
|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| MB 410-273924 | 07/10/22           | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDD<br>Total HpCDF<br>Total PCDDF<br>Total PCDDF<br>Total PCDD<br>Total PCDD<br>Total PCDF | 0.000000882 ug/L<br>0.00000394 ug/L<br>0.00000328 ug/L<br>0.00000699 ug/L<br>0.00000699 ug/L<br>0.00000633 ug/L<br>0.00000619 ug/L<br>0.000000578 ug/L<br>0.000000578 ug/L<br>0.000000547 ug/L<br>0.000000474 ug/L<br>0.00000602 ug/L<br>0.00000172 ug/L<br>0.00000172 ug/L<br>0.00000172 ug/L<br>0.00000114 ug/L<br>0.00000019 ug/L<br>0.000000928 ug/L<br>0.000000619 ug/L<br>0.00000928 ug/L<br>0.00000921 ug/L<br>0.00000921 ug/L<br>0.00000921 ug/L<br>0.00000551 ug/L | All samples in SDG<br>580-115250-1 |

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                   | Reported<br>Concentration                                                                                                                                                                                                                                                                                                                | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HU137  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>0CDD<br>0CDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PCDD<br>Total PCDF | 0.0000017 ug/L<br>0.00000065 ug/L<br>0.00000030 ug/L<br>0.00000022 ug/L<br>0.00000027 ug/L<br>0.00000044 ug/L<br>0.00000045 ug/L<br>0.00000045 ug/L<br>0.0000013 ug/L<br>0.0000013 ug/L<br>0.0000013 ug/L<br>0.0000012 ug/L<br>0.0000017 ug/L<br>0.0000017 ug/L<br>0.0000092 ug/L<br>0.0000095 ug/L<br>0.0000061 ug/L<br>0.00000342 ug/L | 0.0000017U ug/L<br>0.00000065U ug/L<br>0.0000002U ug/L<br>0.0000002U ug/L<br>0.00000027U ug/L<br>0.00000044U ug/L<br>0.00000041U ug/L<br>0.00000045U ug/L<br>0.00000018U ug/L<br>0.0000013U ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.00000012J ug/L<br>0.00000092J ug/L<br>0.0000095J ug/L<br>0.0000061J ug/L<br>0.00000342J ug/L |

|        |                                                                                                                                                                                                                                                                                                                                                                                                               | Reported                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Modified Final                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                                                                       | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HU139  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,7,8-PeCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>0CDD<br>0CDF<br>Total HxCDF<br>Total HxCDF<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PCDD<br>Total PCDDF<br>Total PCDDF<br>Total PCDD<br>Total PCDD<br>Total PCDD<br>Total PCDD | 0.0000010 ug/L<br>0.00000058 ug/L<br>0.00000031 ug/L<br>0.00000050 ug/L<br>0.00000050 ug/L<br>0.00000025 ug/L<br>0.00000025 ug/L<br>0.00000027 ug/L<br>0.00000028 ug/L<br>0.00000017 ug/L<br>0.00000015 ug/L<br>0.00000019 ug/L<br>0.00000019 ug/L<br>0.00000029 ug/L<br>0.00000011 ug/L<br>0.00000011 ug/L<br>0.00000011 ug/L<br>0.00000025 ug/L<br>0.00000047 ug/L<br>0.00000047 ug/L<br>0.0000004 ug/L<br>0.0000034 ug/L<br>0.0000034 ug/L<br>0.0000034 ug/L | 0.0000010U ug/L<br>0.00000058U ug/L<br>0.00000039U ug/L<br>0.00000031U ug/L<br>0.000000016U ug/L<br>0.00000025U ug/L<br>0.00000027U ug/L<br>0.00000027U ug/L<br>0.00000027U ug/L<br>0.00000017U ug/L<br>0.00000015U ug/L<br>0.00000015U ug/L<br>0.0000006J ug/L<br>0.00000025J ug/L<br>0.0000001J ug/L<br>0.00000025J ug/L<br>0.00000025J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000034J ug/L<br>0.0000034J ug/L |
| HU142  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDF<br>Total HxCDF<br>Total HxCDF<br>Total HpCDF<br>Total PeCDF<br>Total PCDF<br>Total PCDD<br>Total PCDF                                                           | 0.00000090 ug/L<br>0.0000035 ug/L<br>0.0000035 ug/L<br>0.00000022 ug/L<br>0.00000037 ug/L<br>0.00000035 ug/L<br>0.00000067 ug/L<br>0.00000021 ug/L<br>0.00000023 ug/L<br>0.00000057 ug/L<br>0.00000057 ug/L<br>0.00000014 ug/L<br>0.00000090 ug/L<br>0.00000090 ug/L<br>0.00000046 ug/L<br>0.0000046 ug/L<br>0.0000045 ug/L<br>0.0000041 ug/L<br>0.0000041 ug/L<br>0.0000041 ug/L                                                                               | 0.00000090U ug/L<br>0.0000035U ug/L<br>0.0000036U ug/L<br>0.00000022U ug/L<br>0.00000037U ug/L<br>0.00000035U ug/L<br>0.00000046U ug/L<br>0.00000021U ug/L<br>0.00000023U ug/L<br>0.00000023U ug/L<br>0.00000057U ug/L<br>0.00000014J ug/L<br>0.00000090J ug/L<br>0.00000035J ug/L<br>0.00000045J ug/L<br>0.0000065J ug/L<br>0.0000065J ug/L<br>0.0000064J ug/L<br>0.0000064J ug/L                                                            |

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reported<br>Concentration                                                                                                                                                        | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HU143  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-PeCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HpCDD<br>Total HpCDF<br>Total PeCDD<br>Total PCDD<br>Total PCDD<br>Total PCDD<br>Total PCDD | 0.00000049 ug/L<br>0.00000015 ug/L<br>0.000000015 ug/L<br>0.000000027 ug/L<br>0.000000015 ug/L<br>0.000000015 ug/L<br>0.0000000050 ug/L<br>0.00000000000000000000000000000000000 | 0.000000049U ug/L<br>0.00000015U ug/L<br>0.000000015U ug/L<br>0.000000027U ug/L<br>0.0000000078U ug/L<br>0.0000000051U ug/L<br>0.0000000050U ug/L<br>0.000000023U ug/L<br>0.000000023U ug/L<br>0.000000021U ug/L<br>0.000000021U ug/L<br>0.000000021U ug/L<br>0.000000012U ug/L<br>0.000000012U ug/L<br>0.00000003J ug/L<br>0.000000048U ug/L<br>0.000000048U ug/L<br>0.000000048U ug/L<br>0.000000043J ug/L<br>0.000000043J ug/L<br>0.000000042J ug/L<br>0.000000042J ug/L<br>0.00000042J ug/L<br>0.00000042J ug/L<br>0.00000042J ug/L |

### VI. Field Blanks

Sample HU143 was identified as an equipment blank. No contaminants were found with the following exceptions:

| Blank ID | Collection<br>Date | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Associated<br>Samples |
|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| HU143    | 06/23/22           | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8-PeCDD<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HpCDD<br>Total HpCDF<br>Total PeCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD<br>Total PCDD<br>Total PCDD<br>Total PCDF | 0.000000049 ug/L<br>0.00000015 ug/L<br>0.000000015 ug/L<br>0.000000078 ug/L<br>0.000000015 ug/L<br>0.000000050 ug/L<br>0.000000050 ug/L<br>0.0000000051 ug/L<br>0.000000023 ug/L<br>0.0000000012 ug/L<br>0.000000012 ug/L<br>0.000000013 ug/L<br>0.000000013 ug/L<br>0.000000053 ug/L<br>0.000000053 ug/L<br>0.000000053 ug/L<br>0.000000048 ug/L<br>0.000000051 ug/L<br>0.000000051 ug/L<br>0.000000051 ug/L<br>0.000000051 ug/L<br>0.000000042 ug/L<br>0.00000042 ug/L<br>0.00000042 ug/L<br>0.00000042 ug/L<br>0.00000042 ug/L | HU137<br>HU139        |

Sample HU142 was identified as a field blank. No contaminants were found with the following exceptions:

| Blank ID | Collection<br>Date | Analyte                                                                                                                                                                                                                                                                                                                                                                     | Concentration                                                                                                                                                                                                                                                                                                        | Associated<br>Samples |
|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| HU142    | 06/23/22           | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD | 0.00000090 ug/L<br>0.0000035 ug/L<br>0.0000035 ug/L<br>0.0000022 ug/L<br>0.0000037 ug/L<br>0.0000035 ug/L<br>0.00000046 ug/L<br>0.00000021 ug/L<br>0.00000023 ug/L<br>0.0000018 ug/L<br>0.0000014 ug/L<br>0.0000014 ug/L<br>0.00000035 ug/L<br>0.00000046 ug/L<br>0.0000046 ug/L<br>0.0000041 ug/L<br>0.0000024 ug/L | HU137<br>HU139        |

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks with the following exceptions:

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                                         | Reported<br>Concentration                                                                                                                                                                                                                                                                                                                                | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HU137  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PCDDF<br>Total PCDDF<br>Total PCDDF | 0.0000017 ug/L<br>0.0000065 ug/L<br>0.0000002 ug/L<br>0.00000027 ug/L<br>0.00000027 ug/L<br>0.00000041 ug/L<br>0.00000041 ug/L<br>0.00000045 ug/L<br>0.0000013 ug/L<br>0.0000013 ug/L<br>0.0000012 ug/L<br>0.0000012 ug/L<br>0.0000012 ug/L<br>0.0000017 ug/L<br>0.0000017 ug/L<br>0.0000095 ug/L<br>0.0000095 ug/L<br>0.0000095 ug/L<br>0.00000342 ug/L | 0.0000017U ug/L<br>0.0000065U ug/L<br>0.0000002U ug/L<br>0.00000022U ug/L<br>0.00000027U ug/L<br>0.0000004U ug/L<br>0.0000039U ug/L<br>0.0000041U ug/L<br>0.0000045U ug/L<br>0.0000018U ug/L<br>0.0000018U ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000092J ug/L<br>0.0000092J ug/L<br>0.0000092J ug/L<br>0.0000092J ug/L<br>0.0000092J ug/L |

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                     | Reported<br>Concentration                                                                                                                                                                                                                                                                                                                                          | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HU139  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDF<br>Total HpCDF<br>Total PCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD<br>Total PCDD | 0.0000010 ug/L<br>0.00000058 ug/L<br>0.00000031 ug/L<br>0.00000031 ug/L<br>0.00000016 ug/L<br>0.00000027 ug/L<br>0.00000028 ug/L<br>0.00000028 ug/L<br>0.00000015 ug/L<br>0.00000015 ug/L<br>0.00000066 ug/L<br>0.00000066 ug/L<br>0.00000011 ug/L<br>0.00000011 ug/L<br>0.00000011 ug/L<br>0.00000047 ug/L<br>0.00000044 ug/L<br>0.0000034 ug/L<br>0.0000030 ug/L | 0.0000010U ug/L<br>0.00000058U ug/L<br>0.00000039U ug/L<br>0.00000031U ug/L<br>0.00000016U ug/L<br>0.00000027U ug/L<br>0.00000027U ug/L<br>0.00000017U ug/L<br>0.00000017U ug/L<br>0.00000049U ug/L<br>0.00000049U ug/L<br>0.00000049U ug/L<br>0.00000049U ug/L<br>0.00000049U ug/L<br>0.00000047J ug/L<br>0.0000004J ug/L<br>0.000004J ug/L<br>0.0000034J ug/L<br>0.0000034J ug/L |

# VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

# IX. Field Duplicates

No field duplicates were identified in this SDG.

# X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

# XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

| Sample                          | Analyte                                                                                   | Flag            | A or P |
|---------------------------------|-------------------------------------------------------------------------------------------|-----------------|--------|
| All samples in SDG 580-115250-1 | Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC). | J (all detects) | A      |

Raw data were not reviewed for Stage 2B validation.

#### XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

#### XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

#### **XIV. Overall Assessment of Data**

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected or estimated in four samples.

Due to equipment blank contamination, data were qualified as not detected or estimated in two samples.

Due to field blank contamination, data were qualified as not detected or estimated in two samples.

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-115250-1

| Sample                           | Analyte                                                                                   | Flag            | A or P | Reason (Code)                             |
|----------------------------------|-------------------------------------------------------------------------------------------|-----------------|--------|-------------------------------------------|
| HU137<br>HU139<br>HU142<br>HU143 | Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC). | J (all detects) | A      | Target analyte quantitation<br>(EMPC) (k) |

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                       | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                            | A or P | Code |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| HU137  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDD<br>Total HpCDF<br>Total PCDD<br>Total PCDD<br>Total PCDF                                            | 0.0000017U ug/L<br>0.0000065U ug/L<br>0.00000022U ug/L<br>0.00000022U ug/L<br>0.00000027U ug/L<br>0.0000004U ug/L<br>0.0000004U ug/L<br>0.00000045U ug/L<br>0.00000045U ug/L<br>0.0000018U ug/L<br>0.0000018U ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000092J ug/L<br>0.0000095J ug/L<br>0.0000061J ug/L<br>0.00000342J ug/L                                                                   | Α      | b    |
| HU139  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDD<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HxCDD<br>Total HpCDD<br>Total HpCDD<br>Total PeCDD<br>Total PeCDF<br>Total PCDD<br>Total PCDD<br>Total PCDD | 0.0000010U ug/L<br>0.00000058U ug/L<br>0.00000039U ug/L<br>0.00000030U ug/L<br>0.00000050U ug/L<br>0.00000025U ug/L<br>0.00000025U ug/L<br>0.00000027U ug/L<br>0.00000027U ug/L<br>0.00000017U ug/L<br>0.00000015U ug/L<br>0.0000006J ug/L<br>0.0000006J ug/L<br>0.00000025J ug/L<br>0.00000025J ug/L<br>0.00000047J ug/L<br>0.00000047J ug/L<br>0.00000047J ug/L<br>0.0000064J ug/L<br>0.0000034J ug/L<br>0.0000034J ug/L | A      | b    |

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                             | A or P | Code |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| HU142  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDF<br>Total HxCDF<br>Total HpCDF<br>Total PCDF<br>Total PCDF<br>Total PCDD<br>Total PCDF                                                                                                  | 0.00000090U ug/L<br>0.0000035U ug/L<br>0.0000036U ug/L<br>0.00000037U ug/L<br>0.00000037U ug/L<br>0.00000037U ug/L<br>0.00000067U ug/L<br>0.00000021U ug/L<br>0.00000023U ug/L<br>0.0000014J ug/L<br>0.0000014J ug/L<br>0.00000035J ug/L<br>0.00000035J ug/L<br>0.0000065J ug/L<br>0.0000065J ug/L<br>0.0000041J ug/L<br>0.0000024J ug/L<br>0.0000024J ug/L | A      | b    |
| HU143  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8-PeCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,7,8-PeCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDF<br>Total HxCDF<br>Total HpCDD<br>Total PeCDF<br>Total PeCDF<br>Total PeCDF<br>Total PCDD<br>Total PCDD | 0.000000049U ug/L<br>0.00000015U ug/L<br>0.000000015U ug/L<br>0.000000078U ug/L<br>0.000000078U ug/L<br>0.000000015U ug/L<br>0.00000000015U ug/L<br>0.00000000000000000000000000000000000                                                                                                                                                                   | A      | b    |

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-115250-1

| Sample | Analyte                                                                                                                                                                                                                                                                                                                                                        | Modified Final<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                       | A or P | Code |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| HU137  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,4,7,8,9-HpCDF<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDD<br>Total HxCDD<br>Total HpCDD<br>Total PCDF<br>Total PCDD<br>Total PCDD<br>Total PCDF | 0.0000017U ug/L<br>0.00000065U ug/L<br>0.00000030U ug/L<br>0.00000027U ug/L<br>0.00000027U ug/L<br>0.00000039U ug/L<br>0.00000041U ug/L<br>0.00000045U ug/L<br>0.0000018U ug/L<br>0.0000018U ug/L<br>0.0000013U ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000012J ug/L<br>0.0000092J ug/L<br>0.0000092J ug/L<br>0.0000061J ug/L<br>0.0000061J ug/L<br>0.0000061J ug/L                                          | A      | f    |
| HU139  | 1,2,3,4,6,7,8-HpCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,7,8,9-HxCDD<br>1,2,3,7,8,9-HxCDF<br>2,3,4,6,7,8-HxCDF<br>OCDD<br>OCDF<br>Total HxCDF<br>Total HxCDF<br>Total HpCDD<br>Total HpCDF<br>Total PCDF<br>Total PCDF<br>Total PCDD<br>Total PCDD<br>Total PCDD                | 0.0000010U ug/L<br>0.00000038U ug/L<br>0.00000039U ug/L<br>0.00000031U ug/L<br>0.00000016U ug/L<br>0.00000047U ug/L<br>0.00000027U ug/L<br>0.00000017U ug/L<br>0.00000017U ug/L<br>0.00000049U ug/L<br>0.0000006J ug/L<br>0.00000092J ug/L<br>0.0000001J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000004J ug/L<br>0.0000034J ug/L<br>0.0000034J ug/L | A      | f    |

# VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>8</u>217 Page: <u>1</u> of <u>1</u> Reviewer: <u>7</u> 2nd Reviewer: <u>7</u>

SDG #: <u>580-115250-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 54723B21

#### METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA SW-846 Method 8290A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |                  | Comments                             |
|-------|----------------------------------------|------------------|--------------------------------------|
| ١.    | Sample receipt/Technical holding times | A/A              |                                      |
| 11.   | HRGC/HRMS Instrument performance check | Δ                |                                      |
| 111.  | Initial calibration/ICV                | $\Delta \Lambda$ | $0/0$ psD $\leq 20$ 10x $\leq 20$ 30 |
| IV.   | Continuing calibration                 | $\wedge$         | CUV = 20 3                           |
| V.    | Laboratory Blanks                      | ~5~              |                                      |
| VI.   | Field blanks                           | SW               | FB=3 EB=4                            |
| VII.  | Matrix spike/Matrix spike duplicates   | N                | es                                   |
| VIII. | Laboratory control samples             | A                | lesip                                |
| IX.   | Field duplicates                       | N                |                                      |
| Х.    | Labeled Compounds                      | A,               |                                      |
| XI.   | Target analyte quantitation            | SVA              |                                      |
| XII.  | Target analyte identification          | N                | <b>▲</b> .                           |
| XIII. | System performance                     | N                |                                      |
| XIV.  | Overall assessment of data             | 4                |                                      |

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

| D = Duplicate    |       |
|------------------|-------|
| TB = Trip blank  |       |
| EB = Equipment I | blank |

SB=Source blank OTHER:

|       | Client ID    |   |                                           |      | Lab ID              | Matrix | Date     |
|-------|--------------|---|-------------------------------------------|------|---------------------|--------|----------|
| 1     | HU137        |   | , <b>, , , , , , , , , , , , , , , , </b> | <br> | <br>580-115250-1    | Water  | 06/23/22 |
| 2     | HU139        |   |                                           |      | 580-115250-3        | Water  | 06/23/22 |
| 3     | HU142 FB     |   |                                           | <br> | <u>580-115250-5</u> | Water  | 06/23/22 |
| 4     | HU143 EB     |   |                                           | <br> | 580-115250-7        | Water  | 06/23/22 |
| 5     |              |   |                                           | <br> |                     |        |          |
| 6     |              |   |                                           |      |                     |        |          |
| 7     |              |   |                                           |      |                     |        |          |
| 8     |              |   |                                           |      |                     |        |          |
| 9     |              |   |                                           |      |                     |        |          |
| 10    |              |   |                                           |      | ·······             |        |          |
| lotes | :            |   |                                           |      |                     |        |          |
|       | MB 410-27392 | 4 |                                           |      |                     |        |          |
|       |              |   |                                           |      |                     |        |          |
|       |              |   |                                           |      |                     |        |          |

# VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

| A. 2,3,7,8-TCDD      | F. 1,2,3,4,6,7,8-HpCDD | K. 1,2,3,4,7,8-HxCDF   | P. 1,2,3,4,7,8,9-HpCDF | U. Total HpCDD |
|----------------------|------------------------|------------------------|------------------------|----------------|
| B. 1,2,3,7,8-PeCDD   | G. OCDD                | L. 1,2,3,6,7,8-HxCDF   | Q. OCDF                | V. Total TCDF  |
| C. 1,2,3,4,7,8-HxCDD | H. 2,3,7,8-TCDF        | M. 2,3,4,6,7,8-HxCDF   | R. Total TCDD          | W. Total PeCDF |
| D. 1,2,3,6,7,8-HxCDD | I. 1,2,3,7,8-PeCDF     | N. 1,2,3,7,8,9-HxCDF   | S. Total PeCDD         | X. Total HxCDF |
| E. 1,2,3,7,8,9-HxCDD | J. 2,3,4,7,8-PeCDF     | O. 1,2,3,4,6,7,8-HpCDF | T. Total HxCDD         | Y. Total HpCDF |

Notes:\_\_\_\_\_

LDC #: 54723B21

### VALIDATION FINDINGS WORKSHEET

# Blanks

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

- Were all samples associated with a method blank?
- $\frac{Y}{Y}$ Was a method blank performed for each matrix and whenever a sample extraction was performed? (b)
- Y Was the method blank contaminated?

Blank extraction date: 7/10/22 Blank analysis date: 7/11/22 Associated samples: All

Conc. units: ug/L

| Compound | Blank ID       | Sample Identification |             |             |             |               |  |  |  |  |
|----------|----------------|-----------------------|-------------|-------------|-------------|---------------|--|--|--|--|
|          | MB 410 -273924 | 5x                    | 1           | 2           | 3           | 4             |  |  |  |  |
| F        | 0.00000882     | 0.000004410           | 0.0000017U  | 0.0000010U  | 0.00000090U | 0.000000049U  |  |  |  |  |
| 0        | 0.00000394     | 0.000001970           | 0.00000065U | 0.00000058U | 0.00000035U | 0.000000015U  |  |  |  |  |
| с        | 0.00000328     | 0.000001640           | 0.00000030U | 0.00000039U | 0.00000036U | 0.000000015U  |  |  |  |  |
| к        | 0.00000699     | 0.000003495           | 0.00000022U | 0.00000031U | 0.00000022U | 0.000000027U  |  |  |  |  |
| Р        | 0.00000511     | 0.000002555           | 0.00000027U | 0.00000050U | -           | 0.000000078U  |  |  |  |  |
| D        | 0.00000385     | 0.000001925           | 0.00000044U | _           | 0.00000037U | 0.000000015U  |  |  |  |  |
| L        | 0.00000633     | 0.000003165           | 0.00000039U | 0.00000016U | 0.00000035U | 0.0000000050U |  |  |  |  |
| В        | 0.00000619     | 0.000003095           | -           | 0.00000025U |             | 0.0000000051U |  |  |  |  |
| 1        | 0.00000578     | 0.000002890           | -           | 0.00000047U | 0.00000046U | 0.000000030U  |  |  |  |  |
| E        | 0.00000476     | 0.000002380           | 0.00000041U | 0.00000027U | 0.00000067U | 0.000000023U  |  |  |  |  |
| N        | 0.00000547     | 0.000002735           | 0.00000045U | 0.00000028U | 0.00000021U | 0.000000021U  |  |  |  |  |
| м        | 0.00000404     | 0.000002020           | 0.00000018U | 0.00000017U | 0.00000023U | 0.0000000097U |  |  |  |  |
| J        | 0.00000602     | 0.000003010           | _           |             | -           | 0.000000012U  |  |  |  |  |
| G        | 0.00000172     | 0.000008600           | 0.0000032U  | 0.0000015U  | 0.0000018U  | 0.00000013U   |  |  |  |  |
| Q        | 0.00000114     | 0.000005700           | 0.0000013U  | 0.00000049U | 0.00000057U | 0.000000048U  |  |  |  |  |
| т        | 0.00000119     | 0.000005950           | 0.0000012J  | 0.00000066J | 0.0000014   | 0.00000053J   |  |  |  |  |
| x        | 0.00000228     | 0.000011400           | 0.0000012J  | 0.00000092J | 0.0000010   | 0.00000063J   |  |  |  |  |
| U        | 0.00000882     | 0.000004410           | 0.0000017J  | 0.0000010J  | 0.00000090  | 0.000000049J  |  |  |  |  |
| Y        | 0.00000905     | 0.000004525           | 0.00000092J | 0.0000011J  | 0.0000035J  | 0.00000023J   |  |  |  |  |
| s        | 0.00000619     | 0 000003095           | _           | 0.0000025J  | _           | 0.0000000051J |  |  |  |  |

Reviewer: FT

|                 | MB 410 -273924 | 5x          | 1           | 2           | 3           | 4            |   |  |  |
|-----------------|----------------|-------------|-------------|-------------|-------------|--------------|---|--|--|
| w               | 0.00000118     | 0.000005900 | -           | 0.00000047J | 0.00000046J | 0.000000042J |   |  |  |
| Total PCDD/PCDF | 0.0000992      | 0.000049600 | 0.0000095J  | 0.0000064J  | 0.0000065J  | 0.00000042J  |   |  |  |
| Total PCDD      | 0.00000441     | 0.000022050 | 0.0000061J  | 0.0000034J  | 0.0000041J  | 0.00000024J  | - |  |  |
| Total PCDF      | 0.00000551     | 0.000027550 | 0.00000342J | 0.0000030J  | 0.0000024J  | 0.00000018J  |   |  |  |

54723B21

54723B21 MB 410 273924 AECOM Red Hill Oily

### VALIDATION FINDINGS WORKSHEET **Field Blanks**

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Y Were field blank midentified in this SDG?

Were target compounds detected in the field blank?

Blank unit: ug/L Associated samples unit: ug/L

Sampling date: 6/23/22 Field Blank type: FR

| Field Blank type: E | B           |             | Associated samples: 1,2 > 5x |  |  |  |  |  |  |  |  |
|---------------------|-------------|-------------|------------------------------|--|--|--|--|--|--|--|--|
| Compound            | Blank ID    |             | Sample Identification        |  |  |  |  |  |  |  |  |
|                     | 4           | 5x          |                              |  |  |  |  |  |  |  |  |
| F                   | 0.00000049  | 0.00000245  |                              |  |  |  |  |  |  |  |  |
| o                   | 0.00000015  | 0.00000075  |                              |  |  |  |  |  |  |  |  |
| с                   | 0.00000015  | 0.00000075  |                              |  |  |  |  |  |  |  |  |
| к                   | 0.00000027  | 0.000000135 |                              |  |  |  |  |  |  |  |  |
| P                   | 0.000000078 | 0.00000039  |                              |  |  |  |  |  |  |  |  |
| D                   | 0.00000015  | 0.00000075  |                              |  |  |  |  |  |  |  |  |
| L                   | 0.000000050 | 0.00000025  |                              |  |  |  |  |  |  |  |  |
| В                   | 0.000000051 | 0.00000026  |                              |  |  |  |  |  |  |  |  |
| 1                   | 0.00000030  | 0.000000150 |                              |  |  |  |  |  |  |  |  |
| E                   | 0.00000023  | 0.000000115 |                              |  |  |  |  |  |  |  |  |
| N                   | 0.00000021  | 0.000000105 |                              |  |  |  |  |  |  |  |  |
| м                   | 0.000000097 | 0.00000049  |                              |  |  |  |  |  |  |  |  |
| J                   | 0.00000012  | 0.00000060  |                              |  |  |  |  |  |  |  |  |
| G                   | 0.0000013   | 0.00000650  |                              |  |  |  |  |  |  |  |  |
| Q                   | 0.00000048  | 0.00000240  |                              |  |  |  |  |  |  |  |  |
| Т                   | 0.00000053  | 0.00000265  |                              |  |  |  |  |  |  |  |  |
| x                   | 0.00000063  | 0.00000315  |                              |  |  |  |  |  |  |  |  |
| υ                   | 0.00000049  | 0.00000245  |                              |  |  |  |  |  |  |  |  |
| Y                   | 0.00000023  | 0.000000115 |                              |  |  |  |  |  |  |  |  |
| s                   | 0.000000051 | 0.00000026  |                              |  |  |  |  |  |  |  |  |

Page: 1\_of 1\_ Reviewer: FT

(f)

|                 | 4          | 5x          |  |
|-----------------|------------|-------------|--|
| w               | 0.00000042 | 0.00000210  |  |
| Total PCDD/PCDF | 0.0000042  | 0.000002100 |  |
| Total PCDD      | 0.0000024  | 0.000001200 |  |
| Total PCDF      | 0.0000018  | 0.000000000 |  |

54723B21 EB

54723B21 EB AECOM Red Hill Oily

LDC #: 54723B21

#### VALIDATION FINDINGS WORKSHEET Field Blanks

(f)

Associated samples:

12.4

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were Were field blank identified in this SDG? Y Y

Were target compounds detected in the field blank?

Blank Unit: ug/L Associated samples unit:ug/L

# Sampling date: 6/23/22

#### Field blank type: FB

| Compound        | Blank ID   |             |             |             | Sampl  | e Identific | i<br>ation |      |  |
|-----------------|------------|-------------|-------------|-------------|--------|-------------|------------|------|--|
|                 | 3          | 5x          | 1           | 2           |        | 4           |            |      |  |
| F               | 0.0000090  | 0.000004500 | 0.0000017U  | 0.0000010U  | 0.000  | 00049U      |            |      |  |
| 0               | 0.0000035  | 0.000001750 | 0.00000065U | 0.00000058U | 0.000  | 00015U      |            |      |  |
| с               | 0.0000036  | 0.000001800 | 0.00000030U | 0.00000039U | 0.000  | 00015U      |            |      |  |
| к               | 0.0000022  | 0.000001100 | 0.00000022U | 0.00000031U | 0.000  | 00027U      |            |      |  |
| D               | 0.0000037  | 0.000001850 | 0.00000044U |             | 0.000  | 00015U      |            | <br> |  |
| L               | 0.0000035  | 0.000001750 | 0.00000039U | 0.00000016U | 0.0000 | 000050U     |            |      |  |
| 1               | 0.00000046 | 0.000002300 |             | 0.00000047U | 0.000  | 00030U      |            |      |  |
| E               | 0.0000067  | 0.000003350 | 0.00000041U | 0.00000027U | 0.000  | 00023U      |            |      |  |
| N               | 0.0000021  | 0.000001050 | 0.00000045U | 0.00000028U | 0.000  | 00021U      |            | <br> |  |
| М               | 0.0000023  | 0.000001150 | 0.00000018U | 0.00000017U | 0.0000 | 00097U      |            |      |  |
| G               | 0.0000018  | 0.000009000 | 0.0000032U  | 0.0000015U  | 0.000  | 00013U      |            |      |  |
| Q               | 0.0000057  | 0.000002850 | 0.0000013U  | 0.00000049U | 0.000  | 00048U      |            |      |  |
| т               | 0.0000014  | 0.000007000 | 0.0000012J  | 0.00000066J | 0.000  | 000053J     |            |      |  |
| x               | 0.0000010  | 0.000005000 | 0.0000012J  | 0.00000092J | 0.000  | 000063J     |            |      |  |
| U               | 0.0000090  | 0.000004500 | 0.0000017J  | 0.0000010J  | 0.000  | 000049J     |            |      |  |
| Y               | 0.0000035  | 0.000001750 | 0.00000092J | 0.0000011J  | 0.000  | 00023J      |            |      |  |
| w               | 0.0000046  | 0.000002300 | -           | 0.00000047J | 0.000  | 00042J      |            |      |  |
| Total PCDD/PCDF | 0.0000065  | 0.000032500 | 0.0000095J  | 0.0000064J  | 0.000  | 00042J      |            |      |  |
| Total PCDD      | 0.0000041  | 0.000020500 | 0.0000061J  | 0.0000034J  | 0.000  | 00024J      |            |      |  |
| Total PCDF      | 0.0000024  | 0.000012000 | 0.00000342J | 0.0000030J  | 0.000  | 00018J      |            |      |  |

54723B21 FB AECOM Red Hill Oily

Page: 1\_of 1\_ Reviewer: FT

# VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation and Reported CRQLs



#### METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".



Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

| # | Date | Sample ID                             | Finding           | Associated Samples | Qualifications |
|---|------|---------------------------------------|-------------------|--------------------|----------------|
|   |      | AIL                                   | all compounds     |                    | Jan /A (K)     |
|   |      |                                       | qualitied "I" by  |                    |                |
|   |      |                                       | the laboratory as |                    |                |
|   |      |                                       | EMPC              |                    | · · · · ·      |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      | · · · · · · · · · · · · · · · · · · · |                   |                    |                |
|   |      |                                       |                   |                    |                |
|   |      |                                       |                   |                    |                |

Comments: See sample calculation verification worksheet for recalculations

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: August 24, 2022

Parameters: Methane

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115250-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU137                 | 580-115250-1                        | Water  | 06/23/22           |
| HU136                 | 580-115250-2                        | Water  | 06/23/22           |
| HU139                 | 580-115250-3                        | Water  | 06/23/22           |
| HU138                 | 580-115250-4                        | Water  | 06/23/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated, High Bias): The analyte was analyzed for and positively identified by J+ the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Х (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### **Qualification Code Reference**

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r<sup>2</sup>, %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

### II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

#### III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

#### IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

#### V. Field Blanks

Samples HU136 and HU138 were identified as trip blanks. No contaminants were found.

#### VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

#### VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

### VIII. Field Duplicates

No field duplicates were identified in this SDG.

### IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

### X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

#### XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

#### Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-115250-1

# No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-115250-1

No Sample Data Qualified in this SDG

# VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date:  $\frac{g}{2} \frac{1}{2} \frac{\gamma \gamma}{\gamma \gamma}$ Page: 1 of <u>1</u> Reviewer: <u>5</u> 2nd Reviewer: <u>6</u>

SDG #:<u>580-115250-1</u> Laboratory:<u>Eurofins, Tacoma, WA</u>

LDC #: 54723B51

#### METHOD: GC Methane (Method RSK-175)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |     | Comments         |
|-------|----------------------------------------|-----|------------------|
| ١.    | Sample receipt/Technical holding times | ΔΙΔ |                  |
| 11.   | Initial calibration/ICV                | 414 | % PSO/ICV = 20   |
| III.  | Continuing calibration / endine        |     | $ccv \neq 20/20$ |
| IV.   | Laboratory Blanks                      | Δ   | •                |
| V.    | Field blanks                           | ND  | TB=2, 4          |
| VI.   | Surrogate spikes                       |     | •                |
| VII.  | Matrix spike/Matrix spike duplicates   | Ν   | US .             |
| VIII. | Laboratory control samples             | A   | Les ID           |
| IX.   | Field duplicates                       | N   |                  |
| Х.    | Target analyte quantitation            | N   |                  |
| XI.   | Target analyte identification          | N   |                  |
|       | Overall assessment of data             |     |                  |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

k

|    | Client ID | Lab ID       | Matrix | Date     |
|----|-----------|--------------|--------|----------|
| 1  | HU137     | 580-115250-1 | Water  | 06/23/22 |
| 2  | HU136 TB  | 580-115250-2 | Water  | 06/23/22 |
| 3  | HU139     | 580-115250-3 | Water  | 06/23/22 |
| 4  | ни138 ТВ  | 580-115250-4 | Water  | 06/23/22 |
| 5  |           |              |        |          |
| 6  |           |              |        |          |
| 7  |           |              |        |          |
| 8  |           |              |        |          |
| 9  |           |              |        |          |
| 10 |           |              |        |          |
| 11 |           |              |        |          |
| 12 |           |              |        |          |

Notes

|  | MB | 410-271107 |  |  |  |  |  |  |  |
|--|----|------------|--|--|--|--|--|--|--|
|  |    |            |  |  |  |  |  |  |  |
|  |    |            |  |  |  |  |  |  |  |
|  |    |            |  |  |  |  |  |  |  |
# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

# LDC Report Date: October 3, 2022

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115346-1

| Sample Identification | Laboratory Sample<br>Identification | Matrix | Collection<br>Date |
|-----------------------|-------------------------------------|--------|--------------------|
| HU108                 | 580-115346-1                        | Water  | 06/28/22           |
| HU108MS               | 580-115346-1MS                      | Water  | 06/28/22           |
| HU108MSD              | 580-115346-1MSD                     | Water  | 06/28/22           |

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Bromide, Chloride, Fluoride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) Method 300.0

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published methods and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

#### Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (methods blank).
- c Calibration %RSD, r,  $r^2$ , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

## II. Initial Calibration

All criteria for the initial calibration were met.

## III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

#### **IV. Laboratory Blanks**

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## V. Field Blanks

No field blanks were identified in this SDG.

# VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

#### **VIII. Laboratory Control Samples**

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

# X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

# XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

# Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Data Qualification Summary - SDG 580-115346-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-115346-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-115346-1

No Sample Data Qualified in this SDG

#### VALIDATION COMPLETENESS WORKSHEET

Stage 2B

T Date: <u>9|28|</u>22-Page: 1 of 1 Reviewer: <u>410</u> 2nd Reviewer: 1

SDG #: <u>580-115346-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 54723C6

#### METHOD: (Analyte) Bromide, Chloride, Fluoride, Nitrate-N, Sulfate (EPA Method 300.0),

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                        |    | Comments |
|-------|----------------------------------------|----|----------|
| ١.    | Sample receipt/Technical holding times | AA |          |
| 1     | Initial calibration                    | A  |          |
| Ш.    | Calibration verification               | Â  |          |
| IV    | Laboratory Blanks                      | A  |          |
| v     | Field blanks                           | N  |          |
| VI.   | Matrix Spike/Matrix Spike Duplicates   | A  | (2,3)    |
| VII.  | Duplicate sample analysis              | N  |          |
| VIII. | Laboratory control samples             | A  | LCSILCSD |
| IX.   | Field duplicates                       | N  |          |
| Х.    | Target Analyte Quantitation            | N  |          |
| X     | Overall assessment of data             | A  |          |

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

| D = Duplicate        |
|----------------------|
| TB = Trip blank      |
| EB = Equipment blank |

SB=Source blank OTHER:

|      | Client ID | Lab ID          | Matrix | Date     |
|------|-----------|-----------------|--------|----------|
| 1    | HU108     | 580-115346-1    | Water  | 06/28/22 |
| 2    | HU108MS   | 580-115346-1MS  | Water  | 06/28/22 |
| 3    | HU108MSD  | 580-115346-1MSD | Water  | 06/28/22 |
| 4    |           |                 |        |          |
| 5    |           |                 |        |          |
| 6    |           |                 |        |          |
| 7    |           |                 |        |          |
| 8    |           |                 |        |          |
| 9    |           |                 |        |          |
| 10   |           |                 |        |          |
| 11   |           |                 |        |          |
| 12   |           |                 |        |          |
| 13   |           |                 |        |          |
| 14   |           |                 |        |          |
| 15   |           |                 |        |          |
| Note | S:        |                 | · · ·  |          |

# VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

| Page:_  | 1   | _of_ | 1 |
|---------|-----|------|---|
| Reviewe | er: | AT   | l |

All circled methods are applicable to each sample.

| Sample ID | Parameter                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | pH TDS (C) (F, NO <sub>2</sub> NO <sub>2</sub> (SO <sub>4</sub> O-PO <sub>4</sub> AIK CN NH <sub>3</sub> TKN TOC Cr6+ CIO <sub>4</sub> (Br) |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
| QC        | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
| 2,3       | ph TDS $(C)$ $(F)$ $(K)_{1}$ NO <sub>2</sub> $(SO_{1} O - PO_{4} A lk CN NH_{3} TKN TOC Cr6+ ClO_{4} (Br)$                                  |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>       |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk_CN_NH <sub>3</sub> TKN_TOC_Cr6+ClO <sub>4</sub>        |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk_CN_NH <sub>3</sub> TKN_TOC Cr6+ ClO <sub>4</sub>       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>       |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk_CN_NH <sub>3</sub> TKN_TOC Cr6+ ClO <sub>4</sub>       |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> O-PO <sub>4</sub> Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>          |
|           | pH_TDS_CI_F_NO <sub>3</sub> _NO <sub>2</sub> _SO <sub>4</sub> O-PO <sub>4</sub> _Alk CN NH <sub>3</sub> TKN TOC Cr6+ ClO <sub>4</sub>       |

Comments:\_\_\_\_\_