

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com June 26, 2023

SUBJECT: Red Hill Oily Waste Disposal Facility, CTO 18F0176 - Data Validation

Dear Ms. Ramos,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on October 11, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #55171 RV1:

<u>SDG #</u>	Fraction
580-118109-1 580-118118-1	Volatiles, Semivolatiles, Polynuclear Aromatic Hydrocarbons, Metals, Wet Chemistry, Gasoline Range Organics, Methane, Polychlorinated Dioxins/Dibenzofurans

The data validation was performed under Stage 2B & 4 guidelines. The analysis was validated using the following documents, as applicable to each method:

- Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco scuenco@lab-data.com Project Manager/Senior Chemist

V:\LOGIN\AECOM\Red Hill\55171COV_RV1.doc

	292 pages-AD	V											At	achr	nent	1																	
	90/10 2B/4 I	EDD		L	DC#	ŧ 55	171	(AE	ECO	•M -	Но	nolı	ulu,	HI /	/ Re	d H	ill C	Dily	Wa	ste,	СТ	01	8F0	176	5)								
LDC	SDG#	DATE REC'D	(3) DATE DUE	VC (826	DA 60D)	SV (827	OA 70E)	PA (82 ⁻ -SI	Hs 70E M)	؛) Met (601	5) tals 0D)	GF (82 LU	RO 60/ FT)	Dio) (829	cins I0A)	Meth (17	nane 75)	Al (232	k. 20B)	NO NO (35:	D₃/ ₂-N 3.2)	DC (906	DC 60A)	тс (906	DC 60A)								
Matrix	: Water/Soil	•		W	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s	W	S
А	580-118109-1	10/11/22	11/01/22	3	0	2	0	2	0	1	0	3	0	2	0	2	0	1	0	1	0	1	0	1	0								
В	580-118118-1	10/11/22	11/01/22	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0								
В	580-118118-1	10/11/22	11/01/22	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0							<u> </u>	
																																\vdash	
																																\vdash	
																																	\square
																										<u> </u>	<u> </u>				\mid	<u> </u>	\square
																															┢──┦	┝──┘	\square
																															┝──┦	\vdash	\square
																															┝──┦	\vdash	\square
																															┢───┦	┢───┘	\square
																															┝──┦	┢───┘	\vdash
																																┢───┙	\vdash
																																┢───┘	\vdash
																																┢───┘	\vdash
																															┢───┦	┢───┘	\vdash
																															┢───┦	┢───┤	\vdash
																																┢───┦	\vdash
																															┢──┦	┟───┦	\vdash
																															┢───┦	┟───┦	\vdash
																																┟──┤	
																																┟──┤	
		1																															\vdash
		1																															
																																	\square
																										İ –	1						\square
Total	TR/SC			5	0	3	0	3	0	2	0	5	0	3	0	4	0	2	0	2	0	2	0	2	0	0	0	0	0	0	0	0	33

LDC Report# 55171A1a_RV1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: May 30, 2023

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU147	580-118109-1	Water	09/19/22
HU148	580-118109-2	Water	09/19/22
HU146	580-118109-3	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
09/27/22	Vinyl chloride	21.5	All samples in SDG 580-118109-1	UJ (all non-detects)	A

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration	Associated Samples
MB 580-405161	09/27/22	Hexachlorobutadiene 1,3,5-Trichlorobenzene	0.121 ug/L 0.0481 ug/L	All samples in SDG 580-118109-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Sample HU146 was identified as a trip blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Associated Samples
HU146	09/19/22	Acetone	5.4 ug/L	HU147 HU148

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU147 and HU148 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
HU147 HU148 HU146	All "unknown" laboratory calibrated analytes reported as TICs	NJ (all detects)	A

Sample	Analyte	Finding	Flag	A or P
HU147	p-Isopropyltoluene n-Butylbenzene 1,2,3-Trichlorobenzene	All laboratory calibrated analytes reported as tentatively identified compounds (TIC).	J (all detects) J (all detects) J (all detects)	A
HU148 HU146	Isopropylbenzene p-Isopropyltoluene n-Butylbenzene 1,2,3-Trichlorobenzene	All laboratory calibrated analytes reported as tentatively identified compounds (TIC).	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D, data were qualified as estimated in three samples.

Due to TICs, data were qualified as presumptive and estimated in three samples.

,

.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-118109-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU147 HU148 HU146	Vinyl chloride	UJ (all non-detects)	A	Continuing calibration (%D) (c)
HU147 HU148 HU146	All "unknown" laboratory calibrated analytes reported as TICs	NJ (all detects)	A	Tentatively identified compound quantitation (v)
HU147	p-Isopropyltoluene n-Butylbenzene 1,2,3-Trichlorobenzene	J (all detects) J (all detects) J (all detects)	A	Tentatively identified compound quantitation (v)
HU148 HU146	Isopropylbenzene p-Isopropyltoluene n-Butylbenzene 1,2,3-Trichlorobenzene	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	A	Tentatively identified compound quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date Page: Reviewer 2nd Reviewer

SDG #:<u>580-118109-1</u> Laboratory:<u>Eurofins, Tacoma, WA</u>

LDC #: 55171A1a

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D) +1Ce

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
Н.	GC/MS Instrument performance check	Δ	· · · · · · · · · · · · · · · · · · ·
111.	Initial calibration/ICV	AA	0 $p_{5}P \leq S (2) \alpha \leq 20$
IV	Continuing calibration	Sul	CW = 20/5U
<u>v.</u>	Laboratory Blanks	svi	
VI.	Field blanks	(N)	TB:3
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	<i>C</i> ->
IX.	Laboratory control samples	A	LOS ID
X.	Field duplicates	ND	D = 1/2
XI.	Internal standards	λ	
XII.	Target analyte quantitation	SW	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
xv.	Overall assessment of data	4	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client II	D			Lab ID	Matrix	Date
12	HU147	I: MEK			580-118109-1	Water	09/19/22
27	HU148	1		 	 580-118109-2	Water	09/19/22
3 N	HU146	1		 	580-118109-3	Water	09/19/22
4					 		
5				 			
6				 			
7				 			
8							
9				 			
Notes	:				 	<u></u>	
	MB	580-4049	10				
	MD	580- 4051	b 1				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyi tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chiorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyi chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyi alcohoi	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-isopropyitoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	il. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	11. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. iodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT: Methylcyciohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyi ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1. Ethylene Dibromide

COMPNDL_VOA_Long list.wpd

.

LDC #: 55 171 A \a

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	br
Reviewer:	FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 😡

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all Content of the validation criteria of ≤20 %D and ≥0.05 RRF? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF ? (c) Finding %D (Limit: <20.0%) Finding RRF (Limit: <u>></u>0.05) Standard ID Compound Associated Samples # Date Qualifications CCN 586-405161 9 27 22 ሪ 21.5 173, A/ LN/ TL ND MB 580-40516

CONCAL.wpd

LDC #: <u>95 111</u> A W	LDC	#:	55	171	Α	1a
--------------------------	-----	----	----	-----	---	----

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: GC/MS VOA (EPA SW 846 Method 8260 R) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> Was a method blank associated with every sample in this SDG? <u>Y N N/A</u> Was a method blank analyzed at least once every 12 hours for each matrix and concentration? <u>Y/N N/A</u> Was there contamination in the method blanks? If yes, please see the qualifications below. **Blank analysis date:** <u>121</u> R^{-1}

B	ank	analysis	date:	9	2
~			. 1		

Y (Slank analysis date:	=======================================		Associated	Samples:	-7	3 (NI	ە)	
	Compound	Blank ID				Sample Identificat	ion		
		MB 580	-405161						
	<u>LLL</u>	0.12)							
716	1,3,5-Trichlorob	vizeve 0.0	481						

Blank analysis date:____

Conc. units:		 Associated Samples:						
Compound	Blank ID			Sai	mple Identificat	ion	 	

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

BLANKS2.wpd

DC #:G > 171 A a VALIDATION FINDINGS WORKSHEET METHOD: GC/MS VOA (EPA SW 846 Method 8260 P) Field Blanks METHOD: GC/MS VOA (EPA SW 846 Method 8260 P) Field Blanks V N/A Were field blanks identified in this SDG? Y N N/A Were target compounds detected in the field blanks? Blank units: Assocjated sample units: Sampling date: 9149122/							Page: 1 of Reviewer: <u>FT</u>	ť		
Field blank type: (circle on	e) Field Blank	/ Rinsate / Tri	p Blank / Oth	er: <u>T</u> B	Asso	ciated Sample	es:	1,2 (1	ND)	
Compound	Blank ID				Sa	ample Identifica	tion			
	3									
<u> </u>	5.4									
	· · ·									
Blank units: Ass Sampling date: Field blank type: (circle on	e) Field Blank	/ Rinsate / Tri	p Blank / Oth	er:	Asso	ciated Sample	es:			
Compound	Biank ID				S	ample Identifica	ition			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

FBLKASC2.wpd

LDC #: 55171A12

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation

()

METHOD: GCMS VOA 8260 \mathcal{D}

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Level IV/D Only Y_N_N/A

Y N N/A

Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

#	Associated Samples	Compound Name	Findings	Qualifications
	1,2,3		All unknown reported	M/A
			as FIC	
		GGG, III, NNN	all calibrated analyted	A/ Just
			reported as TIC	
			3	
	2,3	VV, GGG, III NNN	\downarrow	J July / M

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: June 26, 2023

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU147	580-118109-1	Water	09/19/22
HU148	580-118109-2	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
08/29/22	Phenol	23	All samples in SDG 580-118109-1	UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
09/24/22	2,3,4,6-Tetrachlorophenol 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Diethylphthalate Dimethylphthalate Hexachlorobutadiene	34.0 23.0 23.0 31.1 30.6 21.4	All samples in SDG 580-118109-1	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-40480 (All samples in SDG 580-118109-1)	Hexachlorobutadiene	23 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All tentatively identified compound quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-118109-1	All tentatively identified compounds (TIC)	NJ (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to ICV %D and continuing calibration %D, data were qualified as estimated in two samples.

Due to TICs, data were qualified as presumptive and estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-118109-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU147 HU148	Phenol	UJ (all non-detects)	А	Initial calibration verification (%D) (c)
HU147 HU148	2,3,4,6-Tetrachlorophenol 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Diethylphthalate Dimethylphthalate Hexachlorobutadiene	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D) (c)
HU147 HU148	All tentatively identified compounds (TIC)	NJ (all detects)	A	Tentatively identified compound quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #:<u>580-118109-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 55171A2a

Date: <u>1</u>9/28/ Page: __of__/ Reviewer: _____ 2nd Reviewer: ___/

METHOD: GC/MS Semivolatiles (EPA SW-846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	ΔΙΔ	
11.	GC/MS Instrument performance check		
Ш.	Initial calibration/ICV	1 JW	$\%$ psD $\leq F$, 1^{2} 101 $\leq 2\overline{0}$
IV.	Continuing calibration	SW	CW = 20/52
V	Laboratory Blanks		
VI.	Field blanks	N	
VII.	Surrogate spikes	$\dot{\Delta}$	
VIII.	Matrix spike/Matrix spike duplicates	N	US .
IX.	Laboratory control samples	SN	Les 10
X	Field duplicates	ND	$D = _{1} \mathcal{V}$
XI.	Internal standards	A	
XII.	Target analyte quantitation	SW	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	6	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client	ID					Lab ID	Matrix	Date	
1	HU147						580-118109-1	Water	09/19/22	
2	HU148				 		580-118109-2	Water	09/19/22	
3					 		 			
4					 		· · · · · · · · · · · · · · · · · · ·			
5					 · · ·	. <u> </u>	 			
6					 		 			
7					 				·	
8										
<u>a</u>										
Notes					 		 			
	MB	580-	4048	b 1						
			•						•	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	11. Methyl methanesulfonat
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	III. 1,4-Dioxane	K1. o,o',o"-Triethylphosphe
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	lli. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-taluidine
G. 2-Methylphenol	li. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	01. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	000. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	00. 4-Nitroaniline	QQQ. Benzyi alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chioroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-TrimethyInaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butyiphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachioropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methyleth
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butyibenzyiphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	12. Permethrin (cis/trans)
RR 2 Mitraguiline	DDD Christene	EEEE Betene	H1. Pronamide	J2. 5-Nitro-o-toluidine

. .

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: GC/MS SVOA (EPA Method 8270)

Plea Y N Y N	se see qualifi <u>N/A</u> V <u>N/A</u> V	cations below for all questions Was an initial calibration verif Vere all %D within the validati	s answered "N". Not applica fication standard analyzed ion criteria of ≤20 / 30 %D	able questions are identifie I after each ICAL for each ?	ed as "N/A". n instrument?	(c)
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20 / 30.0%)	Associated Samples	Qualifications
	829 22	1er 580-40255	A	23	all	HUNA ND
	2133					
				· · · · · · · · · · · · · · · · · · ·		
			·····			
			·····			
					· · · · · · · · · · · · · · · · · · ·	
		·····				
				· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·	
						-
						· · ·

LDC #:_____

LDC #: 55 171 AZa

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

 METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

 Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 Y
 N/A

 Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?

 Y
 N/A

 Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

 Y
 N/A

 Were all %D and RRFs within the validation criteria of ≤20%D and ≥0.05 RRF ?

Finding %D (Limit: <20.0%) Finding RRF (Limit: <u>></u>0.05) Standard ID Compound Qualifications # Date Associated Samples A/LN/+L 9/24/22 ccyuuuu 34.0 114 all M 23.0 580-40492 EE isop BBB LL 31.1 CC 30.6 1+/11/A 21.4 N

CONCAL.wpd

Page: 1 of 7 Reviewer:

(0)

LDC #: 55171A2a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

.

Page: <u>1of</u> / Reviewer: <u>FT</u>

(w)

METHOD: GC/MS BNA (Method & 270 F

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a LCS required? YN/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

			and the second distance of the second distanc	and the second secon			
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	Lesio	N	()	(23(20)	AU	John /P ND
	580-40480	D	()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
				L(
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			()	() ()		
			().	() ()		
) L ()		
			()	() ()		
			()	(-) ()		
			()	()) (*)		
			()	() ()		
			()	() ()		
			()	() ()		
			()	($) \qquad ()$		

LCSLCSD.wpd

LDC #: 55 1 A20

VALIDATION FINDINGS WORKSHEET **Target Analyte Quantitation**

Page: _____of____ Reviewer: FT

METHOD: GC/GCMS EPA SW 8270 E

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> <u>Y N N/A</u> Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Sample ID	Compound	Lab RL is higher than QAPP RL	Qualifications
		/ ريم	all analytes reported as Tentatively Identified Compound (TIC)		NJ/A

Comments: See sample calculation verification worksheet for recalculations

COMQUA.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Oily Waste Disposal Facility, CTO 18F0176
LDC Report Date:	November 2, 2022
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Stage 2B
Laboratory:	Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU147	580-118109-1	Water	09/19/22
HU148	580-118109-2	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.
VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU147 and HU148 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 10/27/77 Page: __of___ Reviewer: _____ 2nd Reviewer: _____

SDG #:<u>580-118109-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 55171A2b

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
Ш.	GC/MS Instrument performance check	Δ	1
111.	Initial calibration/ICV	AA	°/0 PSD = 15, 12 101 = 20
IV.	Continuing calibration	4	cur = 20/52
V.	Laboratory Blanks	A	L
VI.	Field blanks	N	
VII.	Surrogate spikes	Δ	
VIII.	Matrix spike/Matrix spike duplicates	N	65
IX.	Laboratory control samples	Δ	Les ID
Х.	Field duplicates	NO	P = 1.2
XI.	Internal standards	A	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
xv.	Overall assessment of data	Δ	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
ī	HU147 🗘			580-118109-1	Water	09/19/22
2	HU148 V			580-118109-2	Water	09/19/22
3						
4						
5			 			
6						
7			 			
8						
9			 			
Notes			 			
	MB. 586-40480	1				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: December 7, 2022

Parameters: Metals

Validation Level:Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU147	580-118109-1	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Calcium Manganese Potassium Sodium	0.0472 mg/L 0.0029 mg/L 0.2567 mg/L 0.114 mg/L	All samples in SDG 580-118109-1

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Metals - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

LDC #: 55171A4b SDG #:____580-118109-1

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Page: 1 of 1 Reviewer:_NC 2nd Reviewer:

Date: 12/05/22

Laboratory: Eurofins, Tacoma, WA

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
١١.	Instrument Calibration	A	
111.	ICP Interference Check Sample (ICS) Analysis	Α	
IV.	Laboratory Blanks	sw	
v.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	Α	LCS/LCSD
X.	Field Duplicates	N	
XI.	Target Analyte Quantitation	N	
XII.	Overall Assessment of Data	А	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected D = Duplicate R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HU147	580-118109-1	Water	09/19/22
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12		-		
13				
14				

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1	Ca, Mg, Mn, K, Na
- M - 1	
L	

Associated Samples: 1

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: ug/L

					Samp	ole Identific	ation		
_	DB	Maximum	Action						
Analyte	PD (ma/l)	ІСВ/ССВ	Level						
	(mg/L)	(mg/L)	(ug/L)						
Ca		0.0472	236						
Mn		0.0029	14.5						
К		0.2567	1283.5						
Na		0.114	570						

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

LDC Report# 55171A6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: December 7, 2022

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU147	580-118109-1	Water	09/19/22
HU147DUP	580-118109-1DUP	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B

Dissolved Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION CONFLETENESS WORKSHEE	V	Ά	۱L		D	A	T	1	0	ľ	1	С	C		N	1	P	L	E	T	E	P	J	E:	S	S	۷	V	C	F	ł۱	K	S	Η	IE	E	1	Γ
----------------------------------	---	---	----	--	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	----	---	---	---	----	---	---	---

Stage 2B

LDC #: 55171A6

SDG #: 580-118109-1

Laboratory: Eurofins, Tacoma, WA

Date: 12/05/22

Page: 1____of____ Reviewer: NC

2nd Reviewer: _____

METHOD: (Analyte) Alkalinity (SM2320B), DOC (EPA SW-846 Method 9060A), Nitrate/Nitrite-N (EPA Method 353.2), TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A/A	
П	Initial calibration	А	
ш.	Calibration verification	А	
١V	Laboratory Blanks	А	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	А	
VIII.	Laboratory control samples	А	LCS/LCSD
IX.	Field duplicates	N	
X.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	Α	

Note:	A = Acceptable	ND = No compounds of	letected D = Duplicate	SB=Source blank
	N = Not provided/applicable	R = Rinsate	TB = Trip blank	OTHER:
	SW = See worksheet	FB = Field blank	EB = Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	HU147	580-118109-1	Water	09/19/22
2	HU147DUP	580-118109-1DUP	Water	09/19/22
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
	Alkalinity, Bicarbonate Alkalinity as CaCO3, Carbonate Alkalinity as
1	CaCO3, DOC, TOC, Nitrate/Nitrite-N
- ·	
QC	
	Alkalinity, Bicarbonate Alkalinity as CaCO3, Carbonate Alkalinity as
2	CaCO3

Laboratory Data Consultants, Inc. Data Validation Report

Proiect/Site Name:	Red Hill Oilv Waste Disposal Facility, CTO 18F0176

LDC Report Date:	November 2, 2022
------------------	------------------

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample	Matrix	Collection Date
	identification	Wallin	Date
HU147	580-118109-1	Water	09/19/22
HU148	580-118109-2	Water	09/19/22
HU146	580-118109-3	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

Average relative response factors (RRF) were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% with the following exceptions:

Date Analyte		%D	Associated Samples	Flag	A or P
09/27/22	Gasoline range organics (C6-C12)	26.8	All samples in SDG 580-118109-1	UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample HU146 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HU147 and HU148 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Due to ending CCV %D, data were qualified as estimated in three samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-118109-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU147 HU148 HU146	Gasoline range organics (C6-C12)	UJ (all non-detects)	A	Continuing calibration (ending CCV %D) (c)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>55171A7</u> **V/** SDG #: <u>580-118109-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

Date:	۱	D	27
Page:_		of	'
Reviewer:			<u>11</u>
2nd Reviewer:		1	t

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
П.	GC/MS Instrument performance check		
111.	Initial calibration/ICV	A,A	12 $101 = 20$
IV.	Continuing calibration	SW	$cw \leq 20 w$
V.	Laboratory Blanks	Δ	
VI.	Field blanks	ND	TB=3
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples		les 10
Х.	Field duplicates	NN	$\mathcal{D} = 1_1 2_1$
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	<u> </u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID					Lab ID	Matrix		Date
1	HU147	Ø				580-118109-1	Water		09/19/22
2	HU148	P				580-118109-2	Water		09/19/22
3	HU146	TB	 			580-118109-3	Water		09/19/22
4			 						
5			 						
6			 						
7									
8									
9									
Notes					 			•	
	MB 5	80-405043							
				N					

LDC #: 95 171 A7

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

Page:_	_/ _{of} /
Reviewer:	FT

(c)

METHOD: GC/MS VOA (EPA SW 846 Method 8260 / CA DOHS LUF T

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YN N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? ƳN N/A

Y/N N/A Were all %D and RRFs within the validation criteria of ≤ 20 %D and ≥ 0.05 RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	92622	CCN 580-40504	3 *	50.7		-25+1	J+ MJ/A ND
	1611		•			MB 536-405043	
	9/27/22	CCV 580-40504	3 *	26.8		All-MB	J+/UJ/A ND
	0044	closing					1
		5	Gasoline Ran	ge Organics	((6-C)2)		
) 0			
						· · · · · · · · · · · · · · · · · · ·	
			: 				
							• • • • • • • • • • • • • • • • • • •
			•. · · · · · · · · · · · · · · · · · · ·				
							· · · · · · · · · · · · · · · · · · ·

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: November 2, 2022

Parameters: Methane

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU147	580-118109-1	Water	09/19/22
HU146	580-118109-3	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample HU146 was identified as a trip blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.
IX. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 55171A51 SDG #: 580-118109-1 Laboratory: Eurofins, Tacoma, WA

Date: Page: / of **Reviewer:** 2nd Reviewer

METHOD: GC Methane (Method RSK-175)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times		
١١.	Initial calibration/ICV	Δ / Δ	0/0 P>D ≤ 20 101 ≤ 20
111.	Continuing calibration	Δ	CW = 20/2U
IV.	Laboratory Blanks	Δ	
V.	Field blanks	ND	TB = 2
VI.	Surrogate spikes	\triangle	
VII.	Matrix spike/Matrix spike duplicates	N	07
VIII.	Laboratory control samples	A	ies
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate			
TB = Trip blank			
EB = Equipment blank			

SB=Source blank

.

-

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HU147	580-118109-1	Water	09/19/22
2	HU146 TP3	580-118109-3	Water	09/19/22
3				
4			· ·	
5				
6				
7				
8				
9				
10				
11				
12				
Notes		·····		
	MB 410-301674			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:	November 2, 2022
------------------	------------------

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 2B

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118109-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
HU147	580-118109-1	Water	09/19/22	
HU148	580-118109-2	Water	09/19/22	

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-300032	09/26/22	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HxCDD Total HxCDF Total PeCDF Total PeCDF Total PeCDF Total PeCDF Total PeCDF	0.000000365 ug/L 0.000000318 ug/L 0.000000163 ug/L 0.000000277 ug/L 0.000000674 ug/L 0.000000456 ug/L 0.000000413 ug/L 0.000000282 ug/L 0.000000544 ug/L 0.000000339 ug/L 0.000000339 ug/L 0.000000339 ug/L 0.00000130 ug/L 0.00000130 ug/L 0.00000122 ug/L 0.00000195 ug/L 0.00000195 ug/L	All samples in SDG 580-118109-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU147	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HxCDD Total HxCDF Total PeCDF Total PeCDF Total PeCDD Total PeCDF	0.0000036 ug/L 0.0000028 ug/L 0.0000027 ug/L 0.0000025 ug/L 0.0000054 ug/L 0.0000054 ug/L 0.0000054 ug/L 0.0000013 ug/L 0.0000015 ug/L 0.0000015 ug/L 0.00000068 ug/L 0.00000068 ug/L 0.00000060 ug/L 0.0000061 ug/L 0.0000031 ug/L 0.0000030 ug/L	0.0000036U ug/L 0.0000028U ug/L 0.0000025U ug/L 0.00000054U ug/L 0.00000054U ug/L 0.00000054U ug/L 0.00000054U ug/L 0.0000038U ug/L 0.0000016U ug/L 0.0000006U ug/L 0.0000068U ug/L 0.0000060U ug/L 0.0000061U ug/L 0.0000061U ug/L 0.0000031U ug/L 0.0000031U ug/L
HU148	1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HxCDF Total PeCDF Total PeCDF Total PeCDD Total PeCDF	0.00000025 ug/L 0.00000029 ug/L 0.00000029 ug/L 0.00000027 ug/L 0.00000028 ug/L 0.0000012 ug/L 0.00000041 ug/L 0.00000056 ug/L 0.00000053 ug/L 0.00000053 ug/L 0.0000024 ug/L 0.0000012 ug/L	0.0000025U ug/L 0.0000025U ug/L 0.0000029U ug/L 0.00000027U ug/L 0.0000028U ug/L 0.0000012U ug/L 0.0000041U ug/L 0.00000056U ug/L 0.00000053U ug/L 0.0000036U ug/L 0.0000024U ug/L 0.0000024U ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

4

Samples HU147 and HU148 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Analyte	HU147	HU148	RPD (Limits)
1,2,3,4,6,7,8-HpCDD	0.0000082	0.0000081	1 (≤50)
1,2,3,4,6,7,8-HpCDF	0.0000036	0.0000097U	186 (≤50)
1,2,3,4,7,8-HxCDD	0.0000028	0.0000097U	189 (≤50)
1,2,3,4,7,8,9-HpCDF	0.0000024	0.0000015	46 (≤50)
1,2,3,6,7,8-HxCDD	0.0000027	0.0000097U	189 (≤50)
1,2,3,6,7,8-HxCDF	0.0000025	0.000097U	190 (≤50)
1,2,3,7,8-PeCDF	0.0000054	0.0000025	73 (≤50)
1,2,3,7,8,9-HxCDD	0.0000013	0.0000041	104 (≤50)
1,2,3,7,8,9-HxCDF	0.0000054	0.0000029	60 (≤50)
2,3,4,6,7,8-HxCDF	0.0000038	0.0000027	34 (≤50)
2,3,4,7,8-PeCDF	0.00000016	0.0000028	55 (≤50)
2,3,7,8-TCDD	0.00000014	0.0000019U	173 (≤50)

	Concentration (ug/L)		
Analyte	HU147	HU148	RPD (Limits)
2,3,7,8-TCDF	0.00000016	0.0000019U	169 (≤50)
OCDD	0.0000015	0.0000012	22 (≤50)
OCDF	0.0000029	0.000019U	194 (≤50)
Total HxCDD	0.0000068	0.0000041	50 (≤50)
Total HxCDF	0.0000012	0.0000056	73 (≤50)
Total HpCDD	0.0000082	0.0000081	1 (≤50)
Total HpCDF	0.0000060	0.0000015	120 (≤50)
Total PeCDF	0.0000070	0.0000053	28 (≤50)
Total TCDD	0.00000014	0.0000019U	173 (≤50)
Total TCDF	0.00000016	0.0000019U	169 (≤50)
Total PeCDD/Total PeCDF	0.0000061	0.0000036	52 (≤50)
Total PeCDD	0.0000031	0.0000024	25 (≤50)
Total PeCDF	0.000030	0.0000012	86 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-118109-1	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	A

For sample HU147, a 2nd column confirmation was not performed for 2,3,7,8-TCDF. Result was less than the limit of quantitation (LOQ).

Raw data were not reviewed for Stage 2B validation.

XII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-118109-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU147 HU148	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	A	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-118109-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU147 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-PeCDF OCDD OCDD OCDF Total HxCDD Total HxCDF Total HxCDF Total PeCDF Total PeCDF Total PeCDF <td< td=""><td>0.0000036U ug/L 0.0000028U ug/L 0.0000025U ug/L 0.00000054U ug/L 0.0000054U ug/L 0.0000054U ug/L 0.0000054U ug/L 0.0000016U ug/L 0.0000016U ug/L 0.00000068U ug/L 0.0000068U ug/L 0.0000060U ug/L 0.0000061U ug/L 0.0000061U ug/L 0.0000031U ug/L 0.0000031U ug/L 0.0000030U ug/L</td><td>A</td><td>Ь</td></td<>		0.0000036U ug/L 0.0000028U ug/L 0.0000025U ug/L 0.00000054U ug/L 0.0000054U ug/L 0.0000054U ug/L 0.0000054U ug/L 0.0000016U ug/L 0.0000016U ug/L 0.00000068U ug/L 0.0000068U ug/L 0.0000060U ug/L 0.0000061U ug/L 0.0000061U ug/L 0.0000031U ug/L 0.0000031U ug/L 0.0000030U ug/L	A	Ь
HU148	J148 1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD Total HxCDD Total HxCDD Total HxCDF Total HpCDF Total PeCDF Total PeCDF Total PeCDD Total PeCDF		A	Ь

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-118109-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u>10 28</u>72 Page: <u>1</u> of <u>1</u> Reviewer: <u>7</u> 2nd Reviewer: <u>7</u>

Laboratory: Eurofins, Tacoma, WA

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA SW-846 Method 8290A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
п.	HRGC/HRMS Instrument performance check	Δ	
ш.	Initial calibration/ICV	AIA	% PSD = 20% 101 = 20/30
IV.	Continuing calibration	A	CW = 20/30
V.	Laboratory Blanks	SW	
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	2	C>
VIII.	Laboratory control samples	A	Kes IP
IX.	Field duplicates	SW	p = 1/2
Х.	Labeled Compounds	A	
XI.	Target analyte quantitation	SW	
XII.	Target analyte identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	4	

Note: A = Acceptable

LDC #: 55171A21

SDG #: 580-118109-1

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client I	D							Lab ID	R	<i>l</i> atrix		Date
1	HU147								580-118109-1	v	Vater		09/19/22
2	HU148								580-118109-2	V	Vater		09/19/22
3													
4													
5													
6													
7												•	
8			, ta			·							
9													
10													
Notes	:												
	MB	410-	3000	3	2								

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

VALIDATION FINDINGS WORKSHEET Blanks

Associated samples:

(h)

Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- $\frac{Y}{Y}$ Was the method blank contaminated?

Blank extraction date: 9/26/22	Blank analysis date:	9/27/22

Conc units: ug/l

		- night				
Compound	Blank ID		Sample Identification			
	MB 410-300032	5x	1	2		
0	0.00000365	0.000001825	0.0000036U			
с	0.00000318	0.000001590	0.0000028U			
к	0.00000326	0.000001630	-	_		
D	0.000000163	0.00000815	0.0000027U	_		
L	0.000000277	0.000001385	0.0000025U			
1	0.00000674	0.000003370	0.0000054U	0.0000025U		
E	0.000000456	0.000002280	0.0000013U	0.0000041U		
N	0.000000413	0.000002065	0.0000054U	0.0000029U		
Μ	0.00000282	0.000001410	0.0000038U	0.00000027U		
J	0.000000544	0.000002720	0.0000016U	0.0000028U		
G	0.00000101	0.000005050	0.0000015U	0.0000012U		
Q	0.00000339	0.000001695	0.0000029U	_		
т	0 000000937	0.000004685	0.0000068U	0 0000041U		

CUIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

 $\frac{Y}{Y}$ Was the method blank contaminated?

	Blank extraction date:	9/26/22	Blank analysis o	late:	9/27/22
--	------------------------	---------	------------------	-------	---------

Conc. units: ug/L

Associated samples: all (b)

Compound	Blank ID		Sample Identification						
	MB 410-300032	5x		11		2			
x	0.00000130	0.000006500		0.0000012U		0.00000056U			
Y	0.00000365	0.000001825		0.00000060U		0.00000015U			
w	0.00000122	0.000006100		0.00000070U		0.00000053U			
S/W	0.00000517	0.000025850		0.0000061U		0.0000036U			
S	0.00000195	0.000009750		0.0000031U		0.0000024U			
w	0.00000322	0.000016100		0.0000030U		0.0000012U			
					i di name i di di kantar				

Vdr/Validation Worksheets/Dioxins/8290/MB 410 300032

Page:_1__of_1__ Reviewer:__FT____

METHOD: EPA SW 846 method 8290A

	Concentrat	ion (ug/L)	(≤50)
Compound	1	2	RPD
F	0.0000082	0.0000081	1
0	0.0000036	0.000097U	186
с	0.0000028	0.000097U	189
Р	0.00000024	0.0000015	46
D	0.0000027	0.000097U	189
، د	0.0000025	0.000097U	190
1	0.0000054	0.0000025	73
E	0.0000013	0.0000041	104
N	0.0000054	0.0000029	60
м	0.0000038	0.0000027	34
J	0.0000016	0.0000028	55
Α	0.0000014	0.000019U	173
н	0.0000016	0.000019U	169
G	0.0000015	0.0000012	22
Q	0.0000029	0.000019U	194
Т	0.0000068	0.0000041	50
x	0.0000012	0.0000056	73
υ	0.0000082	0.0000081	1
Y	0.0000060	0.0000015	120
w	0.0000070	0.0000053	28
R	0.00000014	0.0000019U	173
v	0.00000016	0.0000019U	169
s/w	0.0000061	0.0000036	52
s	0.0000031	0.000024	25
w	0.000030	0.0000012	86

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2022\55171A21 AECOM Red Hill oily.wpd

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation

Page:	1	_of	
Reviewer:			

(K)

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y N N/A</u> <u>Y N N/A</u>

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

	Ī				
#	Date	Sample ID	Finding	Associated Samples	Qualifications
		AU	all analyte qualified		Lat /A
			"I" as (EMDR)		
			estimated possible		
	<i>"</i>		concentration		
			H- NO 2nd		tex t
			column confirmation		
			was performed.		
			Result '2' LOQ		

Comments: See sample calculation verification worksheet for recalculations

LDC Report# 55171B1a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:	November 2, 2022
------------------	------------------

Parameters: Volatiles

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU145**	580-118118-1**	Water	09/19/22
HU144	580-118118-2	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
09/27/22	Vinyl chloride	21.5	All samples in SDG 580-118118-1	UJ (all non-detects)	А

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration	Associated Samples
MB 580-405161	09/27/22	Hexachlorobutadiene 1,3,5-Trichlorobenzene	0.121 ug/L 0.0481 ug/L	All samples in SDG 580-118118-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Sample HU144 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compound Quantitation

All target analyte and tentatively identified compound (TIC) quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-118118-1	All tentatively identified compounds (TIC)	NJ (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %D, data were qualified as estimated in two samples.

Due to TICs, data were qualified as presumptive and estimated in two samples.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Data Qualification Summary - SDG 580-118118-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU145** HU144	Vinyl chloride	UJ (all non-detects)	A	Continuing calibration (%D) (c)
HU145** HU144	All tentatively identified compounds (TIC)	NJ (all detects)	A	Tentatively identified compound quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Volatiles - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date:	10	3	22
Page:_	<u>_</u>	of_/	<u>n</u>
Reviewer:		ñ	
2nd Reviewer:	ŀ	1	_

SDG #: <u>580-118118-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

LDC #: 55171B1a

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D) $+ \uparrow IG$

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
11.	GC/MS Instrument performance check	\Box	
111.	Initial calibration/ICV	A,A	$^{\circ}/_{\circ}$ psp \leq 15, ($^{\prime}$ 104 \leq 20
IV.	Continuing calibration	SW	$c\omega \leq 20 \overline{sD}$
V.	Laboratory Blanks	SW	
VI.	Field blanks	ND	7B = 2
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ν	05
IX.	Laboratory control samples	A	Kes IP
Х.	Field duplicates	N	
XI.	Internal standards	A	· · ·
XII.	Target analyte quantitation	SW	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification		Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
_xv.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

SW = See worksheet FB = Field blank ** Indicates sample underwent Stage 4 validation

	Client ID	Lab ID	Matrix	Date
127	1 - Met- HU145**	580-118118-1**	Water	09/19/22
2 V	HU144 TP	580-118118-2	Water	09/19/22
3				
4				
5				
6				
7	· · · · · · · · · · · · · · · · · · ·			
8				
9				
Notes				
1	MB 580-404907	ſ		
2	MB 580- 405161			

LDC #: 55171130

Method: Volatiles (EPA SW 846 Method 8260 $\widehat{\mathcal{V}}$)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			·
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			•
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	~			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	-			
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration	· ····································			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	-	-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% in the ending CCV?		/		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\leq			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks?		-	-	
VI. Field blanks				
Were field blanks were identified in this SDG?	//	F		
Were target analytes detected in the field blanks?		/		
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			-	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

-

VALIDATION FINDINGS CHECKLIST

IX. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/	-		
Were retention times within \pm 30 seconds of the associated calibration standard?				· · · · · · · · · · · · · · · · · · ·
XII. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	/			
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
Were manual integrations reviewed and found acceptable?	/			
Did the laboratory provide before and after integration printouts?		[
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data	_	-	-	
Overall assessment of data was found to be acceptable.				

-10

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 5517/13/2

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	<u></u>	
Reviewer:	FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 β)

 Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 Y N/A
 Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

 Y N/A
 Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

 Y N/A
 Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

 Y N/A
 Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>≥</u> 0.05)	Associated Samples	Qualifications
	9/27/22	CCV 580-4051	o] C	21.5		AI)	J+ UJ/A NN
	1234	ι.		•		MB 580-40516)
				· · · · · · · · · · · · · · · · · · ·			
						1	
					· · · ·		· · · · · · · · · · · · · · · · · · ·
		<u></u>					
							· · · · · · · · · · · · · · · · · · ·

LDC #: 35/7/ B/a

VALIDATION FINDINGS WORKSHEET Blanks

Page: of / Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a method blank associated with every sample in this SDG?

Y/N N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Y N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank	analysis	date: 1	27	22

Conc.	units:	ual	

Conc. units: <u>ua</u>	1 <i>*V</i>		Associated Samp	les:	<u>A 11</u>	(ND))			
Compound	Compound Blank ID			Sample Identification						
	MB 580	- 405161								
LLL	0.12)									
139-	0.048)									
Trichlorobernen										
<u> </u>										
		L								

Blank analysis date:

TIC

Conc. units:	c. units: Associated Samples:								
Compound	Blank ID		Sample Identification						

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 55/7/B/a

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation and Tentatively Identified Commpound

/_{of} / Page: FT Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> <u>Y N N/A</u> Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Sample ID	Analytes	Finding	Qualifications
	all	all unkown and analytes reported as Tentatively Identified Compounds (TIC)		NJ/A (v)
	•			

Comments: See sample calculation verification worksheet for recalculations

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _1___ of __1__ Reviewer: ____ FT___

METHOD: GCMS 8260D

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) Where:

Ax = Area of compound Cx = Concentration of compound S = Standard deviation of the RRFs X = Mean of the RRFs Ais = Area of associated internal standard Cis = Concentration of internal Standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF 5ug/L std)	(RRF 5ug/Lstd)	(Initial)	(Initial)		
	ICAL	9/18/2022	к	0.4505	0.4505	0.4477	0.4477	6.7	6.7
	TACO48		CC	1.7177	1.7177	1.7010	1.7010	7.8	7.8
		_	JJJ	1.3211	1.3211	1.2712	1.2712	6.2	6.2

LDC #: 551718/2

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of_1 Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\mathcal{P}_{
m)}$

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 $A_x =$ Area of compound, $C_x =$ Concentration of compound,

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	acr	9127 22	K (1st internal standard)	0.4477	0.4814	0.4814	7.5	7.5
	TACOLD	12.34	(2nd internal standard)	1.7010	1.802	1.802	6.0	60
	(1,00 10	,	JJ J (3rd internal standard)	1.2712	1.363	1.363	7.2	7.2
			(4th internal standard)			•		
2	ccv	9/23/22	MEK (1st internal standard)	0.0183	0.0181	0.0181	1.5	1.5
	TAG 113	1735	/ (2nd internal standard)					•
		·	(3rd internal standard)					
			(4th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)		L			
Com	ments: <u>Refer t</u>	o Continuing	Calibration findings worksheet for list of qu	ualifications and a	associated sample	es when reported re	esults do not agree	within 10.0% of
1161	scalculated les	นแอ						
LDC #: 5517/B/a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1 of 1 Reviewer: FT 2nd reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B) ${\cal P}$

The percent recoveries (%R) of surrogates were recalculated for the analytes identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	10.0	11.3	113	113	0
1,2-Dichloroethane-d4		104	104	104	1
Toluene-d8		10.1	101	10)	
Bromofluorobenzene		9.02	9D	90	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

LDC #:_ 55 17/B/a

1

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS VOA (EPA Method 8260 \mathcal{D}

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: USID 580-40516)

	s	pike	Spike	d Sample		c.s		CSD	LCS	/LCSD
Compound	Added		Conc (Concentration		Recovery	Percent	Recovery	R	PD
	LCS		LCS		Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	50	5.0	5.29	5.00	106	106	100	100	¹ ر	5
Trichloroethene			4.26	4.34	85	85	87	87	2	2
Benzene			૬.ડર્મ	5.20	1)	11]	104	104	6	4
Toluene			5.14	5.20	103	103	49	106	3	3
Chlorobenzene			5.29	5.37	106	106	107	107		

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0%</u> of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260 β) (Y N N/A Were all reported results recalculated and v

YN NA

Df

%S

=

=

Dilution factor.

only.

- Were all reported results recalculated and verified for all level IV samples?
- Were all recalculated results for detected target analytes agree within 10.0% of the reported results?

Concen	tratior	n = <u>(A_x)(I_x)(DF)</u> (A _{is})(RRF)(V _x)(%S)
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).

Percent solids, applicable to soils and solid matrices

Example: Sample 1.D. 1.0.57Conc. = $\frac{80}{135509}$ (10) + 0.057 0.5793

= 0.10156

#	Sample ID	Compound	Reported Concentration	Calculated Concentration (UCA 1/1)	Qualification
	#	R	0.10	0.10156	
	······				×
				-	
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				

LDC Report# 55171B2a_RV1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: June 26, 2023

Parameters: Semivolatiles

Validation Level: Stage 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU145	580-118118-1	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) and Tentatively Identified Compounds (TICs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Extraction	Required Holding Time (in Days) From Sample Collection Until Extraction	Flag	A or P
HU145	2,4,5-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol	10	7	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
08/29/22	Phenol	23	All samples in SDG 580-118118-1	UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
09/27/22	1,2,4-Trichlorobenzene Dimethylphthalate Pentachlorophenol Hexachlorobenzene	20.8 24.4 25.8 21.0	All samples in SDG 580-118118-1	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits. Using professional judgment, no data were qualified when one base or one acid surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
LCS/LCSD 580-404969 (All samples in SDG 580-118118-1)	2,3,4,6-Tetrachlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol Hexachlorobutadiene Pentachlorophenol Phenol	48 (≤20) 35 (≤20) 68 (≤20) 24 (≤20) 61 (≤20) 24 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte and Tentatively Identified Compounds Quantitation

All tentatively identified compound quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-118118-1	All tentatively identified compounds (TIC)	NJ (all detects)	A

XIII. Target Analyte Identification

All target analyte identifications met validation criteria.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to technical holding time, ICV %D, and continuing calibration %D, data were qualified as estimated in one sample.

Due to TICs, data were qualified as presumptive and estimated in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Data Qualification Summary - SDG 580-118118-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU145	2,4,5-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Technical holding times (h)
HU145	Phenol	UJ (all non-detects)	A	Initial calibration verification (%D) (c)
HU145	1,2,4-Trichlorobenzene Dimethylphthalate Pentachlorophenol Hexachlorobenzene	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	Α	Continuing calibration (%D) (c)
HU145	All tentatively identified compounds (TIC)	NJ (all detects)	A	Tentatively identified compound quantitation (v)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Semivolatiles - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: 11 1 27 Page: _ of ____ Reviewer: _____ 2nd Reviewer: _____

SDG #:<u>580-118118-1</u> Laboratory:<u>Eurofins, Tacoma, WA</u>

LDC #: 55171B2a

METHOD: GC/MS Semivolatiles (EPA SW-846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	K 15W	
11.	GC/MS Instrument performance check	Δ	1
111.	Initial calibration/ICV	ASIA	$%$ $p_{SD} \neq S Y (Y \neq 20)$
IV.	Continuing calibration ending	SW	CW 4 20/50
V.	Laboratory Blanks	4	V
VI.	Field blanks	N	
VII.	Surrogate spikes	5W	
VIII.	Matrix spike/Matrix spike duplicates	N	5
IX.	Laboratory control samples	5.00	ues 10
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	SIA	
XIII.	Target analyte identification	Δ	MI
XIV.	System performance	A	· · · · · · · · · · · · · · · · · · ·
XV.	Overall assessment of data	5	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D ≕ Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
[1]	RE= そ, &、C (2) HU145	580-118118-1	Water	09/19/22
2				
3				
4				
5		 		
6		 		
7				
8				
9			· · · · · · · · · · · · · · · · · · ·	
Notes:				
1	MB 580-404969			
2	AB 580-405394			

. .

Validation Area	Yes	No	NA	Findings/Comments					
I. Technical holding times									
Were all technical holding times met?	x	V							
Was cooler temperature criteria met?									
II. GC/MS Instrument performance check									
Were the DFTPP performance results reviewed and found to be within the specified criteria?	~								
Were all samples analyzed within the 12 hour clock criteria?	/								
Illa. Initial calibration									
Did the laboratory perform a 5 point calibration prior to sample analysis?	/								
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	/	, ,							
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?									
IIIb. Initial Calibration Verification									
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/								
Were all percent differences (%D) < 20%?	X								
IV. Continuing calibration									
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	_								
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?		1							
V. Laboratory Blanks									
Was a laboratory blank associated with every sample in this SDG?	/								
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/								
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.									
VI. Field blanks									
Were field blanks were identified in this SDG?				、 、					
Were target analytes detected in the field blanks?			/	-					
VII. Surrogate spikes									
Were all surrogate percent recovery (%R) within QC limits?		/							
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?		/							
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?			~						
VIII. Matrix spike/Matrix spike duplicates				/					
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			7						

Method: Semivolatiles (FPA SW 846 Method 8270 E)

LDC #: 55171p2a

VALIDATION FINDINGS CHECKLIST

Page: 2_of 2_ Reviewer: FT

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				-
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	<			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/	-		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	Í		
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?	\angle			
Were manual integrations reviewed and found acceptable?	\angle			
Did the laboratory provide before and after integration printouts?		L		
XIV. System performance				
System performance was found to be acceptable.		-		
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\angle			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA							
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate			
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate			
C. 2-Chlorophenol 1 700	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate			
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine			
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone			
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine			
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene			
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene			
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl			
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine			
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methyiphenol	S1. Triphenylene			
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene			
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur			
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine			
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene			
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane			
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine			
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine			
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine			
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl			
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethyinaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide			
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ, Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene			
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether			
X. Hexachlorocyclopentadiene	ZZ. Pyrane	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin			
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin			
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1, Phenacetin	H2. Cypermethrin			
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)			
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine			

Compound List.wpd

LDC #: 55/11/32@

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:	_1_of
Reviewer:_	- 1)

All circled dates have exceeded the technical holding times. YN N/A Were all cooler temperatures within validation criteria?

METHOD : GC/MA BNA SW846 Method 8270								
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier	
	W		9/19/22	9/29/22	9/29/22	D	1-/41/	
							ND	
					qual	7.Q.	Ċ	
					<u> </u>	·		
					¥			
					· · · · · · · · · · · · · · · · · · ·			
				<u></u>			 	
							_	
·						 		
								
	<u> </u>						<u> </u>	
						· · · · ·	<u> </u>	
							<u> </u>	
	<u> </u>	<u> </u>					<u> </u>	
							·	
			· · · · · · · · · · · · · · · · · · ·	·				
		<u> </u>	· · · · · ·					
	<u> </u>						<u> </u>	
							<u>+</u>	
<u> </u>		<u> </u>	<u> </u>				<u> </u>	
	<u> </u>	<u> </u>				ļ		

TECHNICAL HOLDING TIME CRITERIA

Water:Extracted within 7 days, analyzed within 40 days.Soil:Extracted within 14 days, analyzed within 40 days.

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

C

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \overleftarrow{b}) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". (VN N/A) Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Were all %D within the validation criteria of $\leq 20\%$ 30 % D? Y N/A

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0% 30%)	Associated Samples	Qualifications
	82922	101 530-40225		27)		1+ 141/A MP
	2133					
			······································			
			······································			
				N. N. N.		

LDC #: 55171132a

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: Reviewer:

	METHOD: GC/MS SVOA(EPA Method 8270 \overline{c}) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/A Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument? Y N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Y/N/A Were all %D and RRFs within the validation criteria of ≤ 20 %D and ≥ 0.05 RRF ?							
#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications	
	927 22	CCN 580-405079	R	20.8		AI	J+ /UJ/A all NC	
	1027		CC.	24.4		1	1 / V	
			TT	25.8			1+/41/2	
			55	21.0		Ail	1+ 1.4 1/1	
	[10 100/	
	[

•

CONCAL.wpd

LDC #: 5517182a

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

METHOD: GC/MS BNA (EPA SW 846 Method 8270 5)

Reviewer:

(5)

		_		v =		,				
-				1 1		A DESCRIPTION OF THE PARTY OF T	Internet and the set of the set o		tal Att A	
~	<u></u>	600	duaumcation	noiow tor all	dillestions ans	weren "N" r	vot applicable	duestions a	re inenimen as	···N/A··
		300	quannoauon	001010 101 un	quoduono uno	10100 11111	tot upphoublo	quoduono u		
	/ \		•							

Y NNA Y NNA Y NA

Were percent recoveries (%R) for surrogates within QC limits? If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

Sample ID %R (Limits) Qualifications # Surrogate TPH 162 NO 1 (50-134 940) 1) () () MB 780-404969 TBP 3-/×/P 2 (43-140) all Acids PHL-d5 2FP (19 - 119)2) 1 () () () () () ()) () ()) () {) () 1 () () () () ()) () (

(NBZ) = Nitrobenzene - d5

(FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

LDC #: 55/7/822

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

(w)

182705 METHOD: GC/MS BNA (Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a LCS required? Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? <u>N N/A</u> N N/A

+

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	10510 580-	2	34 55-123	()	()	۵1)	
-	404969	P Q	26 (47-12)	()	()		
		<u> </u>	26 (28-117)	()	()		
		4444	()	()	48 (20)		Join /P all NP
		7	()	()	39 (1)		11
		НН	()	()	68 ()		
		Û.	()	()	24 ()		
		TT	()	()	61 ()		
		A	<u> </u>	<u>()</u>	24 ()	<u>V</u>	V
			()	()	()		
			()	()	()		
			()	()	()		
L			()	. ()	()		
			()	()	()		
			()	()	()	·····	
L			()	()	()		
			()	()	()		
				······	<u> </u>		
			()	()	()		
			()	<u> </u>	()		
			()	()	()		
			()	()	()		
			()	()	()	-	
	l		()	()	()		
				()	l)		

LCSLCSD.wpd

LDC #: <u>5517</u> B 2 VALIDATION FINDINGS WORKSHEET <u>Target Analyte Quantitation and Tentatively Identified Commpound</u>

Page: _____of____ viewer: _____FT____ Reviewer:

METHOD: GC/MS SVOA (EPA SW 846 Method 8270E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? <u>Y N N/A</u> Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Sample ID	Analytes	Finding	Qualifications
	all	all analytes reported as Tentatively Identified Compounds		NJ/A (v)

Comments: See sample calculation verification worksheet for recalculations

COMQUA.wpd

LDC #: 55171B2a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1_	_of_	_1
Reviewe	er: _	F	T

METHOD: GCMS 8270E

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx)

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) Where:

Ax = Area of compound

Cx = Concentration of compound

S = Standard deviation of the RRFs

X = Mean of the RRFs

Ais = Area of associated internal standard

Cis = Concentration of internal Standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF 500 std)	(RRF500 std)	(Initial)	(Initial)		
	ICAL	8/29/2022	Α	1.5842	1.5842	1.5785	1.5785	13.5	13.5
	TACO51		U	0.2759	0.2759	0.2869	0.2869	14.0	14.0
			LL	1.3644	1.3644	1.2628	1.2628	10.6	10.6
			SS	0.2259	0.2259	0.2501	0.2501	8.7	8.7
			BBB	0.4468	0.4468	0.4217	0.4217	7.6	7.6

082922 TACO51

LDC #: 55171820

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of_1_ Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_y)/(A_y)(C_x)$

 $\label{eq:RF} \begin{array}{l} \mathsf{RRF} = \mathsf{continuing \ calibration \ RRF} \\ \mathsf{A}_{i_{\mathsf{H}}} = \mathsf{A}\mathsf{rea} \ \mathsf{of} \ \mathsf{associated \ internal \ standard} \\ \mathsf{C}_{i_{\mathsf{H}}} \approx \mathsf{Concentration \ of \ internal \ standard} \end{array}$

			,		Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	a. V	apply	A (1st IS)	1.5785	1.762	1.762	11.6	11.6
			Ø (2 nd IS)	0.7869	0.3433	0.3433	9.7	197
		10222	LL (3 rd IS)	1.2628	1.475	1.475	16.8	16.8
			\$\$ (4* IS)	0.250	0.2896	0.2896	15.8	5.8
			BBP) (5* IS)	0.4217	0.4899	0.4899	16.2	16.2
			(6* IS)					
2	cer	9/29/22		0.3665	0.4129	0.4129	12.7	12.7
			7 / _(2nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6* IS)					
3	1	9/29/22	C (1st IS)	1.279	1.283	1.283	0.4	0.4
	cer		6 (L) (2 rd IS)	000	915	975	2.5	25
		177	7 (L) (3" IS)	1000	486	Sil	J.J	11.4
			(4* IS)					••
			(5 th IS)	· · · · · · · · · · · · · · · · · · ·				
			(6 th IS)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

CONCLCrev.wpd

LDC #: 55171820

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 €)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100 Sample ID:	Wh	ere: SF = Surrogate Found SS = Surrogate Spiked					
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference		
Nitrobenzene-d5	1000.0	911.4	91	9	0		
2-Fluorobiphenyl		795.9	80	80			
Terphenyl-d14	1	1071.7	107	107			
Phenol-d5		268.6	21	FI			
2-Fluorophenol		585.1	59	59			
2,4,6-Tribromophenol		768.9	1 -11	1			

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5	i				
2-Fluorophenol					
2,4,6-Tribromophenol		1			

SURRrev.wpd

LDC #: 5517182a VALIDATION FINDINGS WORKSHEET Page:_1_of_1_ Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

(A_x)(Cis)(Fv)(Df) (A_{is})(RRF)(Vs or Ws)(%S/100) SSC =

%Recovery = (SSC/SA)*100

Where: Ax= Area of the target analyte A_{s} = Area for the specific internal standard C_{ts} = Concentration of internal standard Fv =Final volume of extract

Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample
 Diff
 Dilution factor
 LCSD
 Laboratory control sample duplicate

 RRF= Average relative response factor of the target analyte
 Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS/LCSD samples: LOS 10 5812-404969

	Spike Added (ug,)		Spike		108					
Compound			Concei	ntration	Percent Recovery		Percent Recovery		RPD	
		LCSD			Reported.	Recalc	Reported	Recalc	Reported	Recalculated
Phenol	2.0	2.0	0.659	0.840	37	37	42	42	24	n
N-Nitroso-di-n-propylamine	NA									
4-Chloro-3-methylphenol										
Acenaphthene										
Pentachlorophenol	4.0	4.0	1.74	3.2%	43	47	82	82	41	61
Pyrene	NA									
										•

LCSCLCrev.wpd

LDC #: 55171820

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	_of_	1
Reviewer:	FT		

METHOD: GC/MS BNA (EPA SW 846 Method 8270 定)

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	ntratio	n = <u>(A.)(I,)(V,)(DF)(2.0)</u> (A ₄)(RRF)(V ₀)(V)(%S)	Example:
A,	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. <u>LC> 580</u> -404969 A
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
i,	=	Amount of internal standard added in nanograms (ng)	Conc. = (28303) (100.07) (2)
V,	=	Volume or weight of sample extract in milliliters (ml) or grams (g).	(5444) (1.5785)(1000)
V,	=	Volume of extract injected in microliters (ul)	=
V,	=	Volume of the concentrated extract in microliters (ul)	
Df	=	Dilution Factor.	0.650/ ug/1
%S	=	Percent solids, applicable to soil and solid matrices only.	0
2.0	=	Factor of 2 to account for GPC cleanup	

#	Sample ID	Target Analyte	Reported Concentration (UG)	Calculated Concentration	Qualification
	105	A	0.659	0.6587	
			ļ		
					ę
<u> </u>	· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

RECALCrev.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	Red Hill Oily Waste Disposal Facility, CTO 18F0176
--------------------	--

LDC Report Date:	November 2, 2022
------------------	------------------

Polynuclear Aromatic Hydrocarbons Parameters:

Stage 4 Validation Level:

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

	Laboratory Sample		Collection		
Sample Identification	Identification	Matrix	Date		
HU145	580-118118-1	Water	09/19/22		

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

LDC #: <u>55171B2b</u> **VA** SDG #: <u>580-118118-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

Date: /0/3//77 Page: _/of _/ Reviewer: _____7 2nd Reviewer: _____7

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
.	GC/MS Instrument performance check	Δ	
111.	Initial calibration/ICV	A/A	0/0 RSD = 15, 12 104=20
IV.	Continuing calibration	A	$\alpha V = 2 / 5 \mathcal{V}$
V.	Laboratory Blanks	Λ	
VI.	Field blanks	2	
VII.	Surrogate spikes	\leq	
VIII.	Matrix spike/Matrix spike duplicates	N	05
IX.	Laboratory control samples	A	105
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	Δ	
XIII.	Target analyte identification	Δ	MI
XIV.	System performance	A	
xv.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

.

	Client ID		Lab ID	Matrix	Date
1	HU145		 580-118118-1	Water	09/19/22
2					
3					
4					
5					
6					
7					
8					
9					
Notes	:				
	MB 580-404969	7			

Method: Semivolatiles (EPA SW 846 Method 8270 E) とM

Validation Area	Yes	No	NA	Findings/Comments		
I. Technical holding times						
Were all technical holding times met?						
Was cooler temperature criteria met?	/	[
II. GC/MS Instrument performance check						
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/					
Were all samples analyzed within the 12 hour clock criteria?	/	- 				
Illa. Initial calibration						
Did the laboratory perform a 5 point calibration prior to sample analysis?	$\left \right $					
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	/					
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?						
IIIb. Initial Calibration Verification						
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/					
Were all percent differences (%D) ≤ 20%?						
IV. Continuing calibration						
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/					
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?	/	,				
V. Laboratory Blanks			-			
Was a laboratory blank associated with every sample in this SDG?	\leq					
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/					
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/	-			
VI. Field blanks						
Were field blanks were identified in this SDG?		/				
Were target analytes detected in the field blanks?			/			
VII. Surrogate spikes						
Were all surrogate percent recovery (%R) within QC limits?	\square					
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?		•	_	-		
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?			/			
VIII. Matrix spike/Matrix spike duplicates						
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?						

VALIDATION FINDINGS CHECKLIST

Page: <u>2</u> of <u>2</u> Reviewer: <u>FT</u>

Validation Area	Yes	No	NA	Findings/Comments				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	-				
IX. Laboratory control samples	IX. Laboratory control samples							
Was an LCS analyzed per extraction batch?	\leq							
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	-						
X. Field duplicates								
Were field duplicate pairs identified in this SDG?		/	·					
Were target analytes detected in the field duplicates?								
XI. Internal standards								
Were internal standard area counts within -50% to +100% of the associated calibration standard?								
Were retention times within + 30 seconds of the associated calibration standard?	/							
XII. Target analyte quantitation								
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?								
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	\setminus							
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?								
XIII. Target analyte identification								
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	\leq							
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	\leq							
Were chromatogram peaks verified and accounted for?	\leq							
Were manual integrations reviewed and found acceptable?	/							
Did the laboratory provide before and after integration printouts?								
XIV. System performance								
System performance was found to be acceptable.		-						
XV. Overall assessment of data								
Overall assessment of data was found to be acceptable.								
VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: __1__ of __1__ Reviewer: ____ FT___

METHOD: GCMS 8270D SIM

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

Where:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

T

Ax = Area of compound Cx = Concentration of compound S = Standard deviation of the RRFs X = Mean of the RRFs Ais = Area of associated internal standard Cis = Concentration of internal Standard

_									
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF 500ug/Lstd)	(RRF 500ug/L std)	(Initial)	(Initial)		
	ICAL	3/24/2022	S	1.0387	1.0387	1.0388	1.0388	6.0	6.0
			GG	1.3013	1.3013	1.2744	1.2744	3.0	3.0
	SEA101		υυ	1.2092	1.2092	1.1719	1.1719	6.2	6.2
			DDD	see curve					
			1/1	1.1663	1.1663	1.0795	1.0795	10.9	10.9

LDC #: 55171B2b

Validation Findings Worksheet Initial Calibration Calculation Verification

Page:__1__ of __1__ FT

Method: 8270E SIM

Calibration				(Y)	(X)	(X^2)
Date	Instrument/Column	Compound	Standard	Response	Conc.	Conc.
3/24/2022	SEA101	DDD	1	0.016	0.01	0.0001
			2	0.034	0.02	0.0004
			3	0.068	0.05	0.0025
			4	0.151	0.1	0.01
			5	0.311	0.2	0.04
			6	0.750	0.5	0.25
			7	1.533	1	1
			8	2.995	2	4
			9	6.952	5	25
			10	13.807	10	100
			11	27.760	20	400
			12	65.375	50	2500
			13	118.050	100	10000

Regression Output	Calcu	Iated	Reported		
Constant	с	0.0037	С	0.2105	
Std Err of Y Est					
R Squared		0.9999906		0.9970000	
Degrees of Freedom					
	а	b	<u>a</u>	b .	
X Coefficient(s)	1.43267E+00	-2.5210E-03	1.47230E+00	-3.1000E-05	
Std Err of Coef.					
Correlation Coefficient		0.999995			
Coefficient of Determination (r^2)		0.999991			

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF A_x = Area of target analyte $C_x = Concentration of target analyte$

RRF = continuing calibration RRF A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	oov	9/27/22	<u></u> (1st IS)	1.0388	0.9148	0.9148	11.9	11.9
		1 1	GG (2 nd IS)	1.2744	1.193	1.193	6.4	6.4
		/07 /	ИЦ (3 rd IS)	1.1719	0.998	0.998	14.8	14-8
			DDD (G ,) (4 th IS)	50	464	464	7.3	7.3
			// (5 th IS)	1.0795	1.034	1.034	<i>4.2</i>	4.2
			(6 th IS)					
2			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
		2	(4 th IS)					
			(5 th IS)					
			(6 th IS)					
3			(1st IS)					
			(2 nd IS)					
	i		(3 rd IS)					
			(4 th IS)					·
			(5 th IS)					
			(6 th IS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1_of_1_ Reviewer: FT

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 E)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #1

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-95 W-d10	1000	689.1	69	69	σ
2-Fluorobiphenyl YY- d10	/	695.9	0	101)
Terphenyi-d14 TPH-01	4	1146.1	115	115	
Phenol-d5	/				
2-Fluorophenol					
2,4,6-Tribromophenol					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

LDC #: 55171876 VALIDATION FINDINGS WORKSHEET Page: <u>1</u> of <u>1</u> Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

SSC = (Ax)(Cis)(Fv)(Df) (A_{is})(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)*100

Where: A_x = Area of the target analyte

Fv =Final volume of extract Df= Dilution factor

Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

Les 580- 404969 LCS/LCSD samples:

	Sp Ad	ike ded	Sp	vike ntration	LC	S	ic	SD		CSD
Compound	(19		(14	215	Percent F	Recovery	Percent I	Recovery	RF	<u>סי</u>
					Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol					1					
Acenaphthene	2.0	NA	1.67	NΔ	83	83				
Pentachlorophenol						-				
Pyrene	2.0	NA	1.87	NA	94	94	NA			
										•

A_{Is}= Area for the specific internal standard C_{is} = Concentration of internal standard

LCSCLCrev.wpd

LDC #: 5517182b

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1_of_1</u> Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 C)

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Concen	tratior	$a = \frac{(A_{x})(I_{s})(V_{t})(DF)(2.0)}{(A_{is})(RRF)(V_{o})(V_{i})(%S)}$
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
V _o		Volume or weight of sample extract in milliliters (ml) or grams (g).

- V_I = Volume of extract injected in microliters (ul)
- V_t = Volume of the concentrated extract in microliters (ul)
- Df = Dilution Factor.
- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

Example:

Sample I.D. <u>Les 580</u> - 404 969 GG

 $Conc. = \frac{(261946)(100.0)(2)}{(24632)(1.2744)(1000)}$ = 1.67 ug/l

#	Sample ID	Target Analyte	Reported Concentration (49 M	Calculated Concentration (Qualification
	les	<u> </u>	1.67	1.67	
 					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: December 7, 2022

Parameters: Metals

Validation Level: Stage 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU145	580-118118-1	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 2: Data Validation Procedure for Metals by ICP-OES (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Calcium, Magnesium, Manganese, Potassium, and Sodium by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Calcium Magnesium Manganese Potassium	0.0919 mg/L 0.0636 mg/L 0.0023 mg/L 0.186 mg/L	All samples in SDG 580-118118-1

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

All target analyte quantitation met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Metals - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

Date: 12/05/22 Page: 1____of___1__ Reviewer: NC 2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

LDC #: 55171B4b

SDG #: 580-118118-1

Laboratory: Eurofins, Tacoma, WA

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	Α/Α	
п.	Instrument Calibration	A	
	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	sw	
<u>v.</u>	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	LCS/LCSD
X.	Field Duplicates	N	
XI.	Target Analyte Quantitation	A	
XII.	Overall Assessment of Data	A	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected D = Duplicate R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date HU145 580-118118-1 Water 09/19/22 1 3 4 5 6 7 8 9 10 11 12 13 14

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)						
Validation Area	Yes	No	NA	Comments		
I. Technical holding times						
Were all technical holding times met?	Yes					
Were all water samples preserved to a pH of						
<2.	Yes					
II. ICP-MS Tune						
Were mass resolutions within 0.1 amu for all						
isotopes in the tuning solution?			NA			
Were %RSDs of isoptoes in the tuning						
solution ≤5%?			NA			
III. Calibration						
Were all instruments calibrated daily?	Yes					
Were the proper standards used?	Yes					
Were all initial and continuing calibration						
verifications within the 90-110% (80-120% for						
mercury) QC limits?	Yes					
Were the low level standard checks within 70-						
130%?	Yes					
Were all initial calibration correlation						
coefficients within limits as specifed by the						
method?	Yes					
IV. Blanks				-		
Was a method blank associated with every						
sample in this SDG?	Yes					
Was there contamination in the method						
blanks?		No				
Was there contamination in the initial and						
continuing calibration blanks?	Yes					
V. Interference Check Sample						
Were the interference check samples						
performed daily?	Yes					
Were the AB solution recoveries within 80-						
120%?	Yes					
VI. Matrix Spike/Matrix Spike Duplicates/Lab	orato	ry Du	plicate	S		
Were MS/MSD recoveries within the QC						
limits? (If the sample concentration exceeded						
the spike concentration by a factor of 4, no						
action was taken.)			NA			
Were the MS/MSD or laboratory duplicate						
relative percent differences (RPDs) within the						
QC limits?			NA			
VII. Laboratory Control Samples						
SDG?	Yes					

VALIDATION FINDINGS CHECKLIST

		1				
Were the LCS recoveries and RPDs (if						
applicable) within QC limits?	Yes					
METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)						
Validation Area	Yes	No	NA	Comments		
VIII. Internal Standards				-		
Were all percent recoveries within the 30-		1				
120% (60-125% for EPA Method 200.8) QC						
limits?			NA			
If the recoveries were outside the limits, was						
a reanalysis performed?			NA			
IX. Serial Dilution						
Were all percent differences <10%?			NA			
Was there evidence of negative interference?						
If yes, professional judgement will be used to						
qualify the data.			NA			
X. Target Analyte Quantitation						
Were all reporting limits adjusted to reflect						
sample dilutions?	Yes					
Were all soil samples dry weight corrected?			NA			
XI. Overall Assessment of Data		_		•		
Was the overall assessment of the data found						
to be acceptable?	Yes					
XII. Field Duplicates				•		
Were field duplicates identifed in this SDG?		No				
Were target analytes detected in the field						
duplicates?			NA			
XIII. Field Blanks						
Were field blanks identified in this SDG?		No				
Were target analytes detected in the field						
blanks?			NA			

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1	Ca, Mg, Mn, K, Na
	Analysis Method
ICP	Ca, Mg, Mn, K, Na

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000) Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/L

Associated Samples: 1

					 Samı	ole Identific	ation		
Analyte	PB (mg/L)	Maximum Action ICB/CCB Level							
		(mg/L)	(ug/L)						
Ca		0.0919	459.5						
Mg		0.0636	318						
Mn		0.0023	11.5						
К		0.186	930						

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

LDC #: 55171B4b

VALIDATION FINDINGS CHECKLIST Calibration Calculation Verification

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

An intial calibration verification (ICV), continuing calibration verification (CCV), low level calibration check (LLCC), and interference check sample (ICSAB) percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis

True = concentration of each analyte in the source

Standard ID	Type of Analysis	Element	Found (mg/L)	True (mg/L)	Recalculated %R	Reported %R	Acceptable (Y/N)
ICV 580-406044/9	ICP	Са	38.98	40	97.45	97	Y
CCV 580-406044/26	ICP	Na	100.9	100	100.9	101	Υ .
ICVL 580-406044/11	ICP	Mn	0.0206	0.02	103	103	Y
ICSAB 580-406044/13	ICP	Mg	507	500	101.4	101	Y

VALIDATION FINDINGS CHECKLIST Quality Control Sample Recalculations

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Percent recoveries (%R) for the laboratory control sample (LCS), matrix spike (MS), and post digestion spike (PDS) were recalculated using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample Result)

True = concentration of each analyte in the source

The sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentration

D = Duplicate sample concentration

The serial dilution percent difference (%D) was recalculated using the following formula.

%D = (Absolute value (I - SDR)) x 100 / (I)

I = Initial sample result

SDR = Serial dilution result (with a 5x dilution applied)

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found/S/I	True/D/SDR	%R/RPD/%D	%R/RPD/%D	Acceptable (Y/N)
LCS 580-405900/23-A	LCS	Mn	1024	1000	102.4	102	Y

LDC #: 55171B4b

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Analytes were recalculated and verified using the following equation:

Concentration = (Result from raw data x Final volume x Dilution factor) / (Initial volume)

				Initial Weight/	Final Volume	Reported Result	Recalculated	Acceptable
Sample ID	Analyte	Raw Data (ug/L)	Dilution	Volume (mL)	(mL)	(ug/L)	Result (ug/L)	(Y/N)
1	К	3515	1	50	50	3500	3515	Y

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date: December 7, 2022

Parameters: Wet Chemistry

Validation Level: Stage 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU145	580-118118-1	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Alkalinity by Standard Method 2320B

Dissolved Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Nitrate/Nitrite as Nitrogen by EPA Method 353.2

Total Organic Carbon by EPA SW 846 Method 9060A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitations were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

C:\USERS\CAMMY\DOCUMENTS\NANCY-LDC\55171\55171B6.DOCX

VALIDATION COMPLETENESS WORKSHEET

Stage 4

SDG #: 580-118118-1 Laboratory: Eurofins, Tacoma, WA

LDC #: 55171B6

Page: 1_of_1_ Reviewer: <u>NC</u> 2nd Reviewer: 1

METHOD: (Analyte) Alkalinity (SM2320B), DOC (EPA SW-846 Method 9060A), Nitrate/Nitrite-N (EPA Method 353.2), TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11	Initial calibration	A	
	Calibration verification	А	
IV	Laboratory Blanks	А	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCS/LCSD
IX.	Field duplicates	N	
х.	Target Analyte Quantitation	A	
XI.	Overall assessment of data	A	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected D = Duplicate R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date 1 HU145 09/19/22 580-118118-1 Water 3 4 5 6 7 8 9 10 11 12 13

1

Date: 12/05/22

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
I. Technical holding times	•			
Were all technical holding times met?	Yes		Τ	
II. Calibration		1		· · · · · · · · · · · · · · · · · · ·
Were all instruments calibrated at the			T	
required frequency?	Yes			
Were the proper number of standards				
used?	Yes			
Were all initial and continuing calibration				
verifications within the QC limits?	Yes			
coefficients within limits as specifed by				
the method?	Ves			
Were balance checks performed as	103	1		
required?			NA	
III. Blanks				• • • • • • • • • • • • • • • • • • • •
Was a method blank associated with				
every sample in this SDG?	Yes			
Was there contamination in the method				
blanks?		No		
		1	1	
Was there contamination in the initial				
and continuing calibration blanks?	<u> </u>			-
IV. Matrix Spike/Matrix Spike Duplicates	S/Labo	ratory	Duplic	ates
Were MS/MSD recoveries within the QC				
limits? (If the sample concentration				
exceeded the spike concentration by a				
factor of 4, no action was taken.)				
Were the MS/MSD or laboratory				
duplicate relative percent differences				
(RPDs) within the QC limits?			NA	
V. Laboratory Control Samples				
Was a LCS analyzed for each batch in the				
SDG?	Ves			
Were the ICS recoveries and PDDs (if		1		
annlicable) within OC limits?	Ves			
X Sample Result Verification	1.03	I		1
	<u> </u>	1	T	Γ
were all reporting limits adjusted to	Vac			
	res			
were all soil samples dry weight corrected	1			L
XI. Overall Assessment of Data		Т		F
found to be acceptable?	Yes			
XII Field Dunlicates				L
Were field duplicates identifed in this			T	1
SDG?		No		
Were target analytes detected in the		1	<u> </u>	
field duplicates?			NA	
XIII. Field Blanks		-		
Were field blanks identified in this SDG?		No		
Were target analytes detected in the				
field blanks?		1	NA	

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
	Alkalinity, Bicarbonate Alkalinity as CaCO3, Carbonate Alkalinity as
1	CaCO3, DOC, TOC, Nitrate /Nitrite as N
· · · · · · · · · · · · · · · · · · ·	

METHOD: Inorganics

The correlation coefficient (r) for the calibration of Nitrate Nitrite as N were recalculated.

Calibration date:

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

True = concentration of each analyte in the ICV or CCV source

Type of Analysis	Analyte	Standard	Concentration (mg/L)	Area	Recalculated r or r ²	Reported r or r ²	Acceptable (Y/N)
	Nitrate Nitrite as N	s1	4	792795.2	0.999928 0.9	0.00002801	Y
		s2	3	593734.8			
		s3	1	202233.7			
Initial Calibration		s4	0.5	106606.1			
		s5	0.2	42425.2			
		s6	0.1	20513.4			
		s7	0	138.800		0.99992801	
		s8					
		s9					
		s10					
		s11					
		s12					

Type of Analysis	Analyte	Found (mg/L)	True (mg/L)	Recalculated r or r ²	Reported r or r ²	Acceptable (Y/N)
ICV 580-	Alkalinity	103 233333	100	103 233333	103	v
405526/1	Aikaiiiity	105.255555	100	103.235355	105	
CCV 280-	TOC	24 95	25	00.4	00	v
588735/15	100	24.65	23	55.4	33	T
CCV 280-	DOC	25.254	25	101.016	101	V
588744/15	DOC	25.254	25	101.016	101	T

VALIDATION FINDINGS CHECKLIST Quality Control Sample Recalculations

1

METHOD: Inorganics

Percent recoveries (%R) for the laboratory control sample (LCS) and matrix spike (MS) were recalcuated using the following formula:

%R = (Found/True) x 100

Found = concentration of each analyte measured in the analysis. For the MS calculation, Found = SSR (Spiked Sample Result) - SR (Sample Result) Result)

True = concentration of each analyte in the source

The sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = (Absolute value(S-D)x 200) / (S+D)

S = Original sample concentration

D = Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found/S	True/D	Recalculated %R/RPD	Reported %R/RPD	Acceptable (Y/N)
LCS 580-405526/2	LCS	Alkalinity	92625	100000	92.625	93	Y
LCS 280-588735/3	LCS	ТОС	24230	25000	96.92	97	Y
LCS 280-588744/14	LCS	DOC	25278	25000	101.112	101	Y
LCS 410-299872/176	LCS	Nitrate Nitrite as N	2490	2500	99.6	100	Y

METHOD: Inorganics

Analytes were recalculated and verified using the following equation:

Concentration = (Result from raw data x Final volume x Dilution factor) / (Percent solids (if applicable) x Initial weight or volume)

Sample ID	Analyte	Raw Data (ug/L)	Dilution	Initial Volume (mL)	Final Volume (mL)	Reported Result (ug/L)	Recalculated Result (ug/L)	Acceptable (Y/N)
1	Alkalinity	101491.6667	1	30	30	100000	101491.6667	Y
1	тос	-66.45	1	20	20	800U	-66.45	Y
1	DOC	1018.785	1	20	20	1000	1018.785	Y
1	Nitrate Nitrite as N	346	1	1	1	350	346	Y

.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:	November 2, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
HU145**	580-118118-1**	Water	09/19/22	
HU144	580-118118-2	Water	09/19/22	
Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260 and CADOHS LUFT Method

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the methods.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

Average relative response factors (RRF) were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample HU144 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the methods. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

LDC #:_	55171B7	VA
SDG #:	580-118118-1	
Laborate	ory: Eurofins, Tacoma,	WA

っ Date: Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260/CADOHS LUFT Method)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check		
ш.	Initial calibration/ICV	ALA	1^2 $1eV \pm 20$
IV.	Continuing calibration	A	$CUV \leq 20/2U$
V.	Laboratory Blanks	\triangle	
VI.	Field blanks	NO	TB=2
VII.	Surrogate spikes	7	
VIII.	Matrix spike/Matrix spike duplicates	N	5
IX.	Laboratory control samples	4	105/0
X.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	Δ	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	Δ	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
xv.	Overall assessment of data		
Note:	A = Acceptable ND = N = Not provided/applicable R = R	No compound insate	s detected D = Duplicate SB=Source blank TB = Trip blank OTHER:

Note:	A = Acceptable	ND = No compounds detected	D = Duplicate
	N = Not provided/applicable	R = Rinsate	TB = Trip blank
	SW = See worksheet	FB = Field blank	EB = Equipment blank
** Indic	ates sample underwent Stage 4 validation		

	Client ID	Lab ID	Matrix	Date
ſ	HU145**	580-118118-1**	Water	09/19/22
2	ни144 ТВ	580-118118-2	Water	09/19/22
3				
4				
5				
6				
7				
8				
9				
Notes				
	MB 580-40570/			

Method: Volatiles (EPA SW 846 Method 8260 / CA Do H S	LUF	=T)		
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?		-		
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	_			
Were all samples analyzed within the 12 hour clock criteria?	-	-		
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?			-	-
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/	-		
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/	-		
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	-			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) $\leq 50\%$ in the ending CCV?		-		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/	ſ		
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-		
Was there contamination in the laboratory blanks?		/	F	
VI. Field blanks				
Were field blanks were identified in this SDG?	-	F		£
Were target analytes detected in the field blanks?		-		
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?		F		
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VIII. Matrix spike/Matrix spike duplicates		<u></u>		e
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			\leq	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

-

VALIDATION FINDINGS CHECKLIST

IX. Laboratory control samples				
Was an LCS analyzed per analytical batch?	\sim			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	-	
Were target analytes detected in the field duplicates?			/	
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/	1		
XII. Target analyte quantitation				· · · · · · · · · · · · · · · · · · ·
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/	ł		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/			·
Were chromatogram peaks verified and accounted for?	_			
Were manual integrations reviewed and found acceptable?	~			
Did the laboratory provide before and after integration printouts?				F
XIV. System performance	-			
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				· · · · · · · · · · · · · · · · · · ·

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chiorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	000. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanai
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

Page:1	of^	1
Reviewer:	FT	

Method: GRO C6-C12

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
9/22/2022	SEA102	GRO (C6-C12)	1	14.1175	5
			2	21.508	10
			3	46.095	25
			4	88.545	50
			5	188.51	100
			6	847.65	500
	1			1635.3	1000
			7	2222.7	1500
			8	3585.66	2600

Regression Output		Reported
Constant	59.665151	60.640000
Std Err of Y Est		
R Squared	0.994955	0.992000
Degrees of Freedom		
X Coefficient(s)	1.401226	1.599700
Std Err of Coef.		
Correlation Coefficient	0.997474	
Coefficient of Determination (r^2)	0.994955	0.992000

LDC #: <u>55 171</u>B7

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of_1_ Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260/L & FT

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	cer	10/1/22	GRO C6-C12. (1st internal standard)	1.60	1.18	1.18	لا	18
	SEA 102	145)	(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
2			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
4			(1st internal standard)				·	
			(2nd internal standard)					
	·		(3rd internal standard)					
			(4th internal standard)					
Com	ments: <u>Refer t</u>	to Continuing	Calibration findings worksheet for list of qu	alifications and	associated sample	es when reported re	esults do not agree	within 10.0% of
ne recalculated results.								

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1_of_1 Reviewer: FT 2nd reviewer:_____

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the analytes identified below using the following calculation:

%	Recovery:	SF/SS	*	100
/0	Trecovery.	01/00		100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					•
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene	10.0	言う	113		\cup

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane		- <i></i>			
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of 1_____ Reviewer: ______FT____

METHOD: GC/MS VOA (EPA Method 8260 / MPT

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: 10510 550-405701

	S	pike	Spiked Sample		LCSD		LCS/LCSD				
Compound	Ас (<u>и</u>	ided	Сопсе (и	Concentration		Percent Recovery		Percent Recovery		RPD	
	LCS	U LCSD	LCS	U LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
GRO C6-C12- 1,1-Dichloroetherie	1000	1000	1000	941	100	100	१५	94	6	6	
Trichloroethene											
Benzepe											
Toluene											
Chlorobenzene											

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

	DD: <u>I/A</u> I/A	GC/MS VOA (EPA SW 846 Method 8260 レリ Were all reported results recalculated and Were all recalculated results for detected	FT l verif targe	ied for all level IV sai t analytes agree with	mples? in 10.0% of the repo	rted results?
Concen	ntration	$n = \frac{(A_x)(I_x)(DF)}{(A_{is})(RRF)(V_o)(\%S)}$		Example:		(10)
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured		Sample I.D. LCS	580-40.5101	GKU C
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard		616	2557 (10)	- 60.640
l _s	=	Amount of internal standard added in nanograms (ng)		Conc. = <u>370</u> .	189	
RRF	=	Relative response factor of the calibration standard.			(1.5991+))
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).				
Df	=	Dilution factor.			inno lite un	12
%S	=	Percent solids, applicable to soils and solid matrices only.			1000.66 ug	1-
				Reported	Calculated	

Sample I.D. LCS 580-405701 GRO CJ-C12
Conc. =
$$\frac{61602557}{370789}$$
 (10) - 60.640)
(1.59917)
1000.66 ug [L

					· · · · · · · · · · · · · · · · · · ·
#	Sample ID	Compound	Reported Concentration (VG)	Calculated Concentration (\uge)	Qualification
	les	6FO C6-C12	600	1000.66	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Oily Waste Disposal Facility, CTO 18F0176

LDC Report Date:	November 2, 2022
------------------	------------------

Parameters: Methane

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HU145**	580-118118-1**	Water	09/19/22
HU144	580-118118-2	Water	09/19/22

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Methane by Method RSK-175

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

Retention time windows were established as required by the method.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

Retention times of all analytes in the calibration standards were within the established retention time windows.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample HU144 was identified as a trip blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

X. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Methane - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

SDG #:<u>580-118118-1</u> Laboratory:<u>Eurofins, Tacoma, WA</u>

LDC #: 55171B51

Date:	10	121	p2
Page:_	<u> </u>	/f_/	-
Reviewer:		n	-
2nd Reviewer:		4	<u>.</u>
		(

METHOD: GC Methane (Method RSK-175)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comme	nts				
١.	Sample receipt/Technical holding times	A A	1						
11.	Initial calibration/ICV	AA	0/0 p	D/ICV LZC)				
Ш.	Continuing calibration lending	A		$COV \leq 2$	0 pro				
IV.	Laboratory Blanks	4							
V.	Field blanks	ND	TB =	1 2					
<u>VI.</u>	Surrogate spikes								
<u>VII.</u>	Matrix spike/Matrix spike duplicates	N_	CS						
VIII.	Laboratory control samples	A	LCS						
IX.	Field duplicates	N							
X.	Target analyte quantitation	<u> </u>	Not reviewed for	Stage 2B validation.	MI				
XI.	Target analyte identification	A	Not reviewed for	Stage 2B validation.					
	Overall assessment of data	Δ_							
Note:	ote: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank Indicates sample underwent Stage 4 validation								
	Client ID			Lab ID	Matrix	Date			
1	HU145**			580-118118-1**	Water	09/19/22			
2	ни144 ТВ			580-118118-2	Water	09/19/22			
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
Notes:					<u> </u>				
	110 410- 2010 14								
					· · · ·				

Method: VGC HPLC

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/	t		
Was cooler temperature criteria met?	/			
Ila. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	-			
Were all percent relative standard deviations (%RSD) < 20%?		[
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	
Were the RT windows properly established?		·		
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) <u><</u> 20%?	\square	·	l 	
III. Continuing calibration				
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) ≤ 20%?				
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	<			
Was a laboratory blank analyzed for each matrix and concentration?	\leq			
Was there contamination in the laboratory blanks?		/		
V. Field Blanks				
Were field blanks identified in this SDG?	/			
Were target analytes detected in the field blanks?				
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?	/			
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			/	
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?	\square	,		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC #: 59 171 05

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target analytes detected in the field duplicates?			/	
X. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	-			
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?		-		
Were manual integrations reviewed and found acceptable?				
Did the laboratory provide before and after integration printouts?		r		
XIII. Overall assessment of data	/	/		
Overall assessment of data was found to be acceptable.				

LDC #: 55171 B5/

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	/	_of_	/
Reviewer:		FT	
2nd Reviewer:			

METHOD: GC ______HPLC_____

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported		Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (59-8std)	CF (59-8std)	CF (initial)	CF (intial)	%RSD	%RSD
1	ICAL	7/19/22	Methane	1756426	1756426	168929.44	166895944	4.3	4.3
	HP Pht								
	1 1.								
2									
3									
	-								
4									

Comments: <u>Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 55 171 B5/

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of 1___ Reviewer: FT____

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte C = Concentration of target analyte

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	ocv	9/30/22 0877	Methane	1668929	78620	178620/	7.0	7.0
		,						
2								
3		·						
4								
Com	ments: <u>Refer to</u>	Continuing Calil	bration findings worksheet	for list of qualifications a	nd associated san	ples when reported	results do not agr	ree within 10.0% of

LDC #: <u>5517</u>/B5/ METHOD: <u>GC</u> HPLC

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: _ 井

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Propene		W	19.8	99	99	0
]						

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

LDC #: 55/7/85/

VALIDATION FINDINGS WORKSHEET

Page: 1_of_1_

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer:____FT

GC HPLC METHOD:

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

10> 410-301674 LCS/LCSD samples:

Compound (ug L) (ug L) (ug L) Percent Recovery Percent Recovery Percent Recovery Reported Recalc. Recalc. Reported Recalc. Recalc. <t< th=""><th></th></t<>	
LCS LCSD LCS LCSD Reported Recalc. Recalc. Reported Recalc. Reported Recalc. Recalc. Reported Recalc. Recalc. Reported Recalc. Re	Compound
Methane 59.8 NA 66.7 NA 112 112	
	Methane

LDC #:<u>55/7</u>/B5/

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1_of_1</u> Reviewer: <u>FT</u>

METHOD: HPLC

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

A= Are Fv= Fir Df= Dili RF= Ave In t Vs= Init Ws= Init %S= Pe	tration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100 ea or height of the target analyte to hal Volume of extract ution Factor erage response factor of the target a the initial calibration tial volume of the sample tial weight of the sample ercent Solid	Example:)) Sample ID be measured analyte Concentra	$\frac{10}{10} = \frac{10}{11234}$	01674 M 4316) (1668929)	= thane==
#	Sample ID	Target analyte	Reported Concentrations (49 /)	Recalculated Results Concentrations	Qualifications
	Les	Methane.	IP2 F7	66.65	
			6 6.7		
		•			

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Oily Waste Disposal Facility,	CTO 18F0176
--------------------	--	-------------

LDC Report Date: November 2, 2022

Parameters: Polychlorinated Dioxins/Dibenzofurans

Validation Level: Stage 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-118118-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HU145	580-118118-1	Water	09/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Site Assessment Work Plan, Red Hill Oily Waste Disposal Facility, Pearl Harbor HI FISC Site 22, Joint Base Pearl Harbor-Hickam, Oahu, Hawaii (February 2021), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was resolved with a valley of less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes and labeled compounds.

The ion abundance ratios for all PCDDs/PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 2.5 for each analyte and greater than or equal to 10 for each labeled compound.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for all analytes and less than or equal to 30.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within method and validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each analyte and labeled compound.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
MB 410-300032	09/26/22	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HxCDD Total HxCDF Total PeCDF Total PeCDF Total PeCDF Total PeCDF	0.00000365 ug/L 0.00000318 ug/L 0.00000326 ug/L 0.000000163 ug/L 0.000000277 ug/L 0.000000674 ug/L 0.000000413 ug/L 0.000000413 ug/L 0.000000282 ug/L 0.000000329 ug/L 0.000000339 ug/L 0.000000339 ug/L 0.000000365 ug/L 0.00000130 ug/L 0.00000122 ug/L 0.00000171 ug/L 0.00000195 ug/L 0.00000195 ug/L 0.00000195 ug/L	All samples in SDG 580-118118-1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HU145	1,2,3,4,7,8-HxCDD 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HpCDF Total PeCDF Total PeCDD/Total PeCDF Total PeCDD Total PeCDF	0.00000012 ug/L 0.00000032 ug/L 0.00000061 ug/L 0.00000042 ug/L 0.00000012 ug/L 0.00000029 ug/L 0.00000032 ug/L 0.00000017 ug/L 0.00000073 ug/L 0.0000010 ug/L	0.00000012U ug/L 0.00000032U ug/L 0.00000061U ug/L 0.00000042U ug/L 0.00000012U ug/L 0.00000029U ug/L 0.00000032U ug/L 0.0000017U ug/L 0.00000073U ug/L

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.
VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target analytes were within QC limits.

XI. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Flag	A or P
All samples in SDG 580-118118-1	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	A

XII. Target Analyte Identification

All target analyte identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to results reported by the laboratory as EMPC, data were qualified as estimated in one sample.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 580-118118-1

Sample	Analyte	Flag	A or P	Reason (Code)
HU145	Results flagged "I" by the laboratory as estimated maximum possible concentration (EMPC).	J (all detects)	A	Target analyte quantitation (EMPC) (k)

Red Hill Oily Waste Disposal Facility, CTO 18F0176 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 580-118118-1

Sample	Analyte	Modified Final Concentration	A or P	Code
HU145	1,2,3,4,7,8-HxCDD 2,3,4,7,8-PeCDF OCDD OCDF Total HxCDD Total HpCDF Total PeCDF Total PeCDD/Total PeCDF Total PeCDD Total PeCDF	0.00000012U ug/L 0.0000032U ug/L 0.0000061U ug/L 0.00000042U ug/L 0.00000012U ug/L 0.00000029U ug/L 0.00000032U ug/L 0.0000017U ug/L 0.0000073U ug/L	A	b

Red Hill Oily Waste Disposal Facility, CTO 18F0176

Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 580-118118-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 4

LDC #: <u>55171B21</u> **VA** SDG #: <u>580-118118-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u>

Date: 1)	01	$_{2}\mathcal{V}$
Page:	of	_
Reviewer:	P	L
2nd Reviewer:	A	2

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA SW-846 Method 8290A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AΔ	
11.	HRGC/HRMS Instrument performance check	A	
- 111.	Initial calibration/ICV	4A	0/0 PSD = 20 $ CV = 20/3U$
IV.	Continuing calibration	A	CUV = 20 30
V.	Laboratory Blanks	SW	
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	N	حن
VIII.	Laboratory control samples	4	Kes 10
IX.	Field duplicates	N	
X.	Labeled Compounds	Δ	
XI.	Target analyte quantitation	600	
XII.	Target analyte identification		
XIII.	System performance	A	
XIV.	Overall assessment of data	Δ	

Note:

N = Not provided/applicable

A = Acceptable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate	
TB = Trip blank	
EB = Equipment	blank

SB=Source blank OTHER:

	Client ID	 		Lab ID	Matrix	Date
1	HU145			580-118118-1	Water	 09/19/22
2			 			
3						
4						
5						
6						
7						
8						
9						
10						
Notes	· · · · · · · · · · · · · · · · · · ·					
	MB410 300032					

VALIDATION FINDINGS CHECKLIST

Page:_/of_	2
Reviewer: FT	
2nd Reviewer:	

Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	/			
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?	/			
Were the retention time windows established for all homologues?	/			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers $\leq 25\%$?	/			
Is the static resolving power at least 10,000 (10% valley definition)?	Ĺ			
Was the mass resolution adequately check with PFK?	-			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?				
Illa. Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) \leq 20% for all analytes and labeled compounds ?	/			
Did all calibration standards meet the Ion Abundance Ratio criteria?	/			
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?	/			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ?	/			
IV. Continuing calibration				
Was a contiuning calibration performed at the beginning and end of each 12 hour period?	-			
Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ?	/			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound and for each recovery and internal standard \geq 10?	/			
V. Laboratory Blanks	.			
Was a method blank associated with every sample in this SDG?	/			
Was a method blank performed for each matrix and whenever a sample extraction was performed?	/			
Was there contamination in the method blanks?		-		
VI. Field blanks				
Field blanks were identified in this SDG.		/		(
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS CHECKLIST

Page: $\mathcal{V}_{of} \mathcal{L}$	·
Reviewer: FT	
2nd Reviewer:	

71

VII. Matrix spike/Matrix spike duplicates		_		
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				-
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			-	
VIII. Laboratory control samples				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			~
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.			·	
Target compounds were detected in the field duplicates.				
X. Labeled Compoubds				
Were internal standard recoveries within the 40-135% criteria?	\leq			
Was the minimum S/N ratio of all internal standard peaks \geq 10?	$\left \right $			
XI. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/			
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?				
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?	/	[
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	\langle			
Was the signal to noise ratio for each target compound and labeled standard \geq 2.5?	\sim			
Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)?	/	-		
For PCDF identification, was any signal (S/N \geq 2.5, at <u>+</u> seconds RT) detected in the corresponding PCDPE channel?	/	-		
Was an acceptable lock mass recorded and monitored?		Ł		
XIII. System performance				
System performance was found to be acceptable.		ŕ		
XIV. Overall assessment of data	/			
Overall assessment of data was found to be acceptable.	7			

Level IV checklist_8290 rev02.wpd

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

.

Notes:_____

VALIDATION FINDINGS WORKSHEET Blanks

Associated samples:

All

(b)

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y Were all samples associated with a method blank?

- Y Was a method blank performed for each matrix and whenever a sample extraction was performed?
- Y Was the method blank contaminated?

Blank extraction date: 9/26/22	Blank analysis date:	9/27/22

Conc. units: ug/L

Compound	Blank ID			Sa	ample Identifica	ition		
	MB 410-300032	_ <u>5x</u>	<u>1</u>					
0	0.00000365	0.000001825	-					
с	0.000000318	0.000001590	0.0000012U					
к	0.000000326	0.000001630	-					
D	0.000000163	0.000000815	-					
L	0.000000277	0.000001385						
1	0.00000674	0.000003370	-					
E	0.000000456	0.000002280	-					
N	0.000000413	0.000002065						
м	0.000000282	0.000001410						
J	0.00000544	0.000002720	0.00000032U					
G	0.00000101	0.000005050	0.0000061U					
Q	0.00000339	0.000001695	0.00000042U					
т	0 000000937	0 000004685	0 00000121					

CUIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All Ycontaminants within five times the method blank concentration were qualified as not detected, "U".

vdr/validation worksheet/dioxins/8290/MB 410 300032 55171B21

VALIDATION FINDINGS WORKSHEET Blanks

Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

- Was a method blank performed for each matrix and whenever a sample extraction was performed?
- <u>Y</u> <u>Y</u> <u>Y</u> Was the method blank contaminated?

Blank extraction date:	9/26/22	Blank analysis da	ate: 9/27/22

Conc. units: ug/L

Associated samples: all (b)

Compound	Blank ID	Sample Identification							
	MB 410-300032	5x		1					
x	0.00000130	0.000006500		-					
Y	0.00000365	0.000001825		0.00000029U					
w	0.00000122	0.000006100		0.0000032U					
S/W	0.00000517	0.000025850		0.0000017U					
S	0.00000195	0.000009750		0.0000073U					
W	0.00000322	0.000016100		0.0000010U					
		_							

VALIDATION FINDINGS WORKSHEET Target Analyte Quantitation

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y N N/A</u> <u>Y N N/A</u> Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

#	Date	Sample ID	Finding	Associated Samples	Qualifications	
		// 4	All results qualified		Jdu /A (K)	
		······	"I" as EMPC		, ,	
			· · · · · · · · · · · · · · · · · · ·			
		<i>k</i>				
				·····		
				-		

Comments: See sample calculation verification worksheet for recalculations

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of Compound C_x = Concentration of compound,

S= Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration			RRF	RRF	Average RRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound (IS)		(10/50/100 std)	(10/50/100 std)	(Initial)	(Initial)		
1	ICAL	1/6/2022	2,3,7,8-TCDF	(13C-2,3,7,8-TCDD)	1.5760	1.5760	1.1309	1.1309	15.1	15.1
	DF18471		2,3,7,8-TCDD	(13C-2,3,7,8-TCDF)	1.0589	1.0589	1.1359	1.1359	16.7	16.7
			1,2,3,6,7,8-HxCDD	(13C-1,2,3,6,7,8-HxCDD)	1.0168	1.0168	1.0526	1.0526	5.1	5.1
1			1,2,3,4,6,7,8-HpCDD	(13C-1,2,3,4,6,7,8,-HpCDD)	1.0509	1.0509	1.0671	1.0671	8.3	8.3
			OCDF	(13C-OCDF)	0.9190	0.9190	0.9320	0.9320	4.0	4.0

LDC #: 55 71 B2)

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	1	_of_	1
Reviewer:		FT	

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	Cer	9/27/22	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	1.1309	1.149	1.149	1.6	1.6
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.359	1.2772	1.232	8.4	8.4
		1002	1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	1.0524	1.155	1.155	9.7	9.7
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.0671	1.093	1.093	2.4	2.4
				0.9320	0.9814	0.9814	5.3	5.3
2			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)			•		
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
3			2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)					
		i	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (¹³ C-OCDD)					

Comments: <u>Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 55171821

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of 1_ Reviewer: FT_

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 10-300032

	Sp	oike	Spiked	Spiked Sample Concentration (ug y							
Compound	Ad (ua	ded	Conce (ປ			Percent Recovery		Percent Recovery		RPD	
	LCS				Reported	Recalc	Reported	Recalc	Reported	Recalc	
2,3,7,8-TCDD	0.000200	0.000200	6.002.09	0.000211	104	104	106	506	1)	
1,2,3,7,8-PeCDD	0.00100	0.00100	0.00111	0.00110	<u> </u>	[1]		10	υ	U	
1,2,3,4,7,8-HxCDD	0.00100	0.00100	0.00106	0.00111	106	106		11	5	5	
1,2,3,4,7,8,9-HpCDF	0.00100	0.00100	0.00105	0.00105	105	MOS	105	105	ט	Ó	
OCDF	0.002.00	0.00200	0,002 19	0. 002/3	109	109	06	106	3	う	
						,					

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	ntratior	$n = \frac{(A_{i})(I_{i})(DF)}{(A_{is})(RRF)(V_{o})(%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
V₀	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RRF	=	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.

%S = Percent solids, applicable to soil and solid matrices only.

Example:

Sample I.D. _____ , ____ 0CDF

Conc. =	(146) (200) (20)
	(1419676) (0.9320) (1048.5) (1000)
=	0,00000 42096 ug/L

#	Sample ID	Compound	Reported Concentration (ug y	Calculated Concentration (ug l 4	Qualification
	# \	ocdf	0.00000012	. 0,0000042	.096
					, , , , , , , , , , , , , , , , , , ,
				- 	
		· · · · · · · · · · · · · · · · · · ·	1 		
		· · · · · · · · · · · · · · · · · · ·		!	
		· · · · · · · · · · · · · · · · · · ·			